04.08.2013 Views

Betti numbers of modules over Noetherian rings with ... - IPM

Betti numbers of modules over Noetherian rings with ... - IPM

Betti numbers of modules over Noetherian rings with ... - IPM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Appendix A: Algorithms for our criterion for linear resolutions 94<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

/*Rand(x,y) returns a random integer between x and y*/<br />

Data: P <strong>of</strong> Rees ring R(I)<br />

Result: a sparse upper triangular random bi-change <strong>of</strong> coordinates g<br />

begin<br />

end<br />

/*the degree <strong>of</strong> sparsity, here 5 times product <strong>of</strong> random 0<br />

and 1*/<br />

DS ←− 5<br />

for i ← 1 to r do<br />

end<br />

i−1<br />

Xi ←− xi +<br />

DS<br />

( Rand(0, 1)xj)<br />

j=1<br />

for i ← 1 to m do<br />

end<br />

i−1<br />

Ti ←− ti +<br />

k=1<br />

DS<br />

( Rand(0, 1)tj)<br />

j=1<br />

k=1<br />

if (X1, · · · , Xr, T1, · · · , Tm) = (x1, · · · , xr, t1, · · · , tm) then<br />

else<br />

endif<br />

g := x1 ↦→ X1, · · · , xr ↦→ Xr, t1 ↦→ T1, · · · , tm ↦→ Tm<br />

return g<br />

Generate again<br />

Algorithm 6: Algorithm for generating a sparse random upper triangular<br />

bi-change <strong>of</strong> coordinates.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!