04.08.2013 Views

Astrodynamics 102 - DerAstrodynamics.com

Astrodynamics 102 - DerAstrodynamics.com

Astrodynamics 102 - DerAstrodynamics.com

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Launch / Impact Point Prediction<br />

Satellite and Missile Targeting<br />

Mission Planning<br />

Orbit Maneuvers<br />

Station-keeping<br />

Initial Orbit Determination<br />

UCT Cataloging<br />

. . . . . .<br />

AMOS<br />

September 11~14, 2011<br />

<strong>Astrodynamics</strong> <strong>102</strong><br />

Part 1: Lambert+ Algorithm<br />

v (t )<br />

2<br />

v (t )<br />

2<br />

object<br />

at t 2<br />

Lambert Problem<br />

Given: r (t ) , r (t ) , t , t<br />

1 2 1 2 , inc_to<br />

Find:<br />

Lambert: v (t ) , v (t ) , Lambert : v (t ) , v (t )<br />

r (t )<br />

2<br />

1<br />

For each inc_to:<br />

Single revolution has one solution<br />

Multi-revolution (N) may have<br />

( 2N + 1 ) solutions<br />

Sphere /<br />

Spheroid<br />

Kepler+<br />

Transfer<br />

Orbit<br />

2-Body<br />

Transfer<br />

Orbit<br />

2<br />

v (t )<br />

1<br />

r (t )<br />

1<br />

v (t )<br />

1<br />

object<br />

at t<br />

1<br />

+<br />

1 2<br />

Gim Der<br />

Der<strong>Astrodynamics</strong><br />

July 5, 2013


Analytic <strong>Astrodynamics</strong> Overview<br />

<strong>Astrodynamics</strong> 101: Kepler+ Algorithm<br />

Part1: Analytic Prediction Algorithms<br />

Part2: Verifications<br />

<strong>Astrodynamics</strong> <strong>102</strong>: Lambert+ Algorithm<br />

Part1: Analytic Multi-revolution Targeting Algorithms<br />

(Orbit Determination for Radar Data)<br />

Part2: Verifications<br />

<strong>Astrodynamics</strong> 103: Gauss/Laplace+ Algorithm<br />

Part1: Analytic Angles-only Algorithms<br />

(Orbit Determination for Optical Sensor Data)<br />

Part2: Verifications


<strong>Astrodynamics</strong> <strong>102</strong>: Lambert+ Algorithm<br />

Part 1. Analytic Multi-rev Targeting Algorithms<br />

1. What, Why, How<br />

2. Physics and Mathematics<br />

3. Lambert Algorithm Implementation<br />

4. Analytic Lambert Solutions<br />

5. Applications for SSA<br />

Part 2. Verifications<br />

6. Matter of Reference<br />

7. Numerical Examples


2007<br />

Satellites Rendezvous and Docking<br />

Space Shuttle Discovery and ISS<br />

Chinese Spacecraft and CSS


Radar/Laser Weather/Satellite Tracking<br />

Radar<br />

Beam<br />

Weather<br />

forecast<br />

by Radar<br />

Satellite<br />

tracking<br />

by Radar<br />

Satellite<br />

tracking<br />

by Laser<br />

Laser<br />

Beam


Radar Missile Tracking<br />

2007 2009, . . , 2013


Space Debris Collisions<br />

2007 2009, . . , 2013


Space Debris and Satellite Growth<br />

2007 2009, . . , 2013


1. What, Why, How<br />

What? Satellite rendezvous and docking, weather<br />

forecast, tracking of satellites, missiles<br />

and debris, mission planning, . . . . . , SSA<br />

are many challenging problems<br />

Why? Need accurate, fast and robust utility<br />

algorithms for multiple applications<br />

How? Understand the Physics and Mathematics<br />

of <strong>Astrodynamics</strong> for analytic orbit<br />

determination using radar and laser data<br />

Solving These Challenging Problems<br />

Requires Analytic Lambert+ Algorithm


v (t )<br />

2<br />

object<br />

at t 2<br />

r (t )<br />

2<br />

Sphere<br />

2-Body<br />

Transfer<br />

Orbit<br />

Lambert and Lambert+ Algorithms<br />

Lambert Problem<br />

Given: r (t ) , r (t<br />

2<br />

) , t , t<br />

1<br />

1 2 , inc_to<br />

Find: Lambert: v (t ) , v (t ) ,<br />

v (t )<br />

1<br />

r (t )<br />

1<br />

object<br />

at t<br />

1<br />

1<br />

For each inc_to:<br />

Single revolution has one solution<br />

Multi-revolution (N) may have<br />

( 2N + 1 ) solutions<br />

2<br />

Lambert + : v (t<br />

1<br />

) , v (t 2 )<br />

r (t )<br />

2<br />

Lambert (2-Body) solution Lambert+ solution for SSA<br />

(accurate and fast )<br />

v (t )<br />

2<br />

object<br />

at t 2<br />

add perturbations analytically<br />

( J 2 , J 3 , J 4 , J 22 , J 31 , . .<br />

Sun , Moon , Drag , . . )<br />

Spheroid<br />

Kepler+<br />

2-Body<br />

Transfer<br />

Orbit<br />

v (t )<br />

1<br />

r (t )<br />

1<br />

object<br />

at t<br />

1


Physics and Mathematics<br />

2. Physics


Five SSA Features of Lambert+<br />

Classical Lambert+<br />

Lambert<br />

Inclination indication of transfer orbit,<br />

inc_to, specified NO/maybe YES<br />

Bounded independent variable NO/maybe YES<br />

Robust multi-revolution capability NO/maybe YES<br />

Accurate iterative method YES YES<br />

Perturbations <strong>com</strong>pliant and analytic NO YES


direct transfer orbit<br />

o<br />

(inclination 90 )<br />

r 2<br />

k = (0, 0, 1)<br />

<br />

o<br />

r 1<br />

in-plane<br />

h = r x r 1 2<br />

r<br />

2 = k h r<br />

2<br />

h = r x r 1 2<br />

= k h<br />

= < o <br />

= 2<br />

= < <br />

o<br />

= 2<br />

o<br />

Inclination indication<br />

of transfer orbit,<br />

inc_to = 1, posigrade<br />

= 1, retrograde<br />

<br />

1<br />

= cos< <br />

r r2 o<br />

[ ]<br />

r r 2<br />

1<br />

r 1<br />

in-plane<br />

Choice of additional input<br />

for Lambert problem:<br />

Inclination<br />

Indication of<br />

Transfer orbit,<br />

Inc_to<br />

(Escobal)<br />

Better for<br />

multi-rev<br />

vs.<br />

transfer<br />

method<br />

or transfer<br />

motion<br />

direction<br />

(Others)


Solution is<br />

guaranteed<br />

Bounded Independent Variable<br />

Bounded x Unbounded x<br />

0 solution<br />

x<br />

Good choice of independent variable:<br />

1. x is bounded<br />

2. Slope d/dx is fit for many<br />

iterative methods<br />

non-dimensional<br />

transfer time<br />

= o is given<br />

o 2 solutions<br />

o 1 solution<br />

<br />

Poor choice of independent variable:<br />

1. x is unbounded<br />

2. Slope d/dx is unfit for most<br />

iterative method<br />

Uncertainties in:<br />

1. Initial guess of x<br />

2. Convergence<br />

2 solutions?<br />

Slope<br />

(d/dx)<br />

x


Choice of bounded x, gives a<br />

“vertical U”, allowing A be found easily.<br />

Then with 0<br />

given, the number of<br />

solutions, 0, 1, or 2 can be determined.<br />

Robust Multi-revolution Capability<br />

Multi-revolution, N > 0, needs to determine the minimum time point, A<br />

Bounded Unbounded<br />

x <br />

<br />

Vertical U<br />

o<br />

(If x is the “path<br />

parameter”, then<br />

it is bounded)<br />

= o is given<br />

2 solutions<br />

x <br />

N > 0<br />

1 solution<br />

A A ?<br />

0 solution<br />

x<br />

-1 0 +1<br />

0<br />

o<br />

# of solutions?<br />

N > 0<br />

(If x is the semi-<br />

major axis, then<br />

it is unbounded)<br />

Horizontal U<br />

<br />

Wrong choice of x leads<br />

to difficulties of finding A,<br />

on a “horizontal U”<br />

flat curve<br />

x


Vary n = 2, 3, . . . , as needed<br />

Solve<br />

with<br />

Accurate Laguerre Iterative Method<br />

where , , are known, and<br />

A micro-second slower, but convergence assured


Classical Kepler<br />

(2-Body)<br />

Perturbations Compliant Analytic Lambert+<br />

Classical Lambert<br />

(2-Body)<br />

<strong>Astrodynamics</strong> 101<br />

Vinti<br />

(J2, J3, J4<br />

included)<br />

<strong>Astrodynamics</strong> <strong>102</strong><br />

+ Targeting<br />

by Kepler+<br />

Kepler+<br />

(J2, J3, J4<br />

and other<br />

perturbations))<br />

Lambert+<br />

(J2, J3, J4<br />

and other<br />

perturbations))


3. Analytic Lambert Algorithms<br />

Lambert Algorithmic<br />

Implementations


Equations of Motion (2-Body)<br />

d2<br />

r<br />

= <br />

<br />

r<br />

d t2 r3<br />

Lambert Algorithm<br />

1. Classical and Universal Lambert Equations<br />

2. Implementation by Laguerre Iterative Equation<br />

n F (x i )<br />

i+1 i <br />

for i 1,<br />

2, ..<br />

F (x i ) 2 2<br />

F (x i ) (n 1) F (x i ) n (n 1)<br />

F (x i )F (x i )<br />

F (x i )<br />

x x<br />

3<br />

F (a ) = a [( sin ) sin )] t 0<br />

<br />

F ( x ) = ( x ) y ) 0<br />

Classical Lambert Algorithm<br />

(single revolution)<br />

(fixed n)<br />

Lambert Problem<br />

Given: r (t ) , r (t ) , t , t , inc_to<br />

Find: v (t ) , v (t )<br />

1<br />

1<br />

v (t<br />

2<br />

) object at t<br />

2<br />

r (t )<br />

2<br />

2<br />

2<br />

1 2<br />

Note:<br />

inc_to given: one solution<br />

if not given: two solutions<br />

2-Body<br />

Transfer<br />

Orbit<br />

Spherical<br />

Earth<br />

v (t )<br />

1<br />

object at t<br />

1<br />

r (t )<br />

1


2-Body Lambert Algorithm<br />

Lambert's Equation for multi-revolutions (Sun)<br />

F ( x) = (x ) y) N 0<br />

Iterative Equation (Laguerre)<br />

Multi-revolution Lambert Algorithm<br />

n F (x i )<br />

i+1 i <br />

for i 1,<br />

2,..<br />

F (x i ) 2 2<br />

F (x i ) (n 1) F (x i ) n (n 1)<br />

F (x i )F (x i )<br />

F (x i )<br />

x x<br />

References:<br />

Sun, F.T., “On The Minimum Time Traj . . ”, AAS 79-164<br />

Der, G. J., “The Superior Lambert Algorithm”, AMOS,2011<br />

v (t )<br />

Lambert Problem<br />

Given: r (t ) , r (t ) , t , t , inc_to<br />

Find: v (t ) , v (t )<br />

object at t 2<br />

2<br />

Transfer<br />

Orbit 2<br />

1<br />

r (t )<br />

2<br />

1<br />

v (t )<br />

2<br />

2<br />

2<br />

Transfer<br />

Orbit 1<br />

<br />

Sphere<br />

1 2<br />

Transfer orbit 1: inc_to = 1, i < 90 o<br />

Transfer orbit 2: inc_to = 1, i > 90 o<br />

Multi- revolutions (N)<br />

may have ( 2N + 1 ) solutions<br />

for each inc_to and a given <br />

v (t )<br />

1<br />

r (t )<br />

1<br />

object at t 1<br />

v (t )<br />

1


v 2<br />

vv2 vt2 v 2<br />

Initial<br />

Step 1 B Kepler<br />

r<br />

2<br />

A<br />

Lambert<br />

C<br />

Step 2<br />

A<br />

r<br />

2<br />

C<br />

v 2<br />

Targeting by<br />

Kepler + at t2<br />

Final<br />

Kepler<br />

i<br />

+<br />

+<br />

Final position at t<br />

2<br />

A<br />

k<br />

Targeting to Lambert+<br />

Celestial Pole<br />

Central<br />

body<br />

Final Kepler<br />

trajectory<br />

Given: r , r , t = t t , Computed v , v (Lambert)<br />

1 2 2 1<br />

t1 t2<br />

Find: v , v (Lambert )<br />

v1 v2<br />

r 2<br />

+<br />

Lambert<br />

trajectory<br />

r<br />

1<br />

j<br />

v 1<br />

v 1<br />

+<br />

v 1<br />

v t1<br />

v v1<br />

Initial<br />

position at t<br />

1


4. Analytic Lambert Solutions<br />

Lambert Solutions<br />

and<br />

Orbit Determination


Transfer orbit 1: inc_to = 1, i < 90 o<br />

Transfer orbit 2: inc_to = 1, i > 90 o<br />

v (t )<br />

Single revolution has one solution<br />

for each inc_to and a given <br />

0 < < , 0 < < 1<br />

object at t 2<br />

2<br />

Transfer<br />

Orbit 2<br />

r (t )<br />

2<br />

v (t )<br />

2<br />

Transfer<br />

Orbit 1<br />

v (t )<br />

1<br />

r (t )<br />

1<br />

Sun, F.T., AAS Paper 79-164,<br />

“On the minimum time trajectory and<br />

multiple solutions of Lambert problem”<br />

<br />

Sphere<br />

Single Revolution Lambert Solutions<br />

object at t 1<br />

v (t )<br />

1<br />

( Given time difference )<br />

1/ 2<br />

Normalized Time<br />

tm ] <br />

3<br />

3<br />

<br />

<br />

<br />

High Path Low Path<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Elliptic Orbits<br />

Path parameter,<br />

1 < x < 1<br />

ME Path line<br />

N = 0<br />

o<br />

( Single revolution, N = 0, 0 < < 360 )<br />

<br />

<br />

( Unknown to be solved for )<br />

Parabolic Orbits<br />

Path parameter, x = 1<br />

Hyperbolic Orbits<br />

Path parameter, x > 1<br />

ME: Minimum Energy<br />

x


Transfer orbit 1: inc_to = 1, i < 90 o<br />

Transfer orbit 2: inc_to = 1, i > 90 o<br />

v (t )<br />

Multi- revolutions (N)<br />

may have ( 2N + 1 ) solutions<br />

for each inc_to and a given <br />

object at t 2<br />

2<br />

Transfer<br />

Orbit 2<br />

0 < < , 0 < < 1<br />

r (t )<br />

2<br />

v (t )<br />

2<br />

Transfer<br />

Orbit 1<br />

Sun, F.T., AAS Paper 79-164,<br />

“On the minimum time trajectory and<br />

multiple solutions of Lambert problem”<br />

<br />

Sphere<br />

v (t )<br />

1<br />

r (t )<br />

1<br />

Multi- Revolution Lambert Solutions<br />

object at t 1<br />

v (t )<br />

1<br />

( Given time difference )<br />

1/ 2<br />

Normalized Time<br />

tm ] <br />

3<br />

3<br />

<br />

<br />

<br />

High Path Low Path<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ME Path line<br />

N = 2<br />

<br />

N = 1<br />

<br />

<br />

<br />

<br />

N = 0<br />

<br />

<br />

<br />

Elliptic Orbits<br />

Path parameter,<br />

1 < x < 1<br />

<br />

( x = Unknown to be solved for )<br />

N = Revolution number<br />

( Multi revolution, N > 0, > 360 )<br />

Parabolic Orbits<br />

Path parameter, x = 1<br />

Hyperbolic Orbits<br />

Path parameter, x > 1<br />

ME: Minimum Energy<br />

x<br />

o


Lambert Problem<br />

Given: r (t ) , r (t ) , t , t , inc_to<br />

Find: v (t ) , v (t )<br />

1<br />

Spherical<br />

Earth<br />

1<br />

2<br />

2<br />

1 2<br />

Good: 2-Body Lambert solution<br />

Spheroidal<br />

Earth<br />

2-Body/Keplerian<br />

Trajectory<br />

Better: Targeting by Kepler+<br />

Lambert+ solution<br />

2-Body vs. Lambert+ Solutions<br />

Kepler+ Trajectory<br />

_<br />

(J 2 , J 3 , J 4 + N Body ,<br />

+ J , J , Drag , . .)<br />

31 32<br />

2-Body<br />

v (t<br />

2<br />

)<br />

Lambert+<br />

object<br />

at t 2<br />

r (t )<br />

2<br />

Sphere /<br />

Spheroid<br />

Kepler+<br />

Transfer<br />

Orbit<br />

2-Body<br />

Transfer<br />

Orbit<br />

2-Body Lambert+<br />

v (t )<br />

1<br />

r (t )<br />

1<br />

object<br />

at t<br />

1


Two Equations<br />

and<br />

Two Unknowns<br />

Gauss<br />

Battin<br />

Shepperd<br />

Gooding<br />

Klumpp<br />

Theories/<br />

Formulations<br />

Lambert Algorithm Developers<br />

One Equation<br />

and<br />

One Unknown<br />

Lambert<br />

Gauss<br />

Battin<br />

Lancaster/Blanchard<br />

Godal<br />

Vinh<br />

Sun<br />

Lambert Algorithm Characteristics:<br />

Implementations/<br />

Iterative Methods<br />

Newton,<br />

Halley,<br />

and Others<br />

Everyone<br />

(almost)<br />

Laguerre<br />

and Modified<br />

Laguerre<br />

Conway<br />

Der<br />

1. Most (over 90%) Lambert algorithms apply to zero rev and have singularities<br />

2. Sun/Der Lambert + algorithm applies to multi-rev and rarely has singluarity<br />

(simple theory + straightforward implementation = speed, accuracy, robustness)


Osculating Orbital<br />

Elements at t o<br />

[ r (t ), v (t )]<br />

o o<br />

Radars /<br />

Optical<br />

sensors<br />

Future<br />

look angles<br />

( pointing<br />

prediction )<br />

Others . . . . . .<br />

Orbit Determination and Prediction/Propagation<br />

Object at t<br />

r<br />

Unsuitable for real-time<br />

automatic processing<br />

Ephemerides<br />

Raw<br />

Observation<br />

data<br />

v<br />

Orbit<br />

Determination<br />

(Estimated future/past)<br />

position and velocity vectors<br />

Rise/Set<br />

Site visibility<br />

<strong>Astrodynamics</strong><br />

<strong>102</strong>: Lambert /<br />

103: Gauss/Laplace<br />

Initial Orbit<br />

Determination<br />

Processed<br />

Observation<br />

data<br />

Differential<br />

Correction<br />

Batch / KF<br />

TLE<br />

conversion<br />

difficulties<br />

Singularity<br />

difficulties<br />

Osc2Mean<br />

Analytic algorithms in OD and P/P<br />

need to process 100,000+ Objects<br />

in less than 12 hours with accuracy<br />

of 10 km to centimeters for SSA<br />

(Estimated initial)<br />

positin and<br />

velocity vectors<br />

Orbital<br />

element set<br />

r and v<br />

Prediction /<br />

Propagation<br />

1 2<br />

SP<br />

3<br />

Numerical<br />

SGP4<br />

Integration Kepler+<br />

Close approach<br />

(miss distance)<br />

[ r , v ]<br />

Astro 101:<br />

Kepler<br />

1<br />

2<br />

3<br />

SGP4 needs TLE<br />

conversion<br />

(not efficient for SSA)<br />

SP is accurate, but<br />

slow for SSA<br />

Kepler+ is accurate<br />

and fast for SSA


SSA and Other<br />

Applications<br />

5. Applications


Applications of Analytic Algorithms(1)<br />

Missile Launch- and impact-Point Predictions<br />

A Few Minutes Too Late for any Intercept<br />

BM – Impact Point<br />

Predictions<br />

• Numerical solutions<br />

possible but too late<br />

for countermeasures<br />

• Analytic Lambert+<br />

(speed & accuracy)


SF<br />

Example: I = J = K = 100<br />

Correlation <strong>com</strong>bination<br />

= I J K = 1,000,000<br />

UNCLASSIFIED<br />

Applications of Analytic Algorithms(2)<br />

Multi-sensor Multi-object UCT Cataloging using Radar Data<br />

Fence or Radar<br />

Correlating<br />

90+ % of<br />

objects to<br />

catalog<br />

Takes a few seconds for<br />

a million <strong>com</strong>binations<br />

SF<br />

J<br />

UCT processing<br />

Solve by New<br />

angles-only algorithm:<br />

3 <strong>com</strong>puted ?<br />

ranges =<br />

I<br />

K<br />

3 detected<br />

ranges


UNCLASSIFIED<br />

Applications of Analytic Algorithms(3)<br />

Multi-sensor Multi-object UCT Cataloging using Optical Sensor Data


Problem: SSA<br />

Applications of Analytic Algorithms(4)<br />

Solution: New Analytic <strong>Astrodynamics</strong> algorithms


<strong>Astrodynamics</strong> <strong>102</strong><br />

Part 2: Verifications<br />

(Please download iOrbit:<br />

http://derastrodynamics.<strong>com</strong>/index.php?main_page=index&cPath=1_7<br />

and run lam for <strong>Astrodynamics</strong> <strong>102</strong> Verifications)<br />

Next


ICBM transfer orbit , Single revolution 2-Body solution<br />

Input:<br />

Numerical Example 1<br />

inc_to = 1, (inclination of transfer orbit < 90 deg.), t1 = 0., t2 = 1618.50 (seconds)<br />

Output: lambert2 converged to the correct 2-Body solution<br />

*<br />

r_eci (t1) (km) r_eci (t2) (km)<br />

<br />

<strong>com</strong>puted inclination of transfer orbit = 67.895 deg., transfer angle = 296.368 deg.<br />

Rev # Path, x v_eci (t1) (km/s) v_eci (t2) (km/s)<br />

N = 0 <br />

*


ICBM transfer orbit , Single revolution 2-Body solution<br />

Input:<br />

Output: lambert2 converged to the correct 2-Body solution<br />

Numerical Example 2<br />

inc_to = 1, (inclination of transfer orbit > 90 deg.), t1 = 0., t2 = 1618.50 (seconds)<br />

*<br />

r_eci (t1) (km) r_eci (t2) (km)<br />

<br />

<strong>com</strong>puted inclination of transfer orbit = 112.105 deg., transfer angle = 63.632 deg.<br />

Rev # Path, x v_eci (t1) (km/s) v_eci (t2) (km/s)<br />

*<br />

N = 0


Numerical Example 3<br />

High Earth Orbit (Molniya transfer orbit) , Multi- revolution 2-Body solutions<br />

Input:<br />

inc_to = 1, (inclination of transfer orbit < 90 deg.), t1 = 0., t2 = 36000. (seconds)<br />

Output: lambert2 converged to correct 2-Body solutions<br />

*<br />

* inc_to as input dictates the inclination of the transfer orbit.<br />

r_eci (t1) (km) r_eci (t2) (km)<br />

<br />

<strong>com</strong>puted inclination of the three transfer orbits = 63.388 deg., transfer angle = 44.705 deg.<br />

Rev # Path, x v_eci (t1) (km/s) v_eci (t2) (km/s)<br />

N = 0 <br />

N = 1 <br />

N = 1 <br />

*<br />

<br />

<br />

<br />

Also allows multi-rev solutions better grouping, as all solutions (N = 0, 1) have the same inclination<br />

and transfer angle.


Numerical Example 4<br />

High Earth Orbit (Molniya transfer orbit) , Multi- revolution 2-Body solutions<br />

Input:<br />

inc_to = 1, (inclination of transfer orbit > 90 deg.), t1 = 0., t2 = 36000. (seconds)<br />

Output: lambert2 converged to correct 2-Body solutions<br />

* <strong>com</strong>puted inclination of the three transfer orbits = 116.612 deg., transfer angle = 315.295 deg.<br />

* inc_to as input dictates the inclination of the transfer orbit.<br />

r_eci (t1) (km) r_eci (t2) (km)<br />

<br />

Rev # Path, x v_eci (t1) (km/s) v_eci (t2) (km/s)<br />

N = 0 <br />

N = 1 <br />

N = 1 <br />

*<br />

<br />

<br />

<br />

Also allows multi-rev solutions better grouping, as all solutions (N = 0, 1) have the same inclination<br />

and transfer angle.


Numerical Example 5<br />

ICBM transfer orbit , Single revolution 2-Body, Vinti targeting, Kepler+ targeting solutions<br />

Input:<br />

clock1 = at t1 (needed for Lambert+)<br />

inc_to = 1, (inclination of transfer orbit < 90 deg.), t1 = 0., t2 = 1618.50 (seconds)<br />

Output:<br />

* <strong>com</strong>puted inclination of transfer orbit = 67.895 deg., transfer angle = 296.368 deg.<br />

Algs. Rev# v_eci (t1) (km/s) v_eci (t2) (km/s)<br />

2-Body N =0 <br />

Vinti<br />

_targeting<br />

r_eci (t1) (km) r_eci (t2) (km)<br />

<br />

N = 0 <br />

Lambert+ N = 0 <br />

*


Numerical Example 6<br />

ICBM transfer orbit , Single revolution 2-Body, Vinti targeting, Kepler+ targeting solutions<br />

Input:<br />

clock1 = at t1 (needed for Lambert+)<br />

inc_to = 1, (inclination of transfer orbit > 90 deg.), t1 = 0., t2 = 1618.50 (seconds)<br />

Output:<br />

*<br />

Algs. Rev# v_eci (t1) (km/s) v_eci (t2) (km/s)<br />

2-Body N = 0 <br />

Vinti<br />

_targeting<br />

r_eci (t1) (km) r_eci (t2) (km)<br />

<br />

<strong>com</strong>puted inclination of transfer orbit = 112.105 deg., transfer angle = 63.632 deg.<br />

N = 0 <br />

Lambert+ N = 0 <br />

*


Numerical Example 7<br />

Molniya transfer orbit , Multi- revolution 2-Body, Vinti targeting, Kepler+ targeting solutions<br />

Input:<br />

clock1 = at t1 (needed for Lambert+)<br />

inc_to = 1, (inclination of transfer orbit < 90 deg.), t1 = 0., t2 = 36000. (seconds)<br />

Output:<br />

r_eci (t1) (km) r_eci (t2) (km)<br />

<br />

<strong>com</strong>puted inclination of the three transfer orbits = 63.388 deg., transfer angle = 44.705 deg.<br />

Algs. Rev# v_eci (t1) (km/s) v_eci (t2) (km/s)<br />

2-Body, N = 0 <br />

Vinti_targ N = 0 <br />

Lambert+ N = 0 <br />

2-Body, N = 1 <br />

Vinti_targ N = 1 <br />

Lambert+ N = 1 <br />

2-Body, N = 1 <br />

Vinti_targ N = 1 <br />

Lambert+ N = 1


Numerical Example 8<br />

Molniya transfer orbit , Multi- revolution 2-Body, Vinti targeting, Kepler+ targeting solutions<br />

Input:<br />

clock1 = at t1 (needed for Lambert+)<br />

inc_to = -1, (inclination of transfer orbit > 90 deg.), t1 = 0., t2 = 36000. (seconds)<br />

Output:<br />

r_eci (t1) (km) r_eci (t2) (km)<br />

<br />

<strong>com</strong>puted inclination of the three transfer orbits = 116.612 deg., transfer angle = 315.295 deg.<br />

Algs. Rev# v_eci (t1) (km/s) v_eci (t2) (km/s)<br />

2-Body, N = 0 <br />

Vinti_targ N = 0 <br />

Lambert+ N = 0 <br />

2-Body, N = 1 <br />

Vinti_targ N = 1 <br />

Lambert+ N = 1 <br />

2-Body, N = 1 <br />

Vinti_targ N = 1 <br />

Lambert+ N = 1


Lambert+ Verifications<br />

<strong>Astrodynamics</strong> <strong>102</strong><br />

Part 2: Verifications<br />

(Please download iOrbit:<br />

http://derastrodynamics.<strong>com</strong>/index.php?main_page=index&cPath=1_7<br />

and run lam for <strong>Astrodynamics</strong> <strong>102</strong><br />

for more Lambert+ Verifications)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!