03.08.2013 Views

Skeletal Muscle Adaptations to Interval Training in Patients With ...

Skeletal Muscle Adaptations to Interval Training in Patients With ...

Skeletal Muscle Adaptations to Interval Training in Patients With ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8 Allaire J, Maltais F, Doyon JF, et al. Peripheral muscle<br />

endurance and the oxidative profile of the quadriceps <strong>in</strong><br />

patients with COPD. Thorax 2004; 59:673–678<br />

9 Casaburi R, Patessio A, Ioli F, et al. Reductions <strong>in</strong> exercise<br />

lactic acidosis and ventilations as a result of exercise tra<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong> patients with chronic obstructive lung disease. Am Rev<br />

Respir Dis 1991; 143:9–18<br />

10 Maltais F, LeBlanc P, Simard C, et al. <strong>Skeletal</strong> muscle<br />

adaptation <strong>to</strong> endurance tra<strong>in</strong><strong>in</strong>g <strong>in</strong> patients with chronic<br />

obstructive pulmonary disease. Am J Respir Crit Care Med<br />

1995; 154:442–447<br />

11 Sala E, Roca J, Marrades RM, et al. Effects of endurance<br />

tra<strong>in</strong><strong>in</strong>g on skeletal muscle bioenergetics <strong>in</strong> chronic obstructive<br />

pulmonary disease. Am J Respir Crit Care Med 1999;<br />

159:1726–1734<br />

12 Puete-Maestu L, Tena T, Trascasa C, et al. <strong>Tra<strong>in</strong><strong>in</strong>g</strong> improves<br />

muscle oxidative capacity and oxygenation recovery k<strong>in</strong>etics <strong>in</strong><br />

patients with chronic obstructive pulmonary disease. Eur<br />

J Appl Physiol 2003; 88:580–587<br />

13 Ambros<strong>in</strong>o N, Strambi S. New strategies <strong>to</strong> improve exercise<br />

<strong>to</strong>lerance <strong>in</strong> chronic obstructive pulmonary disease. Eur<br />

Respir J 2004; 24:313–363<br />

14 Maltais F, LeBlank P, Job<strong>in</strong> J, et al. Intensity of tra<strong>in</strong><strong>in</strong>g and<br />

physiologic adaptations <strong>in</strong> patients with chronic obstructive<br />

pulmonary disease. Am J Respir Crit Care Med 1997; 155:<br />

555–561<br />

15 Astrand PO, Rodahl K. Physical tra<strong>in</strong><strong>in</strong>g. In: Astrand PO,<br />

Rodahl K, eds. Textbook of work physiology. New York, NY:<br />

McGraw-Hill, 1986; 412–476<br />

16 Vogiatzis I, Nanas S, Kastanakis E, et al. Dynamic hyper<strong>in</strong>flation<br />

and <strong>to</strong>lerance <strong>to</strong> <strong>in</strong>terval exercise <strong>in</strong> patients with<br />

advanced COPD. Eur Respir J 2004; 24:358–363<br />

17 Sabapathy S, K<strong>in</strong>gsley RA, Schneider DA. Cont<strong>in</strong>uous and<br />

<strong>in</strong>termittent exercise responses <strong>in</strong> <strong>in</strong>dividuals with chronic<br />

obstructive pulmonary disease. Thorax 2004; 57:1026–1031<br />

18 Vogiatzis I, Nanas S, Roussos C. <strong>Interval</strong> tra<strong>in</strong><strong>in</strong>g as an<br />

alternative modality <strong>to</strong> cont<strong>in</strong>uous exercise <strong>in</strong> patients with<br />

COPD. Eur Respir J 2002; 20:12–19<br />

19 Richardson RS, Sheldon J, Poole DC, et al. Evidence of<br />

skeletal muscle metabolic reserve dur<strong>in</strong>g whole body exercise<br />

<strong>in</strong> patients with chronic obstructive pulmonary disease. Am J<br />

Respir Crit Care Med 1999; 159:881–885<br />

20 Richardson RS, Leek BT, Gav<strong>in</strong> TP, et al. Reduced mechanical<br />

efficiency <strong>in</strong> chronic obstructive pulmonary disease but<br />

normal peak VO 2 with small muscle mass exercise. Am J<br />

Respir Crit Care Med 2004; 169:89–96<br />

21 Gardner RM, Hank<strong>in</strong>son JL, Clausen JL, et al. American<br />

Thoracic Society standardization of spirometry, 1987 update.<br />

Am Rev Respir Dis 1987; 136:1285–1298<br />

22 Bengstrom J. <strong>Muscle</strong> electrolytes <strong>in</strong> man: determ<strong>in</strong>ation by<br />

neutron activation analysis on needle biopsy specimens; a<br />

study on normal subjects, kidney patients and patients with<br />

chronic diarrhea. Scand J Cl<strong>in</strong> Lab Invest 1962; 14:1–110<br />

23 Brook MH, Kaiser K. <strong>Muscle</strong> fibre types: how many and what<br />

k<strong>in</strong>d? Arch Neurol 1970; 23:369–379<br />

24 Brook MH, Kaiser K. Three “myos<strong>in</strong> adenos<strong>in</strong>e triphosphatase”<br />

systems: the nature of their pH lability and sulfhydryl<br />

dependence. J His<strong>to</strong>chem Cy<strong>to</strong>chem 1970; 18:670–672<br />

25 Job<strong>in</strong> J, Maltais F, Doyon JF, et al. Chronic obstructive<br />

pulmonary disease: capillarity and fiber-type characteristics of<br />

skeletal muscle. J Cardiopulm Rehabil 1998; 18:432–437<br />

26 Maltais F, Leblanc, Whit<strong>to</strong>m F, et al. Oxidative enzyme<br />

activities of the vastus lateralis and the functional status <strong>in</strong><br />

patients with COPD. Thorax 2000; 55:848–853<br />

27 Yan S, Kam<strong>in</strong>ski D, Sliw<strong>in</strong>sky P. Reliability of <strong>in</strong>spira<strong>to</strong>ry<br />

capacity for estimat<strong>in</strong>g end-expira<strong>to</strong>ry lung volume changes<br />

dur<strong>in</strong>g exercise <strong>in</strong> patients with chronic obstructive pulmonary<br />

disease. Am J Respir Crit Care Med 1997; 156:55–59<br />

28 Sue DY, Wasserman K, Moricca RB, et al. Metabolic acidosis<br />

dur<strong>in</strong>g exercise <strong>in</strong> patients with chronic obstructive pulmonary<br />

disease. Chest 1988; 94:931–938<br />

29 Borg GAV. Psychophysical bases of perceived exertion. Med<br />

Sci Sports Exerc 1982; 14:377–381<br />

30 Jakobsson P, Jorfeldt L, Henriksson J. Metabolic enzyme<br />

activity <strong>in</strong> the quadriceps femoris muscle <strong>in</strong> patients with<br />

severe chronic obstructive pulmonary disease. Am J Respir<br />

Crit Care Med 1995; 151:374–377<br />

31 Simoneau JA, Lortie G, Boulay MR, et al. Human skeletal<br />

muscle fiber type alteration with high <strong>in</strong>tensity <strong>in</strong>termittent<br />

tra<strong>in</strong><strong>in</strong>g. Eur J Appl Physiol 1985; 54:250–253<br />

32 Jacobs I, Esbjornsson M, Sylven C, et al. Spr<strong>in</strong>t tra<strong>in</strong><strong>in</strong>g<br />

effects on muscle myoglob<strong>in</strong>, enzymes, fiber types, and blood<br />

lactate. Med Sci Sports Exerc 1987; 19:368–374<br />

33 MacDougall JD, Hicks AL, MacDonald JR, et al. <strong>Muscle</strong><br />

performance and enzymatic adaptations <strong>to</strong> spr<strong>in</strong>t <strong>in</strong>terval<br />

tra<strong>in</strong><strong>in</strong>g. J Appl Physiol 1998: 84:2138–2142<br />

34 Salt<strong>in</strong> B, Gollnick PD. <strong>Skeletal</strong> muscle adaptability: significance<br />

for metabolism and performance. In: Peachey LE, ed.<br />

<strong>Skeletal</strong> muscle. Bethesda, MD: American Physiologic Society,<br />

1983; 555–631<br />

35 Essen B. Studies on the regulation of metabolism <strong>in</strong> human<br />

skeletal muscle us<strong>in</strong>g <strong>in</strong>termittent exercise as a n experimental<br />

model. Acta Physiol Scand 1978; 454:1S–32S<br />

36 Astrand PO, Rodahl K. Physical tra<strong>in</strong><strong>in</strong>g. In: Astrand PO,<br />

Rodahl K, eds. Textbook of work physiology. New York, NY:<br />

McGraw-Hill, 1986; 412–476<br />

www.chestjournal.org CHEST / 128 /6/DECEMBER, 2005 3845<br />

Downloaded From: http://jupcvss.chestpubs.org/ on 08/01/2013

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!