04.08.2013 Views

BED, BANK & SHORE PROTECTION

BED, BANK & SHORE PROTECTION

BED, BANK & SHORE PROTECTION

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Faculty of Coastal Engineering<br />

<strong>BED</strong>, <strong>BANK</strong> & <strong>SHORE</strong><br />

<strong>PROTECTION</strong><br />

Lecturer: Pham Thu Huong


Chapter 6<br />

Waves - Loads<br />

(6 class hours)


6.1 Introduction<br />

Content<br />

6.2 Non breaking waves<br />

6.3 Breaking waves<br />

6.4 Wave on the slope<br />

6.4 Reduction of wave loads<br />

6.5 Summary


Wave issues<br />

Generation: H, T characteristic = f (u wind, h, fetch)<br />

Hydrodynamics: u, p, τ = f (H,T,h)<br />

Statistics:p(H) = f (H characteristic, distribution function)<br />

3. Wave statistics<br />

1. Wave generation<br />

2. Wave hydrodynamics


Examples of wave loads<br />

In which:<br />

(A) - standing wave<br />

(B) - breaking wave on a mild slope<br />

(C) - breaking wave on a steeper slope


Wave motion in periodic,<br />

unbroken wave


Validity of wave theories


Application of linear theory


gradient in filter under breakwater


Friction under waves


with:<br />

friction factor and cf uˆ= ω a =<br />

b b<br />

u = uˆbsinω t<br />

1 c u<br />

2<br />

w 2 f b<br />

ˆ ˆ<br />

τ = ρ<br />

ω a<br />

sinh kh<br />

( ) 0.19 −<br />

a k<br />

⎡<br />

⎢<br />

− 6.0+ 5.2<br />

⎣ b/ r<br />

⎤<br />

⎥⎦<br />

f f max<br />

a b: wave amplitude at<br />

bottom<br />

ω : angular frequency<br />

in waves (=2π/T)<br />

c = e with: c = 0.3


Shoaling<br />

Near-shore Near shore effects


Shoaling<br />

Refraction<br />

Near-shore Near shore effects


Shoaling<br />

Refraction<br />

Diffraction<br />

Near-shore Near shore effects


Shoaling<br />

Refraction<br />

Diffraction<br />

Reflection<br />

Near-shore Near shore effects


Shoaling<br />

Refraction<br />

Diffraction<br />

Reflection<br />

Breaking<br />

Near-shore Near shore effects


eaking waves<br />

⎛2π⎞ H = 0.142 L tanh h<br />

b<br />

⎜ ⎟<br />

⎝ L ⎠<br />

Hb<br />

0.78 ( solitary wave)<br />

h ≈<br />

H<br />

h<br />

s<br />

≈0.4 −0.5


the Iribarren number<br />

(surf similarity parameter)<br />

ξ =<br />

tan<br />

α<br />

H L<br />

tan α slope of the shoreline/structure<br />

H wave height<br />

L0 wave length at deep water<br />

0


eaker types


eaker types<br />

spilling ξ < 0.5<br />

plunging 0.5 < ξ < 3<br />

collapsing ξ = 3<br />

surging ξ > 3<br />

(sóng vỗ bờ)<br />

(Sóng cuộn đổ)<br />

(sóng đổ)<br />

(sóng cồn,<br />

sóng dâng)


ore and hydraulic jump


H R 2<br />

Kr = ≈0.1ξ<br />

H<br />

I<br />

reflection<br />

Battjes, 1974<br />

small ξ less reflection<br />

K r = 1 seawall (standing wave)


Loads due to breaking


Breaker-depth<br />

Breaker depth<br />

γ b = H/h = 0.78 (solitary wave limit)<br />

γ b = 0.88 (Miche formula)


change of distribution in<br />

shallow water


un up


Run-up Run up calculation<br />

Hunt’s Formula (for regular waves)<br />

Ru<br />

H ξ =<br />

CUR/TAW, 1992 (for Irregular waves)<br />

R = 1.5 γ γ γ γ H ξ ( R = 3 H )<br />

u2% r β B f s p u 2% max s<br />

correction factors:<br />

• γr roughness<br />

• γβ approach angle<br />

• γB berm reduction<br />

• γf foreshore reduction


Wave run-up run up irregular wave<br />

H s = significant wave height<br />

ξ 0 = breaker parameter based on T m-1,0<br />

For smooth slope


γr 1.0<br />

friction values<br />

Type of revetment<br />

Asphalt, concrete, smooth blocks, grass,<br />

Sand-asphalt<br />

Sand asphalt<br />

0.95 Blocks in asphalt or concrete matrix,<br />

blocks with grass<br />

0.90 Placed block revetment<br />

0.80 riprap penetrated with asphalt<br />

0.70 Single layer of riprap<br />

0.55 Double layer of riprap


Angle of attack<br />

For long crested waves (swell)<br />

γγ ββ = √cos cos ββ<br />

(with minimum of 0.7)<br />

For short crested waves (wind wave)<br />

γγ ββ = 1 - 0.0022 (ββ in degrees)<br />

(with with a minimum of 0.8)


SWL<br />

H s<br />

γ<br />

B<br />

berm effect<br />

h B<br />

B B<br />

L B<br />

2<br />

⎛ ⎡ ⎤ ⎞<br />

B B<br />

B h<br />

= 1− ⎜1−0.5 ⎟<br />

L ⎜<br />

⎢ ⎥<br />

B H ⎟<br />

⎝ ⎣ s⎦⎠<br />

limits: 0.6 < γ B < 1 and -1 < d h /H s < 1<br />

H s


Shallow foreshore<br />

γ f = H 2% / 1.4H s


Battjes formula, 1994:<br />

R = R 1− 0.4ξ=<br />

d u<br />

( )<br />

= H 1−0.4ξ ξ<br />

( )<br />

run-down run down<br />

R = −0.33<br />

H ξ<br />

d 2%<br />

s p<br />

( R =−1.5<br />

H )<br />

d 2% max<br />

s


Example<br />

A dike with concrete block revetment, slopes 1:3 and a<br />

2 m berm at design level is attacked by perpendicular<br />

(swell) waves with Hs = 1 m and a steepness of 0.01.<br />

What is the wave run-up? run up?<br />

H S = 1<br />

Wave Slope = 0.01<br />

1:3 Ru ?<br />

1:3<br />

2m


γ<br />

B<br />

2<br />

⎛ ⎡ ⎤ ⎞<br />

B B<br />

B h<br />

= 1− ⎜1−0.5 ⎟<br />

L ⎜<br />

⎢ ⎥<br />

B H ⎟<br />

⎝ ⎣ s⎦⎠<br />

solution<br />

Starting point is equation for run-up run up irregular wave R u2%. u2% .<br />

R = 1.5 γ γ γ γ H ξ ( R = 3 H )<br />

u2% r β B f s p u 2% max s<br />

γγ r = 0.9<br />

γγ ββ = 1 and γγ f = 1<br />

hB = 0<br />

LB = 2Hs 2Hscot<br />

cotαα + 2 = 8 m<br />

hence, γγ B = 0.75<br />

The surf similarity parameter is tanαα/0.1 tan /0.1 = 3.33 > 2, hence ξ = 2. 2.<br />

The wave run-up, run up, finally, is then: Ru2% u2% = 1.5*0.9*0.75*1*2 ≅ 2m<br />

above the design level.


Samphire Hoe,<br />

United Kingdom<br />

overtopping<br />

Ostia, Italy


Overtoping in Jaade Siel, Germany<br />

22-12-1954


Measured overtopping (breaking)


Measured overtopping<br />

(non-breaking)<br />

(non breaking)


Seaward slope seadike Haiphong


Sea dike near Haiphong


After Durian (2005)


TAW formula, 2000:<br />

wave impacts on slope<br />

pmax 50% ≈ 8ρw gHs<br />

tanα<br />

pmax 0.1% ≈16<br />

ρw gHs<br />

tanα


Waves<br />

Load reduction<br />

transmission<br />

Coastal line<br />

reflection<br />

absorption<br />

Costs Effectiveness


Linear wave theory


definitions and behaviour of<br />

hyperbolic functions


standing wave


Relative depth<br />

Wave Celerity<br />

Wave Length<br />

Group<br />

Shallow Water<br />

h 1<br />

<<br />

L 20<br />

c =<br />

L<br />

= gh<br />

c =<br />

L<br />

=<br />

T<br />

T<br />

L = T g h<br />

Velocity c = c = g h<br />

g<br />

Energy Flux<br />

1<br />

2<br />

(per m width) F = E c = ga g h<br />

Particle<br />

velocity<br />

Horizontal<br />

Vertical<br />

Particle<br />

displacement<br />

Horizontal<br />

Vertical<br />

Subsurface<br />

pressure<br />

g<br />

Transitional water depth<br />

L<br />

=<br />

1 h 1<br />

< <<br />

20<br />

L<br />

2<br />

Deep Water<br />

h 1<br />

><br />

gT<br />

L<br />

tanh kh<br />

c = c = =<br />

0<br />

2 π<br />

T<br />

2<br />

gT<br />

gT<br />

tanh kh<br />

L = L =<br />

0<br />

2 π<br />

2 π<br />

L<br />

NM<br />

O<br />

QP<br />

1 2 kh<br />

c<br />

g<br />

= n c =<br />

2<br />

1 +<br />

sinh 2 kh<br />

∗ c<br />

L<br />

2<br />

gT<br />

2 π<br />

1 gT<br />

c<br />

g<br />

= c<br />

0<br />

2<br />

=<br />

4 π<br />

1<br />

T<br />

2<br />

ρ F = E c = ρ ga n c<br />

F = ρ g a<br />

g<br />

2<br />

2<br />

8 π<br />

u = a<br />

g<br />

h<br />

sin θ<br />

e j cos<br />

z<br />

w = ω a 1 + θ<br />

h<br />

a g<br />

ξ = − cos θ<br />

ω h<br />

( )<br />

cosh k h + z<br />

u = ω a<br />

sin θ<br />

sinh kh<br />

( )<br />

sinh k h + z<br />

w = ω a<br />

cos θ<br />

sinh kh<br />

( )<br />

cosh k h + z<br />

ξ = − a<br />

cos θ<br />

sinh kh<br />

( )<br />

sinh k h + z<br />

ζ = a<br />

sin θ<br />

sinh kh<br />

( )<br />

cosh k h + z<br />

p = − ρ g z + ρ g a sin θ<br />

p = − ρ g z + ρ g a<br />

cosh kh<br />

sin θ<br />

a<br />

H<br />

2 π 2 π<br />

= ω = k = θ = ω t − k x<br />

2<br />

T<br />

L<br />

2<br />

2 2<br />

u a e kz<br />

= ω sin θ<br />

w a e kz<br />

= ω sin θ<br />

ξ = − ae θ<br />

kz<br />

cos<br />

ζ = ae θ<br />

kz<br />

sin<br />

p g z g a e kz<br />

= − ρ + ρ sin θ<br />

linear wave<br />

theory<br />

basic equations


parameters<br />

in linear<br />

wave theory


definition of H and T


wave definitions and wave height<br />

distribution


Rayleigh distribution<br />

2 2<br />

⎡ ⎤ ⎡ ⎤<br />

⎛ H ⎞ ⎛ H ⎞<br />

P{ H > H}<br />

= exp ⎢− ⎜ ⎟ ⎥ = exp ⎢−2⎜ ⎟ ⎥<br />

⎢ Hrms H<br />

⎣ ⎝ ⎠ ⎥⎦ ⎢⎣ ⎝ s ⎠ ⎥⎦<br />

H ≡ H ≡ H ≡ H ≡ H ≈4m<br />

s visual 1/3 13.5% m0<br />

0


wave height and wave period


wave registration in the North Sea<br />

Spectral moments: m 0 = surface of energy density spectrum<br />

m -1 = first negative moment of spectrum<br />

T m-1,0 = m -1 /m 0 = spectral wave period ≈ 0.9


spectrum types


two types of spectra


wave spectra across shallow bar


wave generation<br />

Deep water (no limitations of depth and fetch):<br />

gH s gTs<br />

= 0.283 and = 1.2<br />

2<br />

u 2π<br />

u<br />

w w<br />

Shallow water (limitations of depth and fetch) :<br />

⎡ 0.42 ⎤<br />

⎢ ⎛ gF ⎞<br />

0.75 0.0125<br />

⎥<br />

2<br />

gH ⎡ ⎜ ⎟<br />

⎛ s<br />

gh ⎞ ⎤ ⎢ u ⎥<br />

w<br />

= 0.283tanh ⎢0.578 tanh<br />

⎝ ⎠<br />

2 ⎜ 2 ⎟ ⎥ ⎢ ⎥<br />

0.75<br />

uw u ⎡ w<br />

gh ⎤<br />

⎣<br />

⎢ ⎝ ⎠ ⎦<br />

⎥ ⎢ ⎛ ⎞ ⎥<br />

⎢tanh ⎢0.578⎜ ⎥ 2 ⎟ ⎥<br />

⎢ ⎢ uw<br />

⎥<br />

⎣ ⎣ ⎝ ⎠ ⎦ ⎥⎦<br />

⎡ 0.25 ⎤<br />

⎢ ⎛ gF ⎞<br />

0.375 0.077<br />

⎥<br />

2<br />

gT ⎡ ⎜ ⎟<br />

⎛ s<br />

gh ⎞ ⎤ ⎢ u ⎥<br />

w<br />

= 1.20 tanh ⎢0.833 tanh<br />

⎝ ⎠<br />

⎜ 2 ⎟ ⎥ ⎢ ⎥<br />

0.375<br />

2π<br />

uw ⎢ u<br />

⎣ ⎝ w ⎠ ⎥<br />

⎦<br />

⎢ ⎡ ⎛ gh ⎞ ⎤ ⎥<br />

⎢tanh ⎢0.833⎜ ⎥ 2 ⎟ ⎥<br />

⎢ ⎢ uw<br />

⎥<br />

⎣ ⎣ ⎝ ⎠ ⎦ ⎥⎦


wave height as function of wind,<br />

depth and fetch


wave period as function of wind,<br />

depth and fetch

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!