05.08.2013 Views

computation of robot inertia matrix using block diagram approach - Fei

computation of robot inertia matrix using block diagram approach - Fei

computation of robot inertia matrix using block diagram approach - Fei

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

COMPUTATION OF ROBOT INERTIA MATRIX<br />

USING BLOCK DIAGRAM APPROACH<br />

Narpat S. Gehlot<br />

Universidade Federal da Paraíba - Departamento de Engenharia Elétrica<br />

58109-970 Campina Grande-PB-Brasil<br />

E-Mail: gehlot@dee.ufpb.br<br />

Pablo J. Alsina<br />

Universidade Estadual da Paraíba - CCT - Departamento de Física<br />

58100 Campina Grande - PB - Brasil<br />

Abstract: In this paper, two new methods for <strong>computation</strong> <strong>of</strong> the <strong>inertia</strong> <strong>matrix</strong> <strong>of</strong> <strong>robot</strong><br />

manipulators are proposed. The new algorithms are based on a <strong>block</strong> <strong>diagram</strong> <strong>of</strong><br />

manipulator dynamics, derived from the Newton-Euler formulation. The proposed<br />

methods allows to compute the <strong>inertia</strong> <strong>matrix</strong> explicitly, in an efficient recursive manner,<br />

and can be applied for <strong>robot</strong> dynamics simulation.<br />

r. INTRODUCTION<br />

The inverse dynamics formulation is a c1assic<br />

problem in <strong>robot</strong>ics. The inverse dynamics equation<br />

allows to compute the vector <strong>of</strong> input generalized<br />

torques as a function <strong>of</strong> the N joint positions and its<br />

derivatives,<br />

where,<br />

't = Nx I vector <strong>of</strong>generalized torques.<br />

q = Nx I vector <strong>of</strong>joint positions.<br />

M(q) = NxN <strong>inertia</strong> <strong>matrix</strong>.<br />

't m = Nx I vector <strong>of</strong><strong>inertia</strong>l torques.<br />

'to = Nx I vector <strong>of</strong> coriolis, centrifugai,<br />

gravitational and disturbance torques.<br />

The solution <strong>of</strong> Eq. (I) is a typical control problem :<br />

finding the adequate vector r needed to impose the<br />

.desired joint trajectory q. In fact, the computed<br />

torque control technique (Yoshikawa , 1990).<br />

utilizes Eq. (I) to obtain the vector <strong>of</strong> generalized<br />

torques r from the measured values <strong>of</strong> position and<br />

velocity and computed values <strong>of</strong> acceleration. The<br />

447<br />

Newton-Euler technique (Luh, 1980) allows to<br />

compute the inverse dynamics Eq. (1) in an efficient<br />

recursive way. The <strong>computation</strong>al efIort <strong>of</strong> this<br />

method has a linear dependence with the number N<br />

<strong>of</strong> degrees <strong>of</strong>freedom (DOF) <strong>of</strong>the manipulator.<br />

The dynamic simulation <strong>of</strong> <strong>robot</strong>ic manipulators is a<br />

dual <strong>of</strong> the control problem. The <strong>robot</strong> simulation<br />

consists on obtaining the arm position as a function<br />

<strong>of</strong> time, given the vector <strong>of</strong> generalized torques and<br />

the initial conditions. This is attained by integrating<br />

the direct dynamics, obtained by inverting Eq. (1),<br />

(2)<br />

It can be noted that the inverse <strong>of</strong> the <strong>inertia</strong> <strong>matrix</strong><br />

is needed in the evaluation <strong>of</strong> Eq. (2). For this<br />

reason, the Newton-Euler method cannot be used<br />

directly to compute Eq. (2), since this method only<br />

evaluates numerically the vector <strong>of</strong> generalized<br />

torques, without computing explicitly the <strong>inertia</strong><br />

<strong>matrix</strong> M(q). In spite <strong>of</strong> this, ao artifice can be used<br />

to compute the <strong>inertia</strong> <strong>matrix</strong> through the Newton-<br />

Euler method, as shown-by Walker (Walker & Orin<br />

I982).Several methods were developed to compute<br />

the forward dynamics (and -the <strong>inertia</strong> <strong>matrix</strong>) .<br />

Baharin (Baharin & Green(Í991) proposed a


ecursive Lagrangian formulation based on<br />

differential relationships. Also based on the<br />

Lagrangian mechanics, Li (Li, 1988) proposed a<br />

method for the evaluation <strong>of</strong> the terms <strong>of</strong> the<br />

Dynamic Equation. Both above-mentioned<br />

have a <strong>computation</strong>al effort <strong>of</strong> order 0(N3). More<br />

efficient methods (Lilly & Orin, 1991; Featherstone,<br />

1987) , with <strong>computation</strong>al effort <strong>of</strong> order O(N2),<br />

have been proposed. Balafoutis (Balafoutis & Patel,<br />

1989) described a method, based on · the Newton-<br />

Euler algorithm and <strong>using</strong> the concept <strong>of</strong>generalized<br />

and augmented links, for computing the <strong>inertia</strong><br />

<strong>matrix</strong> with a <strong>computation</strong>al effort <strong>of</strong> order 0(N2).<br />

Furthermore, an efficient method for computing <strong>of</strong><br />

the inverse dynamics and the <strong>inertia</strong> <strong>matrix</strong><br />

rearranging the equations for a minimum set <strong>of</strong><br />

dynamics parameters, was proposed by Kawasaki<br />

(Kawasaki, et ai., 1992). This method, oriented to<br />

parameter identification, has a <strong>computation</strong>al effort<br />

<strong>of</strong> order 0(N2). Alsina (Alsina & Gehlot, 1994)<br />

proposed a formulation method <strong>of</strong> order 0(N2) based<br />

on the Newton-Euler recursion expressed in term <strong>of</strong><br />

spatial vectors. This method allows the explicit<br />

<strong>computation</strong> <strong>of</strong> the <strong>inertia</strong> <strong>matrix</strong>. In order to<br />

improve the real-time performance <strong>of</strong> the forward<br />

dynamics <strong>computation</strong>, several paralleI algorithms<br />

(Fijani & Bejczy, 1989) and architectures have been<br />

proposed. Arnim-Javaheri (Amim-Javaheri & Or in,<br />

1988) described several systolic architectures for the<br />

evaluation <strong>of</strong> the <strong>inertia</strong> <strong>matrix</strong> based on dedicated<br />

VLSI <strong>robot</strong>ic processors. Lee (Lee & Chang, 1988)<br />

proposed several parallel algorithms for real-time<br />

simulation <strong>of</strong> <strong>robot</strong> forward dynamics based on<br />

single-instruction multiple-data-stream computer,<br />

with as many processor as the number <strong>of</strong> DOF <strong>of</strong> the<br />

manipulator. Beside the methods above, several<br />

forward dynamics <strong>computation</strong> schemes, with no<br />

need <strong>of</strong> <strong>inertia</strong> <strong>matrix</strong> inversion, were proposed. Ko<br />

(Ko, 1992) reformulated the Newton-Euler equations<br />

in a Kalman Filter form for the solution <strong>of</strong> the<br />

forward dynarnics. Gogoussis (Gogoussis & Donath<br />

1990) proposed a method for the solution <strong>of</strong> forward<br />

dynamics <strong>using</strong> the recursive properties <strong>of</strong> Newton-<br />

Euler formulation associated with algebraic loops<br />

(solved through analog hardware) for the digital<br />

simulation <strong>of</strong> <strong>robot</strong> dynamics, A good comparison<br />

between several methods for inverse and forward<br />

dynamics <strong>computation</strong> is found in (Zomaya, 1991).<br />

In this paper, two novel methods for computing the<br />

<strong>inertia</strong> <strong>matrix</strong> <strong>of</strong> <strong>robot</strong> manipulator are proposed.<br />

The methods are based on recursive relationships,<br />

obtained from a <strong>block</strong> <strong>diagram</strong> representation <strong>of</strong> the<br />

dynamics equation. This <strong>block</strong> <strong>diagram</strong> is obtained<br />

from the Newton-Euler formulation. In Section 2<br />

the Newton-Euler algorithm in a ôx l-vector form is<br />

summarized. The blqck <strong>diagram</strong> representation <strong>of</strong><br />

manipulator dynamics is derived in Section 3. The<br />

448<br />

proposed recursive methods for <strong>computation</strong> <strong>of</strong> the<br />

<strong>inertia</strong> <strong>matrix</strong> are described in Section 4. The<br />

<strong>computation</strong>al effort <strong>of</strong> the proposed methods is<br />

discussed in Section 5. Final conclusions are given<br />

in Section 6<br />

2. NEWTON-EULER FORMULATION<br />

The Newton-Euler formulation allows to compute<br />

the manipulator dynamics in a <strong>computation</strong>ally<br />

efficient recursive manner. This formulation is<br />

realized in two stages: Forward and Backward<br />

recursions. In the Forward recursion, the cinematic<br />

variables are transformed frorn the base <strong>of</strong> the<br />

manipulator to the end-effector. The Backward<br />

recursion updates forces and torques starting from<br />

the tool to the base, obtain ing the driving torque <strong>of</strong><br />

each joint. A 6x I spatial vector version <strong>of</strong> the<br />

Newton-Euler algorithm is summarized below. The<br />

following notation is adopted:<br />

q i Position variable <strong>of</strong>joint i.<br />

v i 3x I Linear velocity vector <strong>of</strong> link i.<br />

co i 3x I Angular velocity vector <strong>of</strong> Iink i.<br />

fi 3x I Force vector applied on link i by<br />

link i-I.<br />

n i 3xl Moment vector applied on link i by<br />

linki-I.<br />

3x3 Rotation <strong>matrix</strong> frorn link i to i+I.<br />

1<br />

P;+I 3xl Position vector <strong>of</strong>link i+1 with<br />

respect to link i.<br />

P c; 3xl Center <strong>of</strong>mass position vector <strong>of</strong><br />

link i.<br />

m i Total mass <strong>of</strong> link i.<br />

h i 3x3 Inertia tensor <strong>of</strong> link i in its own<br />

reference frame.<br />

't ; Driving torque/force <strong>of</strong>link i.<br />

Defining the 3x3 and 6x6 <strong>matrix</strong> operators for cross<br />

product <strong>of</strong>3xl and 6xl vectors respectively as:<br />

I O -pz 1<br />

I P y I<br />

(px) = I pz O -Px I (3)<br />

l-py Px O J<br />

rr V1 1 I (cox) 2(vx)1<br />

= l2(vx) (ox) J<br />

where p, v and 00 are 3x 1 vectors. Thus, the 6x6<br />

spatial rotation <strong>matrix</strong>, from link i to link i+ 1, is:<br />

o 1<br />

A:+,J<br />

(4)<br />

(5)


The 6x I vectors <strong>of</strong> spatial veIocity, spatial angular<br />

velocity and spatial effort, and the 6x6 spatial <strong>inertia</strong><br />

<strong>matrix</strong> <strong>of</strong>link i, are respectively defined as:<br />

T<br />

V=v [ 1 1<br />

T]T<br />

Cú;<br />

T] T<br />

Cú;<br />

fi.(p .x)Tl<br />

I c, J<br />

h i<br />

The flag <strong>of</strong> joint i is defined as: for i = Oto N-I<br />

(6)<br />

(7)<br />

(8)<br />

(9)<br />

--------<br />

3. BLOCK DIAGRAM REPRESENTATION<br />

By imposing zero joint accelerations cL ' (i =<br />

I, ....,N), to(q, q) (vector <strong>of</strong> corioIis, centrifugai,<br />

gravitational and disturbance torques) can be easily<br />

computed through the Newton-Euler algorithm.<br />

Similarly, the <strong>inertia</strong>l torque t m '(t m = M(q)q ),<br />

can be updated through the Newton-Euler algorithrn<br />

by imposing zero joint velocities, initial spatial<br />

acceleration and initial spatial effort:<br />

- Forward Recursionfor <strong>inertia</strong>l torques:<br />

1; =[0 O O O OIr for Rjoint(lO.a) Y · RiT y' 1 00<br />

rn;+1 = i+lo mi + i+lqi+l (17)<br />

1;=[0 O O O Or forPjoint(IO.b)<br />

where R and P stands for rotational and prismatic<br />

joint respectively. Thus, the Newton-Euler algorithm<br />

is given by:<br />

- Forward Recursion:<br />

v. = gravity acceleration<br />

for i = I to N<br />

(lI)<br />

(13)<br />

end i<br />

- Backward Recursion for <strong>inertia</strong>l torques:<br />

FmN+1 = O<br />

for i = N to I<br />

F rn; = R;+IFrni+1 +H;V rni<br />

t m] = JT·F rni<br />

end i<br />

(18)<br />

(19)<br />

According to these recursions, a <strong>block</strong> <strong>diagram</strong><br />

representation <strong>of</strong> the . manipulator dynamics is<br />

obtained, as shown in Figure lo<br />

.4. COMPUTATION OF INERTIA MATRIX<br />

end i 4 01 The Inverse Path Method<br />

- Backward Recursion:<br />

F N + 1 = Spatial effort on the tool.·<br />

for i = N to I<br />

F = (n.x)H.n .<br />

cj 1 I I<br />

end i<br />

(14)<br />

(15)<br />

(16)<br />

449<br />

In Figure I, the <strong>block</strong> <strong>diagram</strong> inside the dashed line<br />

represents the transfer <strong>matrix</strong> between joint<br />

accelerations and <strong>inertia</strong>l torques, which is the<br />

<strong>inertia</strong> <strong>matrix</strong>. Thus, the <strong>inertia</strong> <strong>matrix</strong> represents<br />

the relation between an input vector q and an<br />

output vector t rn ' that is, t rn = M(q).q o •The<br />

following notation is adopted: [t rn , Fm]ij is the<br />

transfer <strong>matrix</strong> <strong>of</strong> the path from Frnj to t m] and<br />

[t , V ].. is the transfer <strong>matrix</strong> <strong>of</strong> the path from<br />

rn rn IJ<br />

V . to 't . o Thus, from the <strong>block</strong> <strong>diagram</strong> <strong>of</strong>Figure<br />

rnJ rn, .<br />

I, the following recursive relationships are obtained:


Fig. 1 - Block Diagram: Inverse Dynamics and Inertia Matr ix.<br />

Since the <strong>inertia</strong> <strong>matrix</strong> is symmetric, it is sufficient<br />

to compute Equation (20) for j varying from i to N<br />

and Equations (21) and (22) for j varying from N to<br />

i. Thus, based on the above reIationships, a recursive<br />

aIgorithm for the <strong>computation</strong> <strong>of</strong> the <strong>inertia</strong> <strong>matrix</strong><br />

is proposed, as shown in Figure 2. Since the transfer<br />

matrices are computed recursiveIy in the direction<br />

from torques to joint accelerations, this algorithm<br />

was named: Inverse Path Method .<br />

4.2 The Central Path Méthod<br />

(20)<br />

(22)<br />

In the <strong>block</strong> <strong>diagram</strong> <strong>of</strong> Figure I, a central path<br />

[Frn ,VrnL can be divided in two parallel paths: one<br />

through <strong>matrix</strong> H. ' and the other through<br />

[Fm >V rn l+l,i+1' R;+l ' On the other hand, the<br />

transfer <strong>matrix</strong> [Frn ,qh is composed by <strong>matrix</strong><br />

R 1+I serially associated with transfer <strong>matrix</strong><br />

[Frn ,q]j+l,i' Thus, t?e following recursions are<br />

obtained:<br />

450<br />

The In verse Path Method:<br />

For i = I to N<br />

[-rrn,Frn1 i =f{<br />

r- .....<br />

Inertia Matrix<br />

If(i < N) Then [-rrn ,FrnL+, = [-rrn,Frn1iR;+1<br />

If(i < N-I) Then<br />

ForG=i+2toN)<br />

Endj<br />

[-r rn ' Vrn 1N = [-r rn ,Frn 1N"HN<br />

M iN = [-rrn,Vrn1w l N<br />

If (i < N) Then<br />

For (k = N-I to i)<br />

End k<br />

End i<br />

Fig. 2 - The Inverse Path Method.


(24)<br />

From the recursions above, a new algorithm, named<br />

the Central Path Method, is derived for <strong>computation</strong><br />

<strong>of</strong>the <strong>inertia</strong> <strong>matrix</strong>, as shown in Figure 3..<br />

The Central Path Method:<br />

[Fm,Vm]NN =HN<br />

[Fm,q]NN = [Fm, Vm]NN·JN<br />

M NN =<br />

For (i = N-I to I)<br />

. i' iT<br />

[Fm ,VmL =Hj + Ri+I·[Fm,VmLI,i+l·Ri+1<br />

[Fm,q);; = [Fm,Vm]ii ·Ji<br />

M ii =JT ·[Fm,q);;<br />

For G= i to 1)<br />

Endj<br />

End i<br />

[Fm,q]j,i+1 = R1+,·[Fm,q]j+l,i+1<br />

Mj,i+1 = Jy.[Fm,q]j ,i+]<br />

Fig. 3 - The Central Path Method.<br />

5. COMPUTATIONALEFFORT<br />

The proposed methods involve several 1x6 vector /<br />

6x6 <strong>matrix</strong> products and additions. Noting that the<br />

6x6 spatial <strong>inertia</strong> and spatial rotation matrices<br />

include some zero terms. Thus, the product <strong>of</strong> a lx6<br />

vector and a 6x6 spatial <strong>inertia</strong> <strong>matrix</strong> involves 24<br />

products and 18 additions. The product <strong>of</strong> a lx õ<br />

vector and a 6x6 spatial rotation <strong>matrix</strong> involves 27<br />

products and 21 additions. In this way, both<br />

algorithms for the <strong>inertia</strong> <strong>matrix</strong> <strong>computation</strong><br />

involve a <strong>computation</strong>al effort· <strong>of</strong> order 0(N2), as<br />

shown in Figure 4. The <strong>computation</strong>al efforts for the<br />

Inverse Path Method and for the Central Path<br />

Method are respectively summarized in Table 1 and<br />

Table2.<br />

Table 1 -Computational Effort: Inverse Path Method.<br />

No.OfProducts<br />

39W - 42N +27<br />

No. <strong>of</strong> Additions<br />

33W - 36N + 21<br />

45 1<br />

Table 2-Computational Effort: Central Path Method.<br />

No.OfProducts<br />

(27N 2+621 N-648)/2<br />

No. <strong>of</strong> Additions<br />

(21N2+531N-552)J2<br />

For a sixjoint manipulator, the lnverse Path Method<br />

involves 1179 products and 993 sums, whi1e the<br />

Central Path Method involves 2025 products and<br />

1695 sums for <strong>computation</strong> <strong>of</strong> the <strong>inertia</strong> <strong>matrix</strong>. As<br />

can be seen in Figure 4, for more than twe1ve joints<br />

(highly redundant manipulators), the Central Path<br />

Method -becomes more efficient than the lnverse<br />

Path Method. This is because, for high number <strong>of</strong><br />

DOF, the N 2 term is predominant, and the Central<br />

Path Method has the smallest N 2 coefficient.<br />

10000<br />

' 5000<br />

15000<br />

No . o f P ro d u c ts<br />

o Inverse Path<br />

• C entra I P a th<br />

O O 1O 20<br />

No . o f J o in ts<br />

NO .<strong>of</strong>Sums<br />

o Inve rsePath<br />

10000 . C entra I P a th<br />

5000<br />

O O 10 20<br />

No . <strong>of</strong> Joints<br />

Fig. 4 - Computational Effort.<br />

6. CONCLUSIONS<br />

Two novel methods for <strong>computation</strong> <strong>of</strong> the <strong>inertia</strong> .<br />

<strong>matrix</strong> <strong>of</strong> <strong>robot</strong> manipulators were proposed: the<br />

Inverse Path M éthod and the Central Path Method.<br />

The proposed methods were derived from a set <strong>of</strong><br />

recursive relationships obtained from a <strong>block</strong><br />

<strong>diagram</strong> representation <strong>of</strong> the dynamics equation.<br />

The methods update explicit1y the <strong>inertia</strong> <strong>matrix</strong> in<br />

an efficient recursive way, thus allowing to app1y<br />

these formulations to the forward dynamics problem<br />

and the dynamics simulation <strong>of</strong> <strong>robot</strong> manipulators.<br />

The <strong>computation</strong>al efforts <strong>of</strong> the proposed methods<br />

have an 0(N2) dependence. The Inverse Path<br />

Method is more efficient for small number <strong>of</strong> DOF,<br />

while the Central Path Method is more efficient for<br />

highly redundant manipulators.


REFERENCES<br />

Alsina, P. J. & N. S. Gehlot (1994). " An Alternate<br />

Fonnulation <strong>of</strong> Manipulator Dynamics with<br />

Recursive Computation <strong>of</strong> Inertia Matrix for<br />

Computer Sirnulation". Proc. <strong>of</strong> the IEEE<br />

International Symposium on Industrial<br />

Electronics, ISIE-94, Chile, Vol. 1, pp. 335-338.<br />

Amirn-Javaheri, M. & D. E. Or in (1988). "Systolic<br />

Architecture for the Manipulator Inertia Matrix".<br />

IEEE Trans., Vol. SMC-18, No. 6, pp. 939-951.<br />

Baharin, I. B. & R. J. Green, (1991 ).<br />

"Computationally-effective Recursive Lagrangian<br />

Formulation <strong>of</strong> Manipulator Dynamics". Int.<br />

Journal <strong>of</strong>Control, Vol. 54, No. 1, pp. 195-214.<br />

Balafoutis, C. A. & R. V. Pate l (1989). "Efficient<br />

Com putation <strong>of</strong> Man ipulator Inertia Matrices and<br />

the Direct Dynamics Problem", IEEE Trans.,<br />

Vol. SMC-19, No.5, pp. 1313-1321.<br />

Featherstone, R. (1987). "Robot Dynamics<br />

AIgorithms". Boston Kluwer Academic<br />

Publishers.<br />

Fijany, A. & A. K. Bejczy (1989). "A Class <strong>of</strong><br />

Parallel AIgorithms for Computation <strong>of</strong> the<br />

Manipulator Inertia Matrix", Trans. on Robotics<br />

and Automation, Vol. 5, No. 5, pp. 600-615.<br />

Gogoussis, A. & M. Donath (1990) "A Method for<br />

the Real Time Solution <strong>of</strong>the Forward Dynamics<br />

Prob1em for Robots Incorporating Friction".<br />

Trans. <strong>of</strong>the ASME, Vol. 112, pp. 630-639.<br />

Kawasaki, H., A. Murata & K. Kanzaki (1992). "An<br />

Efficient Method for the Computation <strong>of</strong> Inverse<br />

Dynamics and Inertia Matrix based on the<br />

Minimum Set <strong>of</strong> Dynamics Parameters <strong>of</strong><br />

452<br />

Manipulators". Proc. <strong>of</strong> ICARCV-92, Singapore,<br />

Vol. 3, pp. RO-1.2.1 - RO-1.2 .5.<br />

Ko, K. (1992). "Manipulator Dynamics based on<br />

Stochastic System ". Proc. <strong>of</strong> ICARCV-92,<br />

Singapore, Vol. 3, pp. RO-2.5 .6 - RO-2 .5.6.<br />

Lee, C. S. G. & P. R. Chang (1988). "Efficient<br />

Parallel AIgorithms for Robot Forward Dynamics<br />

Cornputation". IEEE Trans., Vol. SMC-18, No.<br />

2, pp. 238-251 .<br />

Li, C. J. (1988). "A New Method <strong>of</strong> Dynam ics for<br />

Robot Manipulators" . IEEE Trans., Vol. SMC-<br />

18, No. 1, pp. 105-114.<br />

Lilly, K. W. & D. E. Orin (1991). "Altern ate<br />

Formulations for the Manipulator Inertia<br />

Matrix" . Int. Jour. <strong>of</strong> Robotic Research, Vol. 10,<br />

No. 1, pp. 64-74.<br />

Luh , J. Y. S., M. W. Walker & R. P. C. Paul (1980)<br />

"on-line Computational Scheme for Mechanical<br />

Manipulators". Journal <strong>of</strong> Dynamic Systems,<br />

Measure. & Control, Vol. 102, pp. 69-76.<br />

Walker, M. W. and D. E. Orin (1982). "Efficient<br />

Dynamic Computer Simulation <strong>of</strong> Robot<br />

Mechanisrns". ASME Journal <strong>of</strong> Dynamic<br />

Systems, Measure. and Control. Vol. 104, pp.<br />

205-211.<br />

Yoshikawa, T. (1990). "Foundations <strong>of</strong> Robotics -<br />

Analysis and Control". The MIT Press.<br />

Zomaya, A. Y. (1991). " Efficient Robot Dynamics<br />

for High Sampling Rate Motions: Case Studies<br />

and Benchrnarks". Int. Journal <strong>of</strong> Control, Vol.<br />

54, No. 4, pp. 793-8 I4.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!