04.08.2013 Views

global electromagnetic induction in the moon and planets - MTNet

global electromagnetic induction in the moon and planets - MTNet

global electromagnetic induction in the moon and planets - MTNet

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

258 P. Dyal <strong>and</strong> C. W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong>Moon<br />

i = x, y, z, where A, are transfer functions of compo- lunar center. O<strong>the</strong>r conductivity profiles have been<br />

nents of frequency-dependent magnetic fields, ex- calculated us<strong>in</strong>g <strong>the</strong> Sonett et al. (1971) transfer funcpressed<strong>in</strong><br />

<strong>the</strong> orthogonal coord<strong>in</strong>ate system with tion, show<strong>in</strong>g that <strong>the</strong> spike profile is not unique but<br />

orig<strong>in</strong> on <strong>the</strong> surface of <strong>the</strong> sphere (~is radial <strong>and</strong> j) that <strong>the</strong> frontside transfer function can be fitted by<br />

<strong>and</strong> ~ are tangent to <strong>the</strong> surface); bEj(f) is <strong>the</strong> simpler two- <strong>and</strong> three-layer models (Kuckes, 1971;<br />

Fourier transform of <strong>the</strong> external driv<strong>in</strong>g magnetic Sill, 1972; Reisz et al., 1972).<br />

field; bpj(f) <strong>and</strong>br,(f) are Fourier transforms of<br />

<strong>the</strong> <strong>in</strong>duced <strong>global</strong> poloidal <strong>and</strong> toroidal magnetic 2.3. Comparison of transient <strong>and</strong> harmonic-analysis<br />

fields, respectively, techniques<br />

The harmonic data analysis approach <strong>in</strong>volves<br />

Fourier-analyz<strong>in</strong>g simultaneous data from <strong>the</strong> Apollo S<strong>in</strong>ce transient <strong>and</strong> harmonic techniques yield dif-<br />

12 lunar surface magnetometer, taken dur<strong>in</strong>g lunar ferent conductivity profiles (compare Fig. 6 <strong>and</strong> 8)<br />

daytime, <strong>and</strong> <strong>the</strong> lunar orbit<strong>in</strong>g Explorer35 magneto- us<strong>in</strong>g data from <strong>the</strong> same magnetometers, it is useful<br />

meter. Then ratios of <strong>the</strong> surface data to orbital data to discuss <strong>the</strong> assumptions <strong>in</strong>volved <strong>in</strong> both analyses.<br />

are used to calculate a transfer function of <strong>the</strong> form First we consider two basic assumptions of <strong>the</strong> harof<br />

eq.21. It is assumed that <strong>the</strong> toroidal <strong><strong>in</strong>duction</strong> monic technique: (a) only <strong>the</strong> poloidal <strong><strong>in</strong>duction</strong> <strong>and</strong><br />

mode is neglected such that <strong>the</strong> Fourier-transformed external driv<strong>in</strong>g fields are measured on <strong>the</strong> daytime<br />

surface magnetometer data represent <strong>the</strong> sum lunar side; <strong>and</strong> (b)<strong>the</strong> <strong>in</strong>duced poloidal field is perbEj(f)<br />

+ bpi(f), while <strong>the</strong> transformed orbit<strong>in</strong>g mag- fectly confmed by a spherically symmetric current<br />

netometer data represent <strong>the</strong> driv<strong>in</strong>g field bE,(f) layer. The first assumption considers that <strong>the</strong> total<br />

alone, field measured by <strong>the</strong> lunar surface magnetometer is<br />

The form of <strong>the</strong> transfer function is determ<strong>in</strong>ed by composed of only<strong>the</strong> external solar w<strong>in</strong>d driv<strong>in</strong>g field<br />

<strong>the</strong> <strong>in</strong>ternal conductivity distribution <strong>in</strong> <strong>the</strong> Moon; BE <strong>and</strong> <strong>the</strong> poloidal lunar response field Bp. By ref<strong>the</strong>refore,<br />

a “best fit” conductivity profile can be ob- erence to eq. 1, we recognize that various o<strong>the</strong>r fields<br />

tamed by numerically fitt<strong>in</strong>g to <strong>the</strong> transfer function. may be contribut<strong>in</strong>g to <strong>the</strong> surface magnetometer data,<br />

Fig. 8 shows <strong>the</strong> “best fit” radial conductivity profile e.g.,<strong>in</strong>teraction fields (BF) due to such effects as cornof<br />

Sonett et al. (1971) obta<strong>in</strong>ed <strong>in</strong> this manner. The pression of lunar remanent fields by <strong>the</strong> solar w<strong>in</strong>d<br />

conductivity profile is characterized by a large “spike” plasma <strong>and</strong> generation of plasma wave modes on <strong>the</strong><br />

of maximum conductivity about 1500 km from <strong>the</strong> sunlit side. Referr<strong>in</strong>g to Fig. 8, we note an asymmetry<br />

effect which isnot predicted by simple harmonic-analysis<br />

<strong>the</strong>ory: <strong>the</strong> harmonic analysis yields two different<br />

i02 I I I conductivity profiles, one calculated from y-axis (east—<br />

west) data alone <strong>and</strong> <strong>the</strong> o<strong>the</strong>r from z-axis (north—<br />

south) data alone. Thisy—z asymmetry can be ex-<br />

\ pla<strong>in</strong>ed as be<strong>in</strong>g <strong>in</strong> part due to <strong>the</strong> daytime compression<br />

\ \ of <strong>the</strong> local rernanent field at <strong>the</strong> Apollo 12 magnetoio<br />

4 meter surface site by <strong>the</strong> solar w<strong>in</strong>d (Dyal et al., 1972a).<br />

o-, mho/meter - ~ Thus, when lunar daytime magnetometer data are used<br />

- -- -to study <strong>global</strong> lunar properties, knowledge of simultaneous<br />

solar w<strong>in</strong>d propertiesis important<br />

a. The second assumption considers that <strong>the</strong> <strong>in</strong>duced<br />

l0”6 poloidal field is conf<strong>in</strong>ed <strong>in</strong> <strong>the</strong> lunar sphere by <strong>the</strong><br />

COSOUCTIVIIY mRflI* RM solar w<strong>in</strong>d plasma. Experimentally <strong>the</strong> solar w<strong>in</strong>d plasma<br />

I I I spectrometer (Snyder et al., 1970) does not measure a<br />

4 8 2 6 20 conf<strong>in</strong><strong>in</strong>g plasma on <strong>the</strong> dark side lunar hemisphere, <strong>and</strong><br />

LUNAR RADIUS kmx 102 <strong>the</strong> transient magnetic field data show to first order a<br />

Fig. 8. Electrical conductivity profiles from Fourier harmonic vacuum poloidal response on <strong>the</strong> lunar dark side (Dyal<br />

analysisof lunar daytime data (from Sonett et at., 1971). <strong>and</strong> Park<strong>in</strong>, 1971). It is questionable whe<strong>the</strong>r confme-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!