04.08.2013 Views

global electromagnetic induction in the moon and planets - MTNet

global electromagnetic induction in the moon and planets - MTNet

global electromagnetic induction in the moon and planets - MTNet

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Physics of <strong>the</strong>Earth <strong>and</strong> Planetary Interiors, 7 (1973) 251—265<br />

~ North-Holl<strong>and</strong>Publish<strong>in</strong>g Company, Amsterdam — Pr<strong>in</strong>ted <strong>in</strong> TheNe<strong>the</strong>rl<strong>and</strong>s<br />

GLOBAL ELECTROMAGNETIC INDUCTION IN THE MOON AND PLANETS<br />

PALMER DYAL <strong>and</strong> CURTIS W. PARKIN<br />

Space Science Division, NASA-Ames Research Center, Moffett Field, Calif (U.S.A.)<br />

Department of Physics, University of Santa aw-a, Santa clara, Calif (U.S.A.)<br />

Accepted for publication February 2, 1973<br />

A summary of experiments <strong>and</strong> analyses concern<strong>in</strong>g <strong>electromagnetic</strong> <strong><strong>in</strong>duction</strong> <strong>in</strong> <strong>the</strong> Moon <strong>and</strong> o<strong>the</strong>r extraterrestrial<br />

bodies is presented. Magneticstep-transient measurements made on <strong>the</strong>lunar dark side show <strong>the</strong>eddy current<br />

response to be <strong>the</strong>dom<strong>in</strong>ant <strong><strong>in</strong>duction</strong> mode of <strong>the</strong> Moon. Analysis of <strong>the</strong> poloidal field decay of <strong>the</strong> eddy currents<br />

hasyielded a rangeof monotonic conductivity proilles for <strong>the</strong>lunar <strong>in</strong>terior: <strong>the</strong>conductivity rises from 34(r<br />

4 mhojm<br />

at adepthof 170 km to 10—2 mho/m at 1000 km depth. The static magnetization field <strong><strong>in</strong>duction</strong> hasbeen measured<br />

<strong>and</strong> <strong>the</strong>whole-Moon relative magnetic permeability hasbeen calculated to be ~i/j~<br />

0 = 1.01 ±0.06. The remanent magnetic<br />

fields, measured at Apollo l<strong>and</strong><strong>in</strong>g sites, range from 3 to 327 y. Simultaneous magnetometer <strong>and</strong> solar w<strong>in</strong>d spectrometer<br />

measurements show that <strong>the</strong>38-~~ 2. The solar remanent w<strong>in</strong>d field conf<strong>in</strong>es at <strong>the</strong> <strong>the</strong><strong>in</strong>duced Apollo 12lunar site ispoloidal compressed field; to<strong>the</strong>field 54 7 byisa compressed solar w<strong>in</strong>d<br />

pressure<strong>in</strong>crease to <strong>the</strong> surface on of <strong>the</strong>lunar 7~10_8subsolar dyn/cmside<br />

<strong>and</strong> extends out <strong>in</strong>to a cyl<strong>in</strong>drical cavity on <strong>the</strong>lunar antisolar side. This solar<br />

w<strong>in</strong>d conf<strong>in</strong>ement is modeled <strong>in</strong> <strong>the</strong>laboratory by a magneticdipole enclosed <strong>in</strong> a superconduct<strong>in</strong>g lead cyl<strong>in</strong>der;results<br />

showthat <strong>the</strong><strong>in</strong>duced poloidal field geometry is modified <strong>in</strong> a manner similar to that measured on <strong>the</strong> Moon. Induction<br />

conceptsdeveloped for <strong>the</strong>Moon are extended to estimate <strong>the</strong><strong>electromagnetic</strong> response of o<strong>the</strong>r bodies <strong>in</strong><br />

<strong>the</strong> solar system.<br />

1. Introduction Moon due to a fortunate comb<strong>in</strong>ation of lunar electrical<br />

properties <strong>and</strong> solar w<strong>in</strong>d driv<strong>in</strong>g field properties.<br />

In this paper we discuss experiments <strong>and</strong> analyses Similar methods may be applicable to o<strong>the</strong>r <strong>moon</strong>like<br />

that have been published on <strong><strong>in</strong>duction</strong> <strong>in</strong> <strong>the</strong> Moon bodies (e.g., Mercury) <strong>and</strong> to <strong>planets</strong> where a l<strong>and</strong><strong>in</strong>g<br />

<strong>and</strong> <strong>the</strong>n present a summary of concepts concern<strong>in</strong>g will be difficult or impossible (e.g., <strong>the</strong> Jovian <strong>planets</strong>).<br />

<strong>electromagnetic</strong> <strong><strong>in</strong>duction</strong> properties of o<strong>the</strong>r extra- We consider first <strong>the</strong> <strong>the</strong>ory of classical electromagterrestrial<br />

bodies. The classical <strong>the</strong>ory of <strong><strong>in</strong>duction</strong> netic <strong><strong>in</strong>duction</strong> <strong>in</strong> a sphere <strong>and</strong> extend this treatment<br />

was developed by Faraday, Lenz, <strong>and</strong> Maxwell dur<strong>in</strong>g to <strong>the</strong> case of <strong>the</strong> Moon, where poloidal eddy-current<br />

<strong>the</strong> n<strong>in</strong>eteenth century; <strong>the</strong> <strong>electromagnetic</strong> response response has been found experimentally to dom<strong>in</strong>ate<br />

of a sphere has been treated by Mie (1908), Debye o<strong>the</strong>r <strong><strong>in</strong>duction</strong> modes. Analysis of lunar poloidal <strong>in</strong>.<br />

(1909), Smy<strong>the</strong> (1950), <strong>and</strong> o<strong>the</strong>rs. Induction <strong>in</strong> <strong>the</strong> duction yields lunar <strong>in</strong>ternal electrical conductivity<br />

Earth <strong>and</strong> o<strong>the</strong>r planetary-sized bodies has been studied <strong>and</strong> temperature profiles. Two poloidal-<strong><strong>in</strong>duction</strong> anaby<br />

<strong>in</strong>vestigators <strong>in</strong>clud<strong>in</strong>g Chapman (1919), Lahiri <strong>and</strong> lytical techniques will be discussed: a transient-response<br />

Price (1939), <strong>and</strong> Rikitake (1950, 1966). The applica- method applied to time-series magnetometer data <strong>and</strong><br />

tion of <strong><strong>in</strong>duction</strong> methods to <strong>the</strong> case of <strong>the</strong> Earth a harmonic-analysis method applied to data numerically<br />

withits oceans, ionosphere, <strong>and</strong> radial <strong>and</strong> azimuthal Fourier-transformed to <strong>the</strong> frequency doma<strong>in</strong>, with<br />

conductivity anomalies is difficult; however, it has emphasis on <strong>the</strong> former technique. Next we discuss<br />

proven to be one of <strong>the</strong> more productive techniques complicat<strong>in</strong>g effects of <strong>the</strong> solar w<strong>in</strong>d <strong>in</strong>teraction with<br />

used experimentally to probe deep <strong>in</strong>to <strong>the</strong> Earth. Re- both <strong>in</strong>duced poloidal fields <strong>and</strong> remanent steady fields.<br />

suits from Apollo magnetic observatories on <strong>the</strong> lunar Then we present <strong>the</strong> static magnetization field <strong><strong>in</strong>duction</strong><br />

surface show that <strong>electromagnetic</strong> <strong><strong>in</strong>duction</strong>methods mode, from whkh we calculate bulk magnetic permeabildeveloped<br />

to study <strong>the</strong> Earth are more suitable for <strong>the</strong> ity profiles. F<strong>in</strong>ally, magnetic field measurements ob-


252 P. Dyal <strong>and</strong> C. W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong> Moon<br />

tamed from <strong>the</strong> Moon <strong>and</strong> from fly-bys of Venus <strong>and</strong> surface; for reference we write <strong>the</strong> sum of <strong>the</strong>se fields as:<br />

Mars are exam<strong>in</strong>ed to determ<strong>in</strong>e <strong>the</strong> feasibility of extend<strong>in</strong>g<br />

<strong>the</strong>oretical <strong>and</strong> experimental mduction tech-<br />

—<br />

niques to o<strong>the</strong>r bodies <strong>in</strong> <strong>the</strong> solar system. Here ~A is <strong>the</strong> total magnetic field on or near <strong>the</strong><br />

lunar surface; BE is <strong>the</strong> total external (e.g., sold or<br />

terrestrial) driv<strong>in</strong>g magnetic field; B<br />

5 is <strong>the</strong> steady<br />

2. Poloidal eddy-current <strong><strong>in</strong>duction</strong> <strong>in</strong> <strong>the</strong> Moon remanent field (which may be of <strong>global</strong> or local extent);<br />

B~is <strong>the</strong> magnetization field <strong>in</strong>duced <strong>in</strong> per-<br />

In this section we discuss <strong>the</strong> <strong>electromagnetic</strong> re- meable lunar material;B~is <strong>the</strong> poloidal field caused<br />

sponse of a particular planetary-sized body, <strong>the</strong> Moon,<br />

treat to external <strong>in</strong> detail <strong>electromagnetic</strong> only <strong>the</strong> special driv<strong>in</strong>g casesfields which(Fig. have1). been We<br />

by eddy currents <strong>in</strong>duced11T <strong>in</strong> is <strong>the</strong> <strong>the</strong> lunar toroidal <strong>in</strong>terior fieldbycor chang<strong>in</strong>g respond<strong>in</strong>g external to unipolar fields; electrical currents driven through<br />

found practical <strong>in</strong> analyz<strong>in</strong>g properties of <strong>the</strong> Moon;<br />

s<strong>in</strong>ce to be poloidaleddy-current <strong>the</strong> dom<strong>in</strong>ant <strong><strong>in</strong>duction</strong> response mode <strong>in</strong> has <strong>the</strong> been Moon, found<br />

<strong>the</strong> Moon by <strong>the</strong> —,VXJ<br />

11 electric field 8F is(V <strong>the</strong>istotal average field<br />

velocity associated ofwith solar<strong>the</strong> w<strong>in</strong>d hydromagnetic plasma); <strong>and</strong> solar w<strong>in</strong>d flow<br />

this section will emphasize <strong>the</strong> poloidal mode <strong>and</strong> as- past <strong>the</strong> spherical body (e.g., plasma conf<strong>in</strong>ement or<br />

sociated properties of <strong>the</strong> lunar <strong>in</strong>terior. Two analyti- compression of <strong>the</strong> planetary permanent or <strong>in</strong>duced<br />

cal techniques wifi be discussed <strong>in</strong> reference to lunar fields, fields due to <strong>in</strong>duced ionospheric currents, etc.).<br />

<strong><strong>in</strong>duction</strong>: a transient-response (time-dependent)tech- In <strong>the</strong> case of <strong>the</strong> Moon, <strong>the</strong> external driv<strong>in</strong>g magnique<br />

<strong>and</strong> a Fourier-harmonic (frequency-dependent) netic field (BE) can vary considerably with orbital<br />

analysis technique. position (Fig. 2); <strong>the</strong>refore, it is possible to study <strong>the</strong><br />

Various possible <strong>in</strong>duced fields <strong>and</strong> plasma-<strong>in</strong>terac- various lunar properties separately through careful<br />

tion fields will exist <strong>in</strong><strong>the</strong> vic<strong>in</strong>ity of<strong>the</strong> <strong>global</strong> Moon’s selection of data timeperiods. Average magnetic field<br />

conditions vary from relatively steady fields of magni-<br />

/ tude —~9 ‘y (1 ~ = 10~gauss) <strong>in</strong> <strong>the</strong> geomagnetic tail<br />

~FaLD~ ~ to mildly turbulent fields averag<strong>in</strong>g 5 ‘y <strong>in</strong> <strong>the</strong> freestream<strong>in</strong>g<br />

solar plasma region to turbulent fields aver-<br />

\ ‘~,<br />

~ / ~ ag<strong>in</strong>g 8 y <strong>in</strong> <strong>the</strong> magnetosheath. The average solar<br />

/ / MAGNETIC w<strong>in</strong>d velocity is 400 km/sec <strong>in</strong> a direction approxi-<br />

5N~(~~—STEp TRANaEN~ mately along <strong>the</strong> Sun—Earth l<strong>in</strong>e.<br />

-~ / -~ ((Z~j~MAGNETOSPHERE<br />

~ ~~NxPLASMA FLOW’\ ~<br />

/ I \ \ MAGNETIC -<br />

, J ~ \ MOON FIELD<br />

/1 ..--•~•• _____<br />

I EXPLORER<br />

Fig. 1. Electromagneticdriv<strong>in</strong>g sources. This diagram schematically<br />

depicts external driv<strong>in</strong>g sources from <strong>the</strong>Sun <strong>and</strong> <strong>the</strong>ir “ ) GEOMAGNETIC TAIL<br />

<strong>in</strong>teractionswith planetary-sized bodies. A hot plasma, con- -- SOLAR<br />

sist<strong>in</strong>g primarily of protons <strong>and</strong> electrons, streams nearly radially<br />

outward from <strong>the</strong> Sun (at speeds averagmg 400 km/sec .-<br />

I PLASMA<br />

L<br />

-<br />

~<br />

N<br />

&0!<br />

RE’<br />

_______<br />

MAGNETOSHEATH<br />

_____<br />

at Earth orbit), carry<strong>in</strong>g a “frozen-<strong>in</strong>”magnetic field past <strong>the</strong><br />

<strong>planets</strong>. Various typesof magneticdiscont<strong>in</strong>uities <strong>and</strong> wave<br />

phenomena act as time-vary<strong>in</strong>g driv<strong>in</strong>g functions to <strong>in</strong>duce<br />

response fields <strong>in</strong> <strong>the</strong>planetary bodies <strong>and</strong> <strong>the</strong>ir ionospheres.<br />

-~-——‘——<<br />

Threedifferenttypes ofplanetary-solar w<strong>in</strong>d <strong>in</strong>teractionsare Fig. 2. Orbit of <strong>the</strong> Moon, projected onto <strong>the</strong> solar ecliptic<br />

depicted here: one <strong>in</strong> which<strong>the</strong>planetary permanent magne- plane. Dur<strong>in</strong>g a complete revolution around <strong>the</strong> Earth, <strong>the</strong><br />

tic field dom<strong>in</strong>ates<strong>in</strong> <strong>the</strong><strong>in</strong>teraction (<strong>in</strong> <strong>the</strong>case of <strong>the</strong> Earth), magnetometer passes through <strong>the</strong>Earth’s bow shock, <strong>the</strong>magonewhere<br />

<strong>the</strong> planet’s ionosphere dom<strong>in</strong>ates (as is probable netosheath, <strong>the</strong>geomagnetic tail, <strong>and</strong> <strong>the</strong><strong>in</strong>terplanetary region<br />

<strong>in</strong><strong>the</strong> case of Venus<strong>and</strong> Mars), <strong>and</strong> onewhere <strong>the</strong> solid plane- dom<strong>in</strong>ated by solar plasma fields. The Explorer 35 satellite<br />

tary body itself dom<strong>in</strong>ates (<strong>the</strong>Moon). orbit around <strong>the</strong>Moon is also shown.


P. Dyal <strong>and</strong> C. W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong> Moon 253<br />

2.1. Time-series transient analysis<br />

E~ORER~ 2.1.1. PoloIda! responseofa homogeneous sphere <strong>in</strong><br />

a vacuum<br />

The <strong>global</strong> <strong>electromagnetic</strong> response of a planetary<br />

body is modeled by a sphere’s response to a step-function<br />

transient magnetic field, which canbe treated by<br />

TI.~BULENT / e~u~is extend<strong>in</strong>g <strong>in</strong>itially considered <strong>the</strong> <strong>the</strong>orytoof beSmy<strong>the</strong> subject (1950). to <strong>the</strong> follow<strong>in</strong>g The sphere conis<br />

ditions: (1) The sphere is <strong>in</strong> a vacuum, i.e., no plasma<br />

\<br />

\<br />

\ \<br />

<strong>in</strong>teractions (effects of <strong>the</strong> plasma are considered <strong>in</strong><br />

section 3.1). (2) The sphere of radius R ishomogeneous<br />

<strong>and</strong> has a constant permeability (it), permittivity<br />

Fig. 3. Conf<strong>in</strong>ement of an <strong>in</strong>duced <strong>global</strong> magnetic field by<br />

<strong>the</strong> solar w<strong>in</strong>d. Conceptuallydepicted here is <strong>the</strong> case where<br />

(a) <strong>and</strong> conductivity (a). (3) The dimensions of <strong>the</strong><br />

external field transients are large compared to <strong>the</strong><br />

sphere, such that <strong>the</strong> sphere responds as a whole to<br />

<strong>the</strong> transients. (4) Conduction currents dom<strong>in</strong>ate dis-<br />

placement currents with<strong>in</strong> <strong>the</strong> sphere. (5) There is no<br />

a poloidal <strong>in</strong>duced field Bp is conf<strong>in</strong>ed by solar w<strong>in</strong>d flow net charge on <strong>the</strong> sphere. Then, for a coord<strong>in</strong>ate syspast<br />

<strong>the</strong> Moon. The <strong>in</strong>duced field is compressed on <strong>the</strong> lunar .<br />

sunilt side <strong>and</strong> conf<strong>in</strong>ed <strong>in</strong> <strong>the</strong>vacuum cavity region on <strong>the</strong> tem fixed m <strong>the</strong> sphere, Maxwell s equations <strong>and</strong> Ohm s<br />

antisolardark side of <strong>the</strong> Moon. Also shown is <strong>the</strong> Explorer law <strong>in</strong> <strong>the</strong> rationalized M.K.S. system are as follows:<br />

35 magnetometer orbit projected onto <strong>the</strong> solar ecliptic plane.<br />

The Explorer 35 period of revolution is 11.5 h; its perilune <strong>and</strong> vx £ = — ~— (2)<br />

apolune are approximately 0.5 <strong>and</strong> 5 lunar radii, respectively. 8t<br />

VXB=MJ (3)<br />

The characteristics of each of <strong>the</strong> <strong><strong>in</strong>duction</strong> fields . E = 0 4<br />

Bp, BT <strong>and</strong> BM are dependent upon <strong>electromagnetic</strong><br />

properties of <strong>the</strong> Moon’s <strong>in</strong>terior; <strong>the</strong>refore, <strong>the</strong>se V B = 0 (5)<br />

properties can be deduced from <strong>the</strong>oretical <strong>and</strong> ex- / = aE 6<br />

perimental studies of <strong>the</strong> <strong><strong>in</strong>duction</strong> processes. The<br />

toroidal response field has been found to be generally where E <strong>and</strong>Ii are <strong>the</strong> electric field <strong>and</strong> <strong>the</strong> magnetic<br />

much lower <strong>in</strong> magnitude than <strong>the</strong> poloidal field <strong>and</strong> <strong><strong>in</strong>duction</strong> <strong>and</strong>/ is <strong>the</strong> conduction current density.<br />

perhaps not detectable by lunar magnetometers (Dyal Before we proceed to a more general transient anal<strong>and</strong><br />

Park<strong>in</strong>, 1972); <strong>the</strong>refore, <strong>the</strong> toroidal mode wifi ysis treatment, it is useful to consider <strong>the</strong> idealized<br />

not be discussed <strong>in</strong> detail <strong>in</strong> this paper. The magnetiza- case of a uniformly conduct<strong>in</strong>g sphere <strong>in</strong> a vacuum.<br />

tion field BM is a function of <strong>global</strong> magnetic permea- This model is particularly applicable to fields measured<br />

biity <strong>and</strong> <strong>the</strong> iron content of <strong>the</strong> Moon; calculation on <strong>the</strong> antisolar side of <strong>the</strong> Moon, which is shielded<br />

of <strong>the</strong> lunar permeability will be <strong>in</strong>cluded <strong>in</strong> a later from <strong>the</strong> solar plasma. Suppose that <strong>in</strong>itially <strong>the</strong>re is<br />

section. The decay characteristics of <strong>the</strong> poloidal field no magnetic field,but at t = 0 an external magnetic<br />

~llp,<strong>the</strong> dom<strong>in</strong>ant lunar <strong><strong>in</strong>duction</strong> mode (Fig.3), are a field I~BEis switched on which is uniform far from<br />

function of <strong>the</strong> <strong>global</strong> electrical conductivity distribu- <strong>the</strong> sphere. For<strong>the</strong> case of a homogeneous sphere <strong>in</strong><br />

tion, which is <strong>in</strong> turn related to <strong>the</strong> <strong>global</strong> <strong>in</strong>ternal tem- a vacuum Maxwell’sequations can be solved by experature<br />

distribution. This section <strong>in</strong>cludes calculation tend<strong>in</strong>g <strong>the</strong> <strong>the</strong>ory of Smy<strong>the</strong> (1950); a detailed denof<br />

lunar conductivity <strong>and</strong> temperature profiles us<strong>in</strong>g vation is given by Dyal <strong>and</strong> Park<strong>in</strong> (1971). Consider<strong>in</strong>g<br />

both time-series transient analysis <strong>and</strong> Fouriór har- only <strong>the</strong> poloidal <strong><strong>in</strong>duction</strong>mode, eq. 1 becomes<br />

monk-analysis techniques. B 4 = BE + B1,. The solution for <strong>the</strong> vector components


254 P. Dyal <strong>and</strong> C. W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong> Moon<br />

of <strong>the</strong> magnetic field at <strong>the</strong> surface of <strong>the</strong> sphere are northward. Qualitative representations of <strong>the</strong> solutions<br />

listed below for <strong>the</strong> case of an extemal magnetic field<br />

8E =<br />

step transient of magnitude A<br />

BEf — BEO applied<br />

to <strong>the</strong> lunar sphere at time t = 0. BEO <strong>and</strong> BE! are mi<strong>in</strong><br />

eq.7 <strong>and</strong> 8 are illustrated <strong>in</strong> Fig. 4A. It can be seen<br />

that if <strong>the</strong> “decay function”F(t) can be determ<strong>in</strong>ed em-<br />

pirically, <strong>the</strong>n <strong>the</strong> electrical conductivity can be calcutial<br />

<strong>and</strong> fmal external fields, respectively: lated from eq.~ for <strong>the</strong> homogeneous approximation.<br />

B = B — 31 I.~B I F(t) (7~ Over one hundred step-transient events have been<br />

Ax Exf Ex / analyzed ~is<strong>in</strong>gApollo 12 lunar surface magnetometer<br />

B = B + ~ I ~B IF(~ ‘8’ antisolar side data <strong>and</strong> simultaneousdata from <strong>the</strong> lunar<br />

Ay,z Ey,zf 2 Ey,z ‘‘ “ / orbit<strong>in</strong>g Explorer 35 magnetometer. These data show<br />

where: that <strong>the</strong> Moon’s response is similar to <strong>the</strong> eddy-current<br />

F’t’ = 2 1 (—s2lr2t\ (9\ response of a conduct<strong>in</strong>g sphere <strong>in</strong> a vacuum; measured<br />

‘‘ ~2 s1 ~2 exp ~ R21 “ ‘ surface magnetic field radial components have a damped<br />

response to solar w<strong>in</strong>d field step transients, while<br />

a is <strong>the</strong> electrical conductivity <strong>and</strong> p is <strong>the</strong> magnetic components tangent to <strong>the</strong> lunar sphere have rapid repermeability;<br />

<strong>and</strong>: sponse <strong>and</strong> overshoot <strong>in</strong>itially, followed by decay to a<br />

- steady-state value. An exampleof a step-transientevent<br />

AB.=B.—B. z=xyz -<br />

Ei Eif Ezo’ mApollo l2<strong>and</strong>Explorer35dataisshownmFig.4B,<br />

The coord<strong>in</strong>ate system used here has its orig<strong>in</strong> on <strong>the</strong> <strong>and</strong> qualitative agreement between <strong>the</strong>ory (eq. 7 <strong>and</strong> 8)<br />

surface of <strong>the</strong> sphere with<strong>the</strong> x..axis directed radially <strong>and</strong> data is easily seen; <strong>the</strong> deviations of <strong>the</strong> data from<br />

outward from <strong>the</strong> sphere’s surface; <strong>the</strong>y- <strong>and</strong> z-axes homogeneous-sphere<strong>the</strong>ory are considered <strong>in</strong> <strong>the</strong> fol-.<br />

are both tangential to <strong>the</strong> surface: y eastward <strong>and</strong> z low<strong>in</strong>g two sections.<br />

TRANSIENT RESPONSE THEORY LUNAR MAGNETOMETER DATA<br />

EXTERNAL DRIVING FIELD B -- EXPLORER 35<br />

RA~ALXL \çIOIALSUREELD X~ O~12<br />

TANGENTIALY B~Y<br />

~ Bz,Y ~2468 10 12<br />

A TIME, miii B TIME, mm<br />

Fig. 4. Comparison of lunar magnetometer datato <strong>the</strong> <strong>the</strong>ory for lunar poloidal response to a transient<strong>in</strong> <strong>the</strong>solar w<strong>in</strong>d magnetic<br />

field. At left (A) are<strong>the</strong>oretical solutions ofcomponents of <strong>the</strong> surfacefield (B<br />

4) for a homogeneous sphere <strong>in</strong> a vacuum (see eq.7<br />

<strong>and</strong> 8) which experiences step 8E changes (measured <strong>in</strong> all bycomponents lunar orbit<strong>in</strong>g of external Explorerdriv<strong>in</strong>g 35) <strong>and</strong>field total (BE). surfacemagnetic At right (B) are field superimposed B dataplots<br />

of <strong>the</strong>external driv<strong>in</strong>g field<br />

4 (measured by <strong>the</strong><br />

Apollo 12 magnetometer while on <strong>the</strong> antisolar side of <strong>the</strong> Moon). In orderto illustrate transients <strong>in</strong> all three componimts, <strong>the</strong>se<br />

events were selected from different times dur<strong>in</strong>g lunar night.


P. Dyal <strong>and</strong> C. W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong>Moon 255<br />

2.1.2. Poloidal response ofa sphere of radially vary<strong>in</strong>g G(r, t) = A/tiBE s<strong>in</strong> 0 <strong>and</strong> ~(r, s) be <strong>the</strong> Laplace<br />

conductivity<br />

To describe <strong>the</strong> response of <strong>the</strong> sphere to an arbitrary<br />

<strong>in</strong>put (Dyal et al., l972b), we def<strong>in</strong>e <strong>the</strong> magnetic<br />

vectorpotential A such that V X A = B <strong>and</strong><br />

transform of G, eq. 10 becomes:<br />

1 / a<br />

2 2 ‘<br />

_(—~ (rd) — —~)=sp<br />

0a(r) (7<br />

r \ar r<br />

(15)<br />

V A = 0. We seek <strong>the</strong> response to an <strong>in</strong>put AB~b(t), for <strong>the</strong> <strong>in</strong>terior. The boundary conditions are:<br />

where b(t) = 0 fort 0, <strong>the</strong> magnetic field must be cont<strong>in</strong>uous at <strong>the</strong><br />

surface, so that A <strong>and</strong> aA/ar must always be cont<strong>in</strong>u-<br />

The fmal u(r) is not unique; ra<strong>the</strong>r a family of a(r) is<br />

generated with <strong>the</strong> constra<strong>in</strong>t that f(t) match <strong>the</strong> exous<br />

at r = R, <strong>the</strong> radius of <strong>the</strong> sphere. We also have <strong>the</strong><br />

boundary condition A(0, t) = 0 <strong>and</strong> <strong>the</strong> <strong>in</strong>itial condition<br />

perimental data.<br />

A(r, 0; 0) = 0 <strong>in</strong>side <strong>the</strong> Moon. Outside of <strong>the</strong> Moon, 2.1.3. Magneticfield measurements <strong>and</strong> calculation of<br />

where a = 0: electrical conductivityprofile<br />

I.~BE Normalized lunar nighttime data from Apollo 12,<br />

A = ~BE (~)b(t) s<strong>in</strong> 0 + f(t) s<strong>in</strong> 0 (11) giv<strong>in</strong>g <strong>the</strong> step-function response obta<strong>in</strong>ed from <strong>the</strong><br />

r radialsurface field component (foreleven events) are<br />

The first term on <strong>the</strong> right is a uniform magnetic field shown <strong>in</strong> Fig. 5. Error bars are st<strong>and</strong>arddeviations of<br />

modulated by b(t); <strong>the</strong> second term is <strong>the</strong> (as yet un- <strong>the</strong> measurements. Allof <strong>the</strong>se events ocurred when <strong>the</strong><br />

known) external transient response, which must vanish magnetometer was more than 900 km <strong>in</strong>side <strong>the</strong> optical<br />

as r -~°° <strong>and</strong> t -÷00• Note that at r = R, where R is nor- shadow, so that plasma effects are assumed to be m<strong>in</strong>imalized<br />

to unity: mal to first order (plasma effects are considered <strong>in</strong> secrb(~\<br />

1 tion 3.1). Effects of <strong>the</strong> lunar cavity due to solar<br />

A = L~&BEs<strong>in</strong> 0 L~+f(t)j (12) w<strong>in</strong>d diamagnetism, described by Colburn et al. (1967)<br />

<strong>and</strong> Ness et al. (1967), are also neglected to a first ap<strong>and</strong>:<br />

proximation s<strong>in</strong>ce <strong>the</strong> cavity field is a constant or very<br />

aA rb(t\ 1 slowly vary<strong>in</strong>g function of time compared to <strong>the</strong> polo-<br />

= t~BEs<strong>in</strong> 0 [_~.! — 2f(t)J (13) idal response time. Fur<strong>the</strong>rmore, recogniz<strong>in</strong>g <strong>the</strong> f<strong>in</strong>ite<br />

length of time required for a solar-w<strong>in</strong>d step transient<br />

Therefore, at r = R I: to pass <strong>the</strong> Moon, we have <strong>in</strong> our analysis chosen a<br />

r _~ ramp <strong>in</strong>put function of 15-sec rise time, a time charac-<br />

—2A + ~[~SB~s<strong>in</strong> 0 b(t)] (14) teriz<strong>in</strong>g passage of a discont<strong>in</strong>uity past <strong>the</strong> Moon. (For<br />

a 400 km/sec solar w<strong>in</strong>d, this time is 10—20 sec, de-<br />

S<strong>in</strong>ce <strong>the</strong> magnetic field is cont<strong>in</strong>uous at r = R, this is pend<strong>in</strong>g on <strong>the</strong> thickness of <strong>the</strong> discont<strong>in</strong>uity <strong>and</strong> <strong>the</strong><br />

a boundary condition for <strong>the</strong> <strong>in</strong>terior problem. Lett<strong>in</strong>g <strong>in</strong>cl<strong>in</strong>ation of its normal to <strong>the</strong> solar w<strong>in</strong>d velocity.)


256 P. Dyal <strong>and</strong> C. W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong> Moon<br />

I.0<br />

IO~<br />

0 8 DYAL AND<br />

~O6<br />

DISTANCE FROM CENTER, km<br />

0 500 000 500 740<br />

10 ~ PARKIN(I972)~~<br />

E10 3<br />

b<br />

0 I0~<br />

204<br />

- 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 .0<br />

- R/Rm<br />

I I I I -‘ Fig. 6. Range of electricalconductivity profiles (Dyal et al.,<br />

0 200 400 600 1972b) which give radialresponse time-dependentcurvesf(t)<br />

TIME, sec that fallwith<strong>in</strong> <strong>the</strong>error barsof Fig. 5.-A step-function <strong>in</strong>put mag.<br />

Fig. 5. Normalized transientresponse data, show<strong>in</strong>g f(t)- netic field, modified by an <strong>in</strong>itialramp <strong>in</strong>putof 15-sec risetime,<br />

decay characteristics of <strong>the</strong>radial component of <strong>the</strong> total sur- is used <strong>in</strong> <strong>the</strong>analysis. The<strong>in</strong>formation at shallowdepths is limface<br />

field BAX after arrival of a step transient which changes itedby <strong>the</strong>uncerta<strong>in</strong>ty <strong>in</strong> <strong>the</strong>risetime of <strong>the</strong> <strong>in</strong>terplanetary mag<strong>the</strong><br />

externalmagnetic field radial componentby an amount netic field;that at largedepths is limitedby <strong>the</strong> sensitivity of <strong>the</strong><br />

~BEx,here normalized to one. Theshape of <strong>the</strong> curve illus- surface magnetometer. The superimposeddashedl<strong>in</strong>e shows<br />

trates time characteristics of <strong>the</strong> decayof <strong>the</strong> <strong>in</strong>duced poloidal <strong>the</strong> results of a three-layer Moon approximation. -<br />

eddy-current fieldB~<br />

Although <strong>the</strong> driv<strong>in</strong>g field is still approximatedby a data curve puts fairly restrictivelimits on <strong>the</strong> conducspatially<br />

uniform field, this procedure provides a tivity <strong>in</strong> this region. Deeper than 170 km, <strong>the</strong> conducbetter<br />

model for <strong>the</strong> very short timeresponse. tivity is seen to rise from about lO33mho/m to<br />

The <strong>the</strong>oretical response curves correspond<strong>in</strong>g to a 10—2 mho/m at R/Rm = 0.45. This is <strong>in</strong> general agreelarge<br />

number of lunar conductivity profiles have been ment with <strong>the</strong> three-layer model of Dyal <strong>and</strong> Park<strong>in</strong><br />

compared with <strong>the</strong> data of Fig. 5. It is found that a (1972). However, we note that conductivities greater<br />

range of monotonic conductivity profiles, def<strong>in</strong><strong>in</strong>g <strong>the</strong> than 10—1.5 mho/m for R/Rm


P. Dyal <strong>and</strong> C. W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong> Moon 257<br />

-<br />

-<br />

-<br />

proximationused so far, this would change <strong>the</strong> nor- <strong>the</strong> conductivity profile <strong>in</strong> Fig.6, us<strong>in</strong>g <strong>the</strong> expression<br />

malization of <strong>the</strong> response curve (Fig. 5), but not its for <strong>the</strong> electrical conductivity as a function of tempershape,<br />

<strong>and</strong> hence it does not change a(r). The effects ature given by Engl<strong>and</strong> et al. (1968) for oliv<strong>in</strong>e <strong>and</strong><br />

of <strong>the</strong> conf<strong>in</strong>ement of <strong>the</strong> <strong>in</strong>duced poloidal field to peridotite:<br />

<strong>the</strong> cavity region bounded by <strong>the</strong> solar w<strong>in</strong>d have a .. = 55 exp(—0.92/kT)+ 4~10~exp(—2.7/kT)<br />

been modeled by a superconduct<strong>in</strong>g laboratory ex- ohv<strong>in</strong>e<br />

periment which will be discussed <strong>in</strong> section 3.1. (19)<br />

a . . = 3.8 exp(—0.81/kT)+ l0~exp(—2.3/k~<br />

2.1.4. Internal lunar temperature calculations pmlotite<br />

Once a planetary electrical conductivity profile has<br />

been determ<strong>in</strong>ed, an <strong>in</strong>ternal temperature distribution<br />

<strong>in</strong> mho/m (20)<br />

can be <strong>in</strong>ferred if <strong>the</strong> material composition is known (In <strong>the</strong> above expressions, kTis <strong>in</strong> eV.) These conductiv-<br />

(see Rikitake, 1966). For cases where electrical con- ities are assumed to be <strong>in</strong>dependent of pressure below<br />

ductivity is <strong>in</strong>dependentof pressure to a first approxi- 50 kbar (Engl<strong>and</strong> et al., 1968) <strong>and</strong> <strong>in</strong>dependent of fremation,<br />

<strong>the</strong> conductivity of m<strong>in</strong>erals can be expressed quency below 10 Hz (Keller <strong>and</strong> Frischknecht, 1966).<br />

<strong>in</strong> terms of temperature T as follows: For <strong>the</strong> example of a peridotite Moon, a temperature<br />

profile that rises sharply to 850—1050°K atR/Rm<br />

a a. exp (—E./kT)<br />

1<br />

(18)<br />

~ 0.95 <strong>and</strong> <strong>the</strong>n gradually to 1200— 1500°Kat<br />

R/Rm = 0.4 is suggested by <strong>the</strong> data. At depths greater<br />

than R/Rm = 0.4 <strong>the</strong> temperature could be higher than<br />

where E<br />

1 are <strong>the</strong> activation energies of impurity, <strong>in</strong>tr<strong>in</strong>sic,<br />

<strong>and</strong> ionic modes, expressed <strong>in</strong> electron volts; a1 are<br />

1 500°K.<br />

material-dependent constants; <strong>and</strong> k is Boltzmann’s<br />

constant. It should be emphasized that <strong>the</strong> electrical<br />

2.2. Fourier harmonic-analysts technique<br />

conductivity a(a, E, T) is a strong function of <strong>the</strong> ma- The harmonic method, as applied to <strong>the</strong> Moon, is<br />

terial composition; <strong>the</strong>refore, uncerta<strong>in</strong>ties <strong>in</strong> know- based on <strong>the</strong> assumption that any <strong>global</strong> <strong>in</strong>duced field<br />

ledge of <strong>the</strong> exact composition of <strong>the</strong> sphere limits <strong>the</strong> is excluded from <strong>the</strong> oncom<strong>in</strong>g solar w<strong>in</strong>d by currents<br />

accuracy of <strong>the</strong> <strong>in</strong>ternal-temperature calculation, <strong>in</strong>duced <strong>in</strong> <strong>the</strong> highly conduct<strong>in</strong>g solar plasma; it is as-<br />

We calculate lunar temperature profiles (Fig. 7) from sumed that <strong>in</strong> effect <strong>the</strong> solar w<strong>in</strong>d completely conf<strong>in</strong>es<br />

<strong>the</strong> <strong>in</strong>duced field <strong>in</strong> <strong>the</strong> lunar <strong>in</strong>terior <strong>and</strong> <strong>in</strong> a<br />

th<strong>in</strong> region above <strong>the</strong> lunar surface. By assum<strong>in</strong>g this<br />

DISTANCE FROM CENTER, km sheath region is very th<strong>in</strong>, <strong>the</strong> conf<strong>in</strong>ement current is<br />

6000 500 1000 500 740 considered to be a surface current for <strong>the</strong>oretical treatment;<br />

this provides a boundary condition of total con-<br />

1400 f<strong>in</strong>ement by a spherical current around <strong>the</strong> whole<br />

Moon, permitt<strong>in</strong>g solution of Maxwell’s equations be-<br />

1200 low <strong>and</strong> on <strong>the</strong> lunar surface. This spherical conf<strong>in</strong>ement<br />

case is <strong>the</strong>n applied to magnetometer data meas-<br />

T, K 000 ured on <strong>the</strong> lunar sunlit side. (Basic<strong>the</strong>oretical devel-.<br />

opment of harmonic solutions can be found <strong>in</strong> several<br />

eco - ~~OLI VINE references <strong>in</strong>clud<strong>in</strong>g Schubert <strong>and</strong> Schwartz, 1969;<br />

~~PERIDOTITE Sifi <strong>and</strong> Blank, 1970.)<br />

600 The harmonic analytical technique requires calculat<strong>in</strong>g<br />

frequency-dependent “transfer functions” which<br />

R/Rm are def<strong>in</strong>ed as follows:<br />

Fig.7. Temperatureestimates for assumed lunar compositions bE,(f) + b~1(f) + b71(f)<br />

of pure peridotite <strong>and</strong> oliv<strong>in</strong>e, calculated from <strong>the</strong>electrical A,(f) = b (f) (21)<br />

conductivity profile of Fig.6. Ez


258 P. Dyal <strong>and</strong> C. W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong>Moon<br />

i = x, y, z, where A, are transfer functions of compo- lunar center. O<strong>the</strong>r conductivity profiles have been<br />

nents of frequency-dependent magnetic fields, ex- calculated us<strong>in</strong>g <strong>the</strong> Sonett et al. (1971) transfer funcpressed<strong>in</strong><br />

<strong>the</strong> orthogonal coord<strong>in</strong>ate system with tion, show<strong>in</strong>g that <strong>the</strong> spike profile is not unique but<br />

orig<strong>in</strong> on <strong>the</strong> surface of <strong>the</strong> sphere (~is radial <strong>and</strong> j) that <strong>the</strong> frontside transfer function can be fitted by<br />

<strong>and</strong> ~ are tangent to <strong>the</strong> surface); bEj(f) is <strong>the</strong> simpler two- <strong>and</strong> three-layer models (Kuckes, 1971;<br />

Fourier transform of <strong>the</strong> external driv<strong>in</strong>g magnetic Sill, 1972; Reisz et al., 1972).<br />

field; bpj(f) <strong>and</strong>br,(f) are Fourier transforms of<br />

<strong>the</strong> <strong>in</strong>duced <strong>global</strong> poloidal <strong>and</strong> toroidal magnetic 2.3. Comparison of transient <strong>and</strong> harmonic-analysis<br />

fields, respectively, techniques<br />

The harmonic data analysis approach <strong>in</strong>volves<br />

Fourier-analyz<strong>in</strong>g simultaneous data from <strong>the</strong> Apollo S<strong>in</strong>ce transient <strong>and</strong> harmonic techniques yield dif-<br />

12 lunar surface magnetometer, taken dur<strong>in</strong>g lunar ferent conductivity profiles (compare Fig. 6 <strong>and</strong> 8)<br />

daytime, <strong>and</strong> <strong>the</strong> lunar orbit<strong>in</strong>g Explorer35 magneto- us<strong>in</strong>g data from <strong>the</strong> same magnetometers, it is useful<br />

meter. Then ratios of <strong>the</strong> surface data to orbital data to discuss <strong>the</strong> assumptions <strong>in</strong>volved <strong>in</strong> both analyses.<br />

are used to calculate a transfer function of <strong>the</strong> form First we consider two basic assumptions of <strong>the</strong> harof<br />

eq.21. It is assumed that <strong>the</strong> toroidal <strong><strong>in</strong>duction</strong> monic technique: (a) only <strong>the</strong> poloidal <strong><strong>in</strong>duction</strong> <strong>and</strong><br />

mode is neglected such that <strong>the</strong> Fourier-transformed external driv<strong>in</strong>g fields are measured on <strong>the</strong> daytime<br />

surface magnetometer data represent <strong>the</strong> sum lunar side; <strong>and</strong> (b)<strong>the</strong> <strong>in</strong>duced poloidal field is perbEj(f)<br />

+ bpi(f), while <strong>the</strong> transformed orbit<strong>in</strong>g mag- fectly confmed by a spherically symmetric current<br />

netometer data represent <strong>the</strong> driv<strong>in</strong>g field bE,(f) layer. The first assumption considers that <strong>the</strong> total<br />

alone, field measured by <strong>the</strong> lunar surface magnetometer is<br />

The form of <strong>the</strong> transfer function is determ<strong>in</strong>ed by composed of only<strong>the</strong> external solar w<strong>in</strong>d driv<strong>in</strong>g field<br />

<strong>the</strong> <strong>in</strong>ternal conductivity distribution <strong>in</strong> <strong>the</strong> Moon; BE <strong>and</strong> <strong>the</strong> poloidal lunar response field Bp. By ref<strong>the</strong>refore,<br />

a “best fit” conductivity profile can be ob- erence to eq. 1, we recognize that various o<strong>the</strong>r fields<br />

tamed by numerically fitt<strong>in</strong>g to <strong>the</strong> transfer function. may be contribut<strong>in</strong>g to <strong>the</strong> surface magnetometer data,<br />

Fig. 8 shows <strong>the</strong> “best fit” radial conductivity profile e.g.,<strong>in</strong>teraction fields (BF) due to such effects as cornof<br />

Sonett et al. (1971) obta<strong>in</strong>ed <strong>in</strong> this manner. The pression of lunar remanent fields by <strong>the</strong> solar w<strong>in</strong>d<br />

conductivity profile is characterized by a large “spike” plasma <strong>and</strong> generation of plasma wave modes on <strong>the</strong><br />

of maximum conductivity about 1500 km from <strong>the</strong> sunlit side. Referr<strong>in</strong>g to Fig. 8, we note an asymmetry<br />

effect which isnot predicted by simple harmonic-analysis<br />

<strong>the</strong>ory: <strong>the</strong> harmonic analysis yields two different<br />

i02 I I I conductivity profiles, one calculated from y-axis (east—<br />

west) data alone <strong>and</strong> <strong>the</strong> o<strong>the</strong>r from z-axis (north—<br />

south) data alone. Thisy—z asymmetry can be ex-<br />

\ pla<strong>in</strong>ed as be<strong>in</strong>g <strong>in</strong> part due to <strong>the</strong> daytime compression<br />

\ \ of <strong>the</strong> local rernanent field at <strong>the</strong> Apollo 12 magnetoio<br />

4 meter surface site by <strong>the</strong> solar w<strong>in</strong>d (Dyal et al., 1972a).<br />

o-, mho/meter - ~ Thus, when lunar daytime magnetometer data are used<br />

- -- -to study <strong>global</strong> lunar properties, knowledge of simultaneous<br />

solar w<strong>in</strong>d propertiesis important<br />

a. The second assumption considers that <strong>the</strong> <strong>in</strong>duced<br />

l0”6 poloidal field is conf<strong>in</strong>ed <strong>in</strong> <strong>the</strong> lunar sphere by <strong>the</strong><br />

COSOUCTIVIIY mRflI* RM solar w<strong>in</strong>d plasma. Experimentally <strong>the</strong> solar w<strong>in</strong>d plasma<br />

I I I spectrometer (Snyder et al., 1970) does not measure a<br />

4 8 2 6 20 conf<strong>in</strong><strong>in</strong>g plasma on <strong>the</strong> dark side lunar hemisphere, <strong>and</strong><br />

LUNAR RADIUS kmx 102 <strong>the</strong> transient magnetic field data show to first order a<br />

Fig. 8. Electrical conductivity profiles from Fourier harmonic vacuum poloidal response on <strong>the</strong> lunar dark side (Dyal<br />

analysisof lunar daytime data (from Sonett et at., 1971). <strong>and</strong> Park<strong>in</strong>, 1971). It is questionable whe<strong>the</strong>r confme-


P. Dyal <strong>and</strong> C. W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong>Moon 259<br />

ment is complete even on <strong>the</strong> sunlit side: a subsatel- result<strong>in</strong>g poloidal-<strong><strong>in</strong>duction</strong> field <strong>and</strong> any permanent<br />

lite magnetometer has measured evidence of <strong>in</strong>duced fields orig<strong>in</strong>at<strong>in</strong>g <strong>in</strong> <strong>the</strong> lunar crust. Both of <strong>the</strong>se <strong>in</strong>terlunar<br />

fields at distances greater than 100 km above actions have beenmeasured by Apollo magnetometers<br />

<strong>the</strong> lunar sunlit surface (Coleman et al., 1972), mdicat<strong>in</strong>g<br />

that conf<strong>in</strong>ement isnot complete over dis-<br />

<strong>and</strong> solar w<strong>in</strong>d spectrometers.<br />

tancesgreater than a proton gyroradius (‘~100 km). 3.1. Conf<strong>in</strong>ement of <strong>in</strong>duced poloidal fieldsby <strong>the</strong><br />

For <strong>the</strong>se reasons, <strong>the</strong> spherically symmetric plasma<br />

conf<strong>in</strong>ement assumption should be modified.<br />

solar w<strong>in</strong>d plasma<br />

In summary, it is seen that magnetic fields meas- Fig. 3 schematically portrays<strong>the</strong> effects of <strong>the</strong> highly<br />

ured on <strong>the</strong> lunar day side quite possibly <strong>in</strong>volve a conduct<strong>in</strong>g solar w<strong>in</strong>d on <strong>the</strong> lunar <strong>in</strong>duced poloidal<br />

very complicated set of magnetic phenomena which field; <strong>in</strong> this case <strong>the</strong> <strong>in</strong>duced field geometrical con-figcan<br />

contribute vary<strong>in</strong>g magnetic field amplitudes at uration is altered such that <strong>the</strong> poloidal field is cornvary<strong>in</strong>g<br />

frequencies over <strong>the</strong> entire measured spectrum, pressed onto <strong>the</strong> lunar surface on <strong>the</strong> sunlit side <strong>and</strong> is<br />

<strong>and</strong> that <strong>the</strong>se contributions cannot be adequately extended back <strong>in</strong>to <strong>the</strong> cyl<strong>in</strong>drical “cavity” region on<br />

treated us<strong>in</strong>g <strong>the</strong> above-mentioned assumptions <strong>the</strong> dark side. This compression has been experl<strong>in</strong>en-<br />

(a) <strong>and</strong> (b). A recent harmonic paper (Sonett et al., tally confirmed by measurements from magnetometers<br />

1972) has considered effects such as that due to on <strong>the</strong> lunar surface. For <strong>the</strong> uncompressed (vacuum)<br />

remanent field compression <strong>and</strong> responsevariations case <strong>the</strong> ratio of tangential components of surface<br />

as a function of solar w<strong>in</strong>d k-vector direction with total field (BAY,Z) to external driv<strong>in</strong>g field (BEy,z) will<br />

respect to <strong>the</strong> Moon. As a result, <strong>the</strong> conductivity have a maximum value of 1.5 (see eq.8). Daytime<br />

“spike”, which was emphasized earlier, is now recog- ratios, however, are considerably higher than 1.5; for<br />

nized as only one of a larger set of possible conduc- example, at 0.01 Hz <strong>the</strong> z-component amplication has<br />

tivity proffles, some of which are much more <strong>in</strong> agree- been measured to be 3.7 (Dyal et al., 1970). Nighttime<br />

ment with<strong>the</strong> transient-response three-layer models data show a smaller compressive effect <strong>in</strong> <strong>the</strong> tangential<br />

published earlier (Dyal <strong>and</strong> Park<strong>in</strong>, 1971, 1972). components; examples <strong>in</strong> Fig. 4B show a y-axis ratio of<br />

Fur<strong>the</strong>rmore, <strong>the</strong> recent harmonic papers state that 2.0 <strong>and</strong> az-axis ratio of 1.75.<br />

resolution of data restricts conductivity models to The conf<strong>in</strong>ement of <strong>the</strong> <strong>in</strong>duced poloidal field by<br />

three or four layers ra<strong>the</strong>r than <strong>the</strong> eight layers used <strong>the</strong> highly conduct<strong>in</strong>g solar w<strong>in</strong>d is <strong>the</strong>oretically studied<br />

for <strong>the</strong> “spike” model, by consider<strong>in</strong>g a pO<strong>in</strong>t dipole field <strong>in</strong>side a supercon-~<br />

Though of an apparently less complicated nature, duct<strong>in</strong>g cyl<strong>in</strong>der. Two geometrical orientations of <strong>the</strong><br />

<strong>the</strong>re are also problems associated with <strong>the</strong> assump. po<strong>in</strong>t dipole are considered: along <strong>the</strong> cyl<strong>in</strong>der axis<br />

tions of <strong>the</strong> darkside transient analysis technique. <strong>and</strong> transverse to <strong>the</strong> cyl<strong>in</strong>der axis. (See <strong>in</strong>serts <strong>in</strong> Fig.9<br />

The ma<strong>in</strong> problems <strong>in</strong>volve: (a) <strong>the</strong> f<strong>in</strong>ite time re- for an illustration of <strong>the</strong>se orientations.) The field of<br />

quired for a “step” transient to cross <strong>the</strong> lunar sphere; <strong>the</strong> dipole orisnted transverse to <strong>the</strong> cyl<strong>in</strong>der axis has<br />

(b) <strong>the</strong> field <strong>in</strong>crease along <strong>the</strong> antisolar l<strong>in</strong>e due to been determ<strong>in</strong>edby Parker (1962). For a dipole on<br />

diamagnetic currents at <strong>the</strong> solar w<strong>in</strong>d cavity bound- <strong>the</strong> axis of a capped superconduct<strong>in</strong>g cyl<strong>in</strong>der (of<br />

ary; <strong>and</strong> (c) deviations from sphere-<strong>in</strong>-a-vacuum<strong>the</strong>ory radius R), ly<strong>in</strong>g a distance R from <strong>the</strong> cap, <strong>the</strong> scalar<br />

due to partial conf<strong>in</strong>ement of <strong>in</strong>duced fields by <strong>the</strong> potential of <strong>the</strong> conf<strong>in</strong>ed dipole is:<br />

solar w<strong>in</strong>d. These problems are considered <strong>in</strong> section 2<br />

2.13; <strong>the</strong> partial-conf<strong>in</strong>ement problem (c) is considered<br />

<strong>in</strong> more detail <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g section.<br />

— —2m cos ~,<br />

2 n=1<br />

“~c— R<br />

Np~J<br />

1 (N~x/R)f~(r) (N2—DJ2(N<br />

22<br />

‘ n / 1’ n<br />

where:<br />

f (r) = exp (—N Jr I /R) + exp (—N (r + 2R)/R) (23)<br />

3, Interaction of <strong>the</strong> solar w<strong>in</strong>d withlunar mduced ~1 fl fl -<br />

<strong>and</strong> remanent fields <strong>and</strong> 4 is <strong>the</strong> azimuthal angle measured around <strong>the</strong><br />

axis of <strong>the</strong> cyl<strong>in</strong>der, from <strong>the</strong> dipole axis;m is <strong>the</strong><br />

The solar w<strong>in</strong>d plasma transports <strong>the</strong> <strong>in</strong>duc<strong>in</strong>g mag- dipole moment;r is <strong>the</strong> distance along <strong>the</strong> cyl<strong>in</strong>der<br />

netic field past <strong>the</strong> Moon <strong>and</strong> also <strong>in</strong>teractswith <strong>the</strong> axis; N~is <strong>the</strong> n-th root off 1 (Nn) = 0.


260 P. Dyal <strong>and</strong> C. W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong> Moon<br />

2.5<br />

POINT where:<br />

/ DIPOLE<br />

- AXIAL ~SENSORiii g~(r)= exp(—k~ri /R) — exp [_k~(~~ + 2)] (27)<br />

o.A DATA ____________<br />

2.0 RT~’~ <strong>and</strong>k~are roots of <strong>the</strong> zero-order Bessel function. The<br />

A A A A TRANSXERSE L~?) axial components of <strong>the</strong> conf<strong>in</strong>ed <strong>and</strong> unconfmed fields<br />

3 4 are respectively —ai<br />

TRANSVERSE’<br />

1~iac/ar<strong>and</strong> —a~,/u/ar;<strong>the</strong> ratio of<br />

1.0 <strong>the</strong> /Bc\ radial component 1 ~ r of conf<strong>in</strong>ed field tounconfmed<br />

3k, 7g~(r) (28)<br />

field along <strong>the</strong> cyl<strong>in</strong>der axis is:<br />

0 I 2 3 4 ~ n1 4(kn)<br />

r/R<br />

Fig.9. Confmementof apo<strong>in</strong>t dipole magnetic field, shown<br />

<strong>the</strong>oretically <strong>and</strong> experimentally. The<strong>in</strong>serts schematically This axial conf<strong>in</strong>ed-to-unconfmed field ratio is also<br />

show lunar confmement by <strong>the</strong> solar w<strong>in</strong>d, approximated by plotted<strong>in</strong> Fig.9.<br />

a capped-cyl<strong>in</strong>der superconductor enclos<strong>in</strong>g a po<strong>in</strong>t dipole A laboratory experiment has been devised to exfield.<br />

The <strong>the</strong>oretical curves showratios of conf<strong>in</strong>ed to unconf<strong>in</strong>ed<br />

dipolar field versus distance along <strong>the</strong> cyl<strong>in</strong>der axis, am<strong>in</strong>e <strong>the</strong> “axial” <strong>and</strong> “transverse” solutions (eq.25<br />

Data are results of a laboratoryexperiment <strong>in</strong> which conf<strong>in</strong>e- <strong>and</strong> 28). The highly conduct<strong>in</strong>g solar w<strong>in</strong>d plasma<br />

ment of a small dipole magnet’s field by acyl<strong>in</strong>drical super- cavity is modeled by a th<strong>in</strong> lead superconduct<strong>in</strong>g<br />

conductor is measured experimentally, capped cyl<strong>in</strong>der <strong>and</strong> <strong>the</strong> <strong>in</strong>stantaneous <strong>in</strong>duced polo.<br />

idal field is modeled by a small dipolar samarium-<br />

-<br />

The scalar potential which describes <strong>the</strong> field due cobalt magnet placed equidistant from <strong>the</strong> closed end<br />

to an unconf<strong>in</strong>ed po<strong>in</strong>t dipole is: <strong>and</strong> <strong>the</strong> side walls of <strong>the</strong> cyl<strong>in</strong>der. The measured ratios<br />

mx<br />

= —i-r<br />

(24)<br />

of conf<strong>in</strong>ed fields to unconfmed fields are shown <strong>in</strong><br />

Fig. 9 along with <strong>the</strong> <strong>the</strong>oretical value expressed <strong>in</strong><br />

eq.25 <strong>and</strong> 28.<br />

The transverse component of magnetic field due to The <strong>the</strong>ory <strong>and</strong> laboratory data presented <strong>in</strong> Fig. 9<br />

ei<strong>the</strong>r of <strong>the</strong> potentials (eq.22 or 23) canbe calculated represent to first order <strong>the</strong> effects of solar w<strong>in</strong>d comas<br />

a function of distancer along <strong>the</strong> cyl<strong>in</strong>der axis, us<strong>in</strong>g pression on a poloidal <strong>in</strong>duced lunar field, as measured<br />

B~(r) = —ail,/ax. The ratio of <strong>the</strong> transverse component. by a lunar surface magnetometer positioned at <strong>the</strong><br />

of conf<strong>in</strong>ed field to unconfmed field on <strong>the</strong> cyl<strong>in</strong>der antisolar po<strong>in</strong>t. This compressive phenomenon, which<br />

axis is <strong>the</strong>n: has a measurable geometrical effect on <strong>the</strong> poloidal<br />

i Bc\ 2 ~ r<br />

field,does notsignificantly change <strong>the</strong> time dependence<br />

3N~f trans.<br />

3 n1<br />

= R<br />

1(0)f~(r) (N,~— 1)4(Nn) (25) of puted <strong>the</strong> poloidal <strong>in</strong>ternal electrical-conductivity eddy-current field. Therefore, profile a(r), <strong>the</strong> corn- which<br />

is a function only of <strong>the</strong> poloidal time-dependence,<br />

where fn(r) is expressed <strong>in</strong> eq.23; 4(0) 0.5. This will not be modified by solar w<strong>in</strong>d compression to <strong>the</strong><br />

transverse conflned.’to-unconf<strong>in</strong>ed field ratio is plotted<br />

<strong>in</strong> Fig~9.<br />

order of approximation used here.<br />

Now we consider<strong>the</strong> effect of conf<strong>in</strong>ement field 3.2. Compression of<strong>the</strong> permanent lunar fieldsby <strong>the</strong><br />

due to a dipole ly<strong>in</strong>g on <strong>the</strong> cavity axis <strong>and</strong> directed<br />

along <strong>the</strong> cavity axis (see Fig.9, <strong>in</strong>sert). The potential<br />

solar w<strong>in</strong>d plasma<br />

of <strong>the</strong> conf<strong>in</strong>ed dipole (P. Cassen, personal communi- Remanent magnetic fields have been measured by<br />

cation, 1972) is: Apollo magnetometers emplaced at n<strong>in</strong>e sites on <strong>the</strong><br />

Moon. Magnitudes <strong>and</strong> locations of <strong>the</strong>se steady fields<br />

= m ~ J 0(k~x)g~(r) (26) are listed <strong>in</strong> Table I.<br />

ac ~ n=1 J~(k~) Simultaneous solar w<strong>in</strong>d plasma properties have<br />

been measured at <strong>the</strong> Apollo 12 <strong>and</strong> 15 l<strong>and</strong><strong>in</strong>g sites.<br />

- To first order, a compression of <strong>the</strong> Apollo 12 rema-


TABLE I<br />

Lunar surface remanent magnetic fields<br />

P. Dyal<strong>and</strong> C. W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong>Moon 261<br />

Site Coord<strong>in</strong>ates Measured magnetic fields (‘y)<br />

Apollo 12 3.2°S 23.4°W 387<br />

Apollo 14 37°S 17.5°W 1037 <strong>and</strong> 43~(separated by 1.1 km)<br />

Apollo 15 26.1°N 3.7°E 37<br />

Apollol6 8.9’S 15.5°E 1l27,113’y,1897,232~r,<strong>and</strong>3277<br />

(separated by 0.5 —7.1 km)<br />

nent field <strong>in</strong> direct proportion to <strong>the</strong> solar w<strong>in</strong>d pres.<br />

sure has been measured. For one-hour averages ofmeaw<strong>in</strong>d<br />

pressure <strong>in</strong>crease of 7’ l0~8dyn/cm<br />

2. The ratio<br />

of plasma pressure to total magnetic pressure is<br />

suTements, <strong>the</strong> <strong>in</strong>crease <strong>in</strong> magnetic field pressure = 8ir nm V2/B~r= 5.9, where BST = + ~B,<br />

~2I8,i., where L?ILR ~A — (BE +B<br />

2 5), asshown is directly <strong>in</strong> Fig. corre! io. dur<strong>in</strong>g stagnation maximum condition plasma ((3 ~ pressure, 1) is not<strong>in</strong>dicat<strong>in</strong>g reaëhed <strong>and</strong> thata <strong>the</strong> local<br />

lated The magnetic to <strong>the</strong> plasma field pressure <strong>in</strong>creasesnm fromV 38 to 547 for a solar shock is probably not formed at <strong>the</strong> Apollo 12 site.<br />

Modulation of <strong>the</strong> remanent magnetic field by time<br />

variations <strong>in</strong> <strong>the</strong> solar w<strong>in</strong>d pressure should add noise<br />

10 to <strong><strong>in</strong>duction</strong> measurements made on <strong>the</strong> daytime side<br />

of <strong>the</strong> Moon (Dyal et al., 1972a), as was discussed <strong>in</strong><br />

2 section 2.3.<br />

b 8<br />

N I<br />

E I<br />

6 4. Magnetization field <strong><strong>in</strong>duction</strong> <strong>and</strong> permeability cal-<br />

lIo~<br />

N<br />

6<br />

k ~ k ~ ~ 1’-~<br />

culationstion<br />

<strong>in</strong>teraction immersed can<br />

Referr<strong>in</strong>g<br />

be<br />

mode<br />

written <strong>in</strong> B~.For modes <strong>the</strong> aga<strong>in</strong> steady to can times eq. be geomagnetic 1, when neglected we consider all o<strong>the</strong>r (e.g., tail<strong>the</strong> <strong><strong>in</strong>duction</strong> field), formagnetiza <strong>the</strong>eq. Moon <strong>and</strong><br />

8A = BE + B~.For a sphere of permea- 1<br />

bility p. immersed <strong>in</strong> a static magnetic field 8E’ <strong>the</strong><br />

surface components of total magnetic field are ex-<br />

~ pressed (Jackson, 1962; Dyal <strong>and</strong> Park<strong>in</strong>, 1972) as:<br />

BAX=(l+2F)BEX (29)<br />

E 4 BAYZ = (1— F) BEyz (30)<br />

C 3 where:<br />

E<br />

=<br />

-<br />

2 (2km+1)(km_l)[1_(_~)]<br />

I -<br />

F=<br />

R’3<br />

km+1)~km+2)_2~~)(km_i)2<br />

(31)<br />

~30 331 332 333 334 335<br />

YEAR 969 TIME, day<br />

Fig. 10. Simultaneous plots of <strong>the</strong> magnetic field pressuredif- Here km is <strong>the</strong> relativepermeability p/p 0, R is <strong>the</strong> radius<br />

ference &8~/8ir<strong>and</strong> solar w<strong>in</strong>d dynamic-pressureat <strong>the</strong> Apollo of <strong>the</strong> sphere, <strong>and</strong> Rc is <strong>the</strong> radius below which <strong>the</strong><br />

12 surface site, show<strong>in</strong>g acorrelationbetween <strong>the</strong> pressures. planetary temperature is above <strong>the</strong> Curie po<strong>in</strong>t.


262 P. Dyal <strong>and</strong> C. W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong> Moon<br />

5 ‘ - - urementsobta<strong>in</strong>ed at three locations on <strong>the</strong> lunar<br />

surface. The <strong>in</strong>creased accuracy will make possible a<br />

T calculation of <strong>the</strong> percentage of permeable iron <strong>in</strong> <strong>the</strong><br />

10 ‘ . . outer layer of <strong>the</strong> lunar sphere.<br />

5. Planets <strong>and</strong> satellites<br />

-. /1<br />

/‘ To consider <strong>global</strong> <strong>electromagnetic</strong> <strong><strong>in</strong>duction</strong><strong>in</strong> <strong>the</strong><br />

<strong>planets</strong> <strong>and</strong> satellites, we have divided <strong>the</strong>m <strong>in</strong>to three<br />

0 ‘ ma<strong>in</strong> groups: (1) bodies which possess <strong>in</strong>tr<strong>in</strong>sic magnetic<br />

fields strong enough to st<strong>and</strong> off <strong>the</strong> solar w<strong>in</strong>d; (2)<br />

-5 . /<br />

/ /.Z.~~i.Ol±0.06 bodies with weak magnetic fields but which have an<br />

- - ionosphere; <strong>and</strong> (3) bodies that possess nei<strong>the</strong>rstrong<br />

permanent magnetic fields nor ionospheres. Table II<br />

-10<br />

•0”<br />

‘ I I I I<br />

B<br />

I I I I I<br />

10<br />

I<br />

divides <strong>the</strong> <strong>planets</strong> <strong>and</strong> satellites <strong>in</strong>to <strong>the</strong>se three ma<strong>in</strong><br />

groups based upon <strong>the</strong> limited number of measurements<br />

that havebeen reported.<br />

Ex, Y The <strong>global</strong> <strong>in</strong>ductive response to <strong>the</strong> solar w<strong>in</strong>d<br />

Fig. 11. Hysteresis curve of <strong>the</strong> MOon. TheMoon is immersed<br />

<strong>in</strong> <strong>the</strong> steady externalmagnetiz<strong>in</strong>g geomagnetic tail field BE<br />

driv<strong>in</strong>g field will most probably be a poloidal response<br />

for planetary bodies with ei<strong>the</strong>r an atmosphere or a<br />

(measured by Explorer 35); <strong>the</strong> total magnetic <strong><strong>in</strong>duction</strong> is low-conduct<strong>in</strong>gouter crust, ei<strong>the</strong>r ofwhich will prevent<br />

BA = BE + B measured by <strong>the</strong> Apollo 12 lunar surfacemagnetometer,<br />

w~ereB is <strong>the</strong> <strong>in</strong>duced lunar magnetization field <strong>the</strong> flow of umpolar currents <strong>and</strong> quench <strong>the</strong> toroidal<br />

(<strong>the</strong>local remanent~heldBg at <strong>the</strong> Apollo 12 site has been mode. The probable time constant for <strong>the</strong> poloidal resubtracted<br />

from <strong>the</strong>Apollo 12 data). In this graph only <strong>the</strong><br />

radial (x) components are plotted. This curve is analogous to<br />

<strong>the</strong>hysteresis B —H curve, where H AR B& <strong>and</strong>B AR B~+B~.<br />

In this low-applied-field regime (—‘ 107) <strong>the</strong>hysteresis curve<br />

is approximately l<strong>in</strong>ear;<strong>the</strong> slope of <strong>the</strong> curvecan be used to<br />

sponse is listed for each body; estimates are calculated<br />

from <strong>the</strong> Cowl<strong>in</strong>g time-constant expression<br />

r = paR<br />

2/ir2, where p is <strong>the</strong> <strong>global</strong> magnetic permea-<br />

. . . . .<br />

bility, a is <strong>the</strong> electncal conductivity, <strong>and</strong> R is <strong>the</strong> radius<br />

calculate <strong>the</strong>lunar relativepermeability for an assumedpermeable<br />

shell thickness ~R = Rm — R~by us<strong>in</strong>g eq.29 <strong>and</strong> 31.<br />

of <strong>the</strong> body. The permeability is assumed to be that of<br />

free space <strong>and</strong> conductivity estimates are based on extrapolations<br />

from lunar <strong>and</strong> Earth measurements.<br />

A plot of BAX vs BEX is <strong>in</strong> effect a plot of a B — H The properties of planetary <strong>in</strong>teriors canbe studied<br />

hysteresis curve. For cases where <strong>the</strong> ratio BAX/BEX by <strong><strong>in</strong>duction</strong> only if driv<strong>in</strong>g fields exist <strong>in</strong> <strong>the</strong> planetary<br />

is a constant, i.e., for low-field BEX (<strong>the</strong> average solar environment which are of magnitude <strong>and</strong> frequency<br />

field is approximately 5 ‘y, <strong>and</strong> <strong>the</strong> geomagnetic tail highenough to cause <strong>the</strong> body to respond electromagfield<br />

is approximately 9 ‘y), <strong>the</strong> hysteresis curve should netically. Sources of driv<strong>in</strong>g magnetic fields may be<br />

take <strong>the</strong> form of a straight l<strong>in</strong>e. Fig. 11 shows a plot of external to <strong>the</strong> body (e.g., solar w<strong>in</strong>d magnetic field<br />

radial’ components of Apollo 12 surface field (BAX) variations as shown <strong>in</strong> Fig. 1 <strong>and</strong> ionospheric diurnal<br />

versus <strong>the</strong> geomagnetic tail field (BEX) measured by variations) Or <strong>in</strong>ternal to <strong>the</strong> body (e.g., secular varia-<br />

Explorer35. A least-squares fit <strong>and</strong> slope calculations tions <strong>in</strong> <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sic permanent magnetic fields of<br />

determ<strong>in</strong>e <strong>the</strong> factor F = 0.0030, which is used <strong>in</strong> Earth <strong>and</strong> Jupiter). The amplitude of <strong>the</strong> solar w<strong>in</strong>d<br />

eq. 31 to determ<strong>in</strong>e <strong>the</strong> relative magnetic permeability field fluctuations (at a frequency of 1 Hz)vary with<br />

for a shell of <strong>in</strong>ner radius Rc. For <strong>the</strong> bulk permeability’ distance from <strong>the</strong> Sun from approximately 107 at<br />

of <strong>the</strong> Moon(<strong>the</strong> case Rc = 0), p/p<br />

0 = 1.01 ±0.06. For Mercury’s orbit, to 5 y at <strong>the</strong> Earth, to approximately<br />

a th<strong>in</strong>ner permeable shell <strong>in</strong>side <strong>the</strong> Moon <strong>the</strong> permea- 0.8 7 at Jupiter (Scarf, 1970). The <strong>in</strong>terplanetary field<br />

biity is higher, as shown <strong>in</strong> eq.31, frequency spectrum varies as j_1.5 (Coleman, 1968)<br />

A more accurate calculation oflunar permeability <strong>in</strong> <strong>the</strong> solar w<strong>in</strong>d near <strong>the</strong> orbits of Earth <strong>and</strong> Mars.<br />

will be determ<strong>in</strong>ed<strong>in</strong> <strong>the</strong> future from network,meas- Ano<strong>the</strong>r driv<strong>in</strong>g magnetic field is that produced <strong>in</strong> <strong>the</strong>


TABLE II<br />

Inductiveresponse times of <strong>planets</strong> <strong>and</strong> satellites<br />

P. Dyal <strong>and</strong> C. W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong>Moon 263<br />

2 Ionosphere Period of primary Planetary response<br />

Group Planet or Mean radius’ Mean density<br />

satellite (km) (g/cm3) (+ yes; — no) driv<strong>in</strong>g field time constant<br />

1 Earth 6,378 5.5 + hoursto years 1 day to 10 yr3<br />

Jupiter 70,850 1.33 + lOh<br />

2 Venus 6,110 5.1 + lOyr<br />

Mars 3,402 4.0 + 24 h 1 yr<br />

Saturn 60,000 0.7 + 10 h<br />

Uranus 25,400 1.7 + 11 h<br />

Neptune 24,300 1.6 + 16h<br />

Pluto 2,250 5.9 + 6 days m<strong>in</strong>utes<br />

Titan 2,425 2.4 + m<strong>in</strong>utes<br />

3 Mecury 2,430 5.4 — 10 sec days<br />

Ganymede 2,775 2.4 — 10 sec m<strong>in</strong>utes<br />

Callisto 2,500 2.1 — 10 sec m<strong>in</strong>utes<br />

Triton 1,885 5.0 — 10 sec m<strong>in</strong>utes<br />

lo 1,750 4.0 — lOsec m<strong>in</strong>utes<br />

Moon 1,737 3.3 — 10 sec 2 mm4<br />

Europa 1,550 3.8 — 10 sec m<strong>in</strong>utes<br />

Rhea 650 2.0 — 1 sec seconds<br />

Tethys 600 1.2 — 1 sec < 1 sec<br />

lapetus 575 1.9 — 1 sec < I sec<br />

Titania 455 3.4 ‘ — 1 sec < 1 sec<br />

Oberon 417 8.6 — 1 sec


264 P. Dyal <strong>and</strong> C.W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong>Moon<br />

TABLE II<br />

Apollo surfacemagnetometer characteristics<br />

Apollo stationary Apollo portable<br />

Parameter magnetometer magnetometer<br />

Ranges(7) 0 —±200 0—i 256<br />

(each sensor) 0 — ±100<br />

0—i 50<br />

Resolution (~‘) 0.1 1.0<br />

Frequency response (Hz) dc — 3 dc — 0.05<br />

Angular response Cos<strong>in</strong>e of angle Cos<strong>in</strong>e of angle<br />

betweenfield between field<br />

<strong>and</strong> sensor <strong>and</strong> sensor<br />

Sensor geometry 3 orthogonal 3 orthogonal<br />

sensors at ends of sensors <strong>in</strong><br />

100-cm booms 6-cm cube<br />

Analog zero determ<strong>in</strong>ation 180°flip of sensor 180°flip of sensor<br />

Power OW) 3.5 1.5<br />

Weight (kg) 8.9 4.6<br />

Size(cm) 63x28X25 56x15x14<br />

Operat<strong>in</strong>g temperature (‘C) —50 — +85 0 — +50<br />

most of <strong>the</strong> solar w<strong>in</strong>d magnetic driv<strong>in</strong>g waves with fluctuations should envelop <strong>the</strong> body <strong>and</strong> <strong>in</strong>duce a<br />

periods less than m<strong>in</strong>utes <strong>and</strong> <strong>the</strong> dom<strong>in</strong>ant field poloidal responsewhich can be used to study <strong>the</strong> <strong>in</strong>change<br />

occurr<strong>in</strong>g over <strong>the</strong> entire globe will be due to ternal properties. The bodies possess<strong>in</strong>g <strong>in</strong>ductive time<br />

<strong>the</strong> daily formation of <strong>the</strong> ionosphere whose period constants comparable to driv<strong>in</strong>g field periods (e.g.,<br />

wifi be <strong>the</strong> axial rotation period of <strong>the</strong> planet. Higher- <strong>the</strong> Moon <strong>and</strong> 10) may be better explored us<strong>in</strong>g electrofrequency<br />

fluctuations reach<strong>in</strong>g <strong>the</strong> planetary surface<br />

will be considerably lower<strong>in</strong> amplitude than <strong>the</strong> diur-<br />

magnetic <strong><strong>in</strong>duction</strong> techniques than by seismic methods.<br />

nal variations (on Earth <strong>the</strong> daily variations are approximately<br />

50 y whereas <strong>the</strong> shorter-period solar w<strong>in</strong>d<br />

Appendix: magnetic field measurement technique<br />

changes are less than 10 ‘y); <strong>the</strong>se diurnal ionospheric<br />

magnetic field variations can <strong>in</strong>duce a <strong>global</strong> response<br />

Magnetic fields at <strong>the</strong> lunar surface have been meas-<br />

uredwith magnetometers emplaced by astronauts on<br />

<strong>in</strong> <strong>the</strong> planet’s outer layers. S<strong>in</strong>ce <strong>in</strong> this case <strong>the</strong> domi- <strong>the</strong> Apollo 12, 14, 15, <strong>and</strong> 16 missions. The three ornant<br />

driv<strong>in</strong>g source for <strong>the</strong> planet is geometrically <strong>in</strong> thogonal vector components are measured as a function<br />

<strong>the</strong> shape of a spherical shell, many simultaneous meas- of time <strong>and</strong> position <strong>and</strong> telemetered to Earth. Simulurements<br />

are required to describe <strong>the</strong> total <strong>in</strong>ductive taneously a magnetometer <strong>in</strong> <strong>the</strong> lunar orbit<strong>in</strong>g Explorresponse<br />

<strong>and</strong> separate it <strong>in</strong>to external driv<strong>in</strong>g <strong>and</strong> <strong>in</strong>ter- er 35 spacecraft measures <strong>the</strong> ambient solar or terresnal<br />

response fields. This formidable task has been ac- -trial driv<strong>in</strong>g field <strong>and</strong> transmits this <strong>in</strong>formation to<br />

complished to study <strong>the</strong> <strong>electromagnetic</strong>properties of Earth. Properties of <strong>the</strong> lunar surface magnetometers<br />

Earth’s crust <strong>and</strong> mantle (Chapman, 1919; Lahiri <strong>and</strong><br />

Price, 1939; Ashour <strong>and</strong> Price, 1948; Rikitake, 1950,<br />

1966; McDonald, 1957;Eckhardt et al., 1963). For <strong>the</strong><br />

are given <strong>in</strong> Table Ill.<br />

core region of <strong>the</strong> Earth, however, seismic techniques<br />

have provento be more useful than <strong>electromagnetic</strong><br />

Acknowledgements<br />

<strong><strong>in</strong>duction</strong> techniques. We thank Richard Hart<strong>in</strong> of Philco-Ford, Ray<br />

For <strong>the</strong> <strong>planets</strong> <strong>and</strong> satellites <strong>in</strong> group 3 of Table II Stepi~iensof <strong>the</strong> University of Santa Clara, <strong>and</strong> Jeffrey<br />

which have nei<strong>the</strong>r a <strong>global</strong> permanent magnetic field Hammill <strong>and</strong> Roy Hor<strong>in</strong>ouchi of DeAnza College for<br />

nor an ionosphere <strong>and</strong> which do not lie with<strong>in</strong> <strong>the</strong> mag- <strong>the</strong>ir valuable contributions to <strong>the</strong> laboratory superconnetosphere<br />

of a larger body, solar w<strong>in</strong>d magnetic field duct<strong>in</strong>g experiments.


P. Dyal <strong>and</strong> C. W. Park<strong>in</strong>, Induction <strong>in</strong> <strong>the</strong>Moon 265<br />

References <strong>in</strong> Geophysical Prospect<strong>in</strong>g, Pergamon, NewYork, N.Y.<br />

Kuckes,A.F., 1971.Nature, 232:249.<br />

Ashour, A.A. <strong>and</strong> Price, A.T., 1948. Proc R. Soc. London, Lahiri, B.N. <strong>and</strong> Price, A.T., 1939. Phios. Trans. R. Soc. Lond.,<br />

Ser. A., 195 :198. Ser. A., 237 : 509.<br />

Barnes, A.,Cassen, P., Mihalov, J.D. <strong>and</strong> Eviatar, A., 1971. McDonald, K.L., 1957.J. Geophys. Res,, 62:117.<br />

Science, 172 : 716. Mie, G., 1908. Ann. Phys., 25: 377.<br />

Chapman, S., 1919. Philos Trans. R. Soc. Lond., Ser. A., Ness, N.F., Behannon, K.W., Scearce, C.S. <strong>and</strong>Cantarano, S.C.,<br />

218 : 1. 1967.1. Geophys. Res., 72 : 5769.<br />

Colburn, D.S., Currie, R.G., Mlhalov, J.D. <strong>and</strong> Sonett, c.p., Parker, E.N., 1962. SpaceSci Rev., 1: 62.<br />

1967. Science, 158 :1040. Reisz, A.C., Paul, D.L. <strong>and</strong> Madden, T.R., 1972. Nature,<br />

Coleman, Jr., PJ., 1968.Astrophys. .1., 153 :371. 238 :144.<br />

Coleman, PJ., Schubert, G., Russeli, C.T. <strong>and</strong> Sharp, LR., Rikitake, T., 1950. Bull. EarthquakeRes. Inst., Tokyo Univ.,<br />

1972. In: Apollo 15 Prelim<strong>in</strong>ary Science Report. NASA 28 : 263.<br />

SP-289, pp.22-i — 22-9. Rikitake, T., 1966. Electromagnetism <strong>and</strong> <strong>the</strong>Earth’s Interior.<br />

Debye, P., 1909. Ann. Phys., 30 : 57. Elsevier, Amsterdam.<br />

Dolg<strong>in</strong>ov, SH. SH., Yeroshenko, Ye.G. <strong>and</strong> Davis, L., 1969. Scarf, F.L., 1970. Planet. Space 5cr., 17 : 595.<br />

Kosm. Issled., 7 vpy 5 : p. 747. Schubert, G. <strong>and</strong> Schwartz, K., 1969. Moon, 1: 106.<br />

Dollfus, A., 1970. Surfaces <strong>and</strong> Interiors of Planets <strong>and</strong> Satel- Sill, W.R., 1972. Moon, 4 : 1.<br />

lites. Academic Press, London, Sifi, W.R. <strong>and</strong> Blank, J.L., 1970.1. Geophys. Res., 75 : 201.<br />

Dyal, P. <strong>and</strong> Park<strong>in</strong>, C.W., 1971. .1. Geophys. Res., 76 : 5947. Smith, E.J., 1967. In: W.R. H<strong>in</strong>dmarsh, FJ. Lowes, P.H. Roberts<br />

Dyal, P. <strong>and</strong> Park<strong>in</strong>, C.W., 1972. Moon, 4 : 66. <strong>and</strong> S.K. Runcorn (Editors), Magnetism <strong>and</strong> <strong>the</strong> Cosmos.<br />

Dyal, P., Park<strong>in</strong>, C.W. <strong>and</strong> Sonett, C.P., 1970. In: Apollo 12 Oliver <strong>and</strong> Boyd, Ed<strong>in</strong>burgh.<br />

Prelim<strong>in</strong>ary Science Report. NASA SP-235 : ss. Smoluchowski, R., 1972. In: Physics of <strong>the</strong> Solar System.<br />

Dyal, P., Park<strong>in</strong>, C.W., Snyder, C.W. <strong>and</strong> Clay, D.R., 1972a. NASA SP-300 : 269.<br />

Natpre, 236: 381. Smy<strong>the</strong>, W.R., 1950. Static <strong>and</strong> Dynamic Electricity. McGraw-<br />

Dyal, P., Park<strong>in</strong>, C.W. <strong>and</strong> Cassen, P., 1972b. In: A.A. Lev<strong>in</strong>- Hifi, New York, N.Y.<br />

son (Editor),Proceed<strong>in</strong>gs of <strong>the</strong> Third Lunar Science Con- Snyder,C.W., Clay, D.R. <strong>and</strong> Neugebauer, M., 1970. In:<br />

ference, 3. MIT Press, Cambridge, Mass., <strong>in</strong> press. Apollo 12 Prelim<strong>in</strong>ary Science Report, NASA SP-235: 75.<br />

Eckhardt, P., Lamer, K. <strong>and</strong> Madden,T., 1963.1. Geophys. Sonett, C.P., Colburn, D.S., Dyal, P., Park<strong>in</strong>, C.W., Smith, B.F.,<br />

Res., 68 : 6279. Schubert, G. <strong>and</strong> Schwartz, K., 197 1.Nature, 230 : 359.<br />

Engl<strong>and</strong>, A.W., Simmons, G. <strong>and</strong> Strangway,D., 1968. .1. Geo- Sonett, C.P., Smith, B.F., Colburn, D.S., Schubert, G. <strong>and</strong><br />

phys. Res., 73 : 3219. Schwartz, K., i972.In~A.A. Lev<strong>in</strong>son (Editor),Proceed<strong>in</strong>gs<br />

Jackson, J.D., 1962. aassical Electrodynamics. Wiley, New of <strong>the</strong> Third Lunar Science Conference, 3. MIT Press,<br />

York, N.Y., p. 163. Cambridge, Mass.<br />

Keller, G.V. <strong>and</strong> Frischknecht, F.C., 1966. Electrical Methods Spreiter, J.R. <strong>and</strong> Alksne, A.Y., 1970. In: Annual Reviewof<br />

Fluid Mechanics, 2 : 313—354.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!