06.08.2013 Views

Ethanol Life Cycle Analysis: Consideration of System Boundary ...

Ethanol Life Cycle Analysis: Consideration of System Boundary ...

Ethanol Life Cycle Analysis: Consideration of System Boundary ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Ethanol</strong> <strong>Life</strong> <strong>Cycle</strong> <strong>Analysis</strong>:<br />

<strong>Consideration</strong> <strong>of</strong> <strong>System</strong> <strong>Boundary</strong><br />

Expansion and Technology<br />

Improvements<br />

Michael Wang<br />

Center for Transportation Research<br />

Argonne National Laboratory<br />

2011 Annual TRB Meeting, Washington, DC<br />

January 26, 2011


Background<br />

U.S. corn ethanol production in 2009<br />

10.6 billion gallons<br />

5.4% <strong>of</strong> US gasoline market (on the energy basis)<br />

Has this caused international land use changes and<br />

other unintended consequences? Maybe not<br />

Will continuous growth <strong>of</strong> corn ethanol to 15 B<br />

gallons cause unintended consequences? Nobody<br />

knows with certainty<br />

Have technologies in farming and corn ethanol<br />

production improved?<br />

2


GREET Includes Many Potential Bi<strong>of</strong>uel Production Pathways<br />

Sugar Crops for EtOH<br />

Sugar cane<br />

Sugar beet<br />

Sweet sorghum<br />

Starch Crops for EtOH<br />

Corn<br />

Wheat<br />

Cassava<br />

Sweet potato<br />

Cellulosic Biomass for EtOH<br />

Corn stover, rice straw, wheat straw<br />

Forest residues<br />

Municipal solid waste<br />

Dedicated energy crops<br />

Black liquor<br />

Landfill Gas<br />

CNG/LNG<br />

Fischer-Tropsch diesel<br />

Hydrogen<br />

Methanol<br />

DME<br />

Fischer-Tropsch jet fuel<br />

Algae<br />

Biodiesel<br />

Butanol<br />

Corn<br />

Sugar beet<br />

Renewable diesel<br />

Oils for Biodiesel/Renewable<br />

Diesel/Renewable Jet Fuel<br />

Soybeans<br />

Rapeseed<br />

Palm oil<br />

Jatropha<br />

Waste cooking oil<br />

Animal fat<br />

Cellulosic Biomass via Gasification<br />

Fischer-Tropsch diesel<br />

Hydrogen<br />

Methanol<br />

DME<br />

Fischer-Tropsch jet fuel<br />

The feedstocks and fuels that are underlined are already included in the GREET model.<br />

3


<strong>Life</strong>-<strong>Cycle</strong> <strong>Analysis</strong> <strong>System</strong> <strong>Boundary</strong>:<br />

Corn to <strong>Ethanol</strong><br />

Energy inputs<br />

for farming<br />

N 2O emissions<br />

from soil and<br />

water streams<br />

Direct land<br />

use change<br />

Fertilizer<br />

CO 2 via<br />

photosynthesis<br />

Indirect land use<br />

changes for other crops<br />

and in other regions<br />

CO 2 in the<br />

atmosphere<br />

Carbon in kernels<br />

CO 2 emissions<br />

during fermentation<br />

Conventional Animal<br />

Feed Production<br />

Carbon in<br />

ethanol<br />

DGS<br />

CO 2 emissions<br />

from ethanol<br />

combustion<br />

4


<strong>Life</strong>-<strong>Cycle</strong> <strong>Analysis</strong> <strong>System</strong> boundary:<br />

Switchgrass to Cellulosic <strong>Ethanol</strong><br />

N 2O emissions<br />

from soil and<br />

water streams<br />

Energy inputs<br />

for farming<br />

Fertilizer<br />

CO 2 via<br />

photosynthesis<br />

Direct land<br />

use change Indirect land use<br />

changes for other<br />

crops and in other<br />

regions<br />

CO 2 in the<br />

atmosphere<br />

Cellulosic<br />

biomass<br />

CO 2 emissions<br />

during fermentation<br />

Lignin<br />

Conventional<br />

electricity generation<br />

<strong>Ethanol</strong><br />

CO 2 emissions<br />

from ethanol combustion<br />

On-site<br />

power<br />

generation<br />

5


<strong>Life</strong>-<strong>Cycle</strong> <strong>Analysis</strong> <strong>System</strong> <strong>Boundary</strong>:<br />

Petroleum to Gasoline<br />

6


Key Issues Affecting Bi<strong>of</strong>uel WTW Results<br />

Continued technology advancements<br />

Agricultural farming: continued crop yield increase and resultant reduction <strong>of</strong><br />

energy and chemical inputs per unit <strong>of</strong> yield<br />

Energy use in ethanol plants: reduction in process fuel use and switch <strong>of</strong> process<br />

fuel types<br />

Methods <strong>of</strong> estimating emission credits <strong>of</strong> co-products<br />

<strong>of</strong> ethanol<br />

Direct and indirect land use changes and resulted GHG<br />

emissions<br />

<strong>Life</strong>-cycle analysis methodologies<br />

Attributional LCA<br />

Consequential LCA


U.S. Efforts on Modeling LUCs <strong>of</strong> Bi<strong>of</strong>uel<br />

Production<br />

Searchinger et al. with FAPRI for corn ethanol<br />

CARB/UCB/Purdue with GTAP for corn ethanol<br />

EPA/Texas A&M/Iowa State U. with FASOM and<br />

FAPRI for corn ethanol, biodiesel, sugarcane<br />

ethanol, and cellulosic ethanol<br />

DOE/ANL/Purdue with GTAP for corn ethanol and<br />

cellulosic ethanol<br />

Others have been applying models to examine LUCs<br />

8


Direct and Indirect Land Use Change Modeling:<br />

ANL and Purdue Collaboration on GTAP Upgrade<br />

Land availability in key countries<br />

Increases in yields in response to elevated commodity<br />

price<br />

Future grain supply and demand trends without<br />

ethanol production<br />

Substitution <strong>of</strong> conventional animal feed with byproducts<br />

<strong>of</strong> ethanol manufacturing (DGS)<br />

Updated GHG emissions from direct and indirect land<br />

use change impacts<br />

9


Acres/1000 <strong>Ethanol</strong> Gallons<br />

Land Use Change Simulated for US Corn <strong>Ethanol</strong><br />

Production from Completed Studies<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

FAPRI<br />

Searchinger et al.<br />

2008<br />

FAPRI<br />

&FASOM<br />

Effects <strong>of</strong> several critical factors in CGE models:<br />

Available land types<br />

Yield responses to price increase<br />

Animal feed modeling<br />

Growth in both demand and supply<br />

GTAP - unrevised<br />

GTAP - revised<br />

EPA 2010b CARB 2009 Hertel et al. 2010 Tyner et al. 2010: Tyner et al. 2010: Tyner et al. 2010:<br />

a<br />

2001 Baseline<br />

b<br />

2006 Baseline – 2006 Baseline c –<br />

partial update update through<br />

2015<br />

FAPRI – Food and Agricultural Policy Research Institute (Iowa State)<br />

FASOM – Forest and Agricultural Sector Optimization Model (Texas A&M)


Greenhouse Gas Emissions <strong>of</strong> Land Use<br />

Changes <strong>of</strong> Corn <strong>Ethanol</strong> from Completed Studies<br />

FAPRI<br />

FAPRI<br />

&FASOM<br />

Additional uncertainties introduced from LUCs<br />

to LUC-induced GHGs:<br />

Land types for meeting simulated LUCs:<br />

historical observation vs. future change<br />

Above- and below-ground biomass and<br />

carbon: equilibrium vs. stock<br />

<strong>Life</strong>time <strong>of</strong> a bi<strong>of</strong>uel program vs. lifetime<br />

<strong>of</strong> a policy?<br />

GTAP - unrevised<br />

FAPRI – Food and Agricultural Policy Research Institute (Iowa State)<br />

FASOM – Forest and Agricultural Sector Optimization Model (Texas A&M)<br />

GTAP - revised<br />

2001 Baseline 2006 Baseline –<br />

partial update<br />

2006 Baseline –<br />

update through<br />

2015<br />

11


Trend <strong>of</strong> 35 Studies in the Past 35 Years: Energy Use in<br />

U.S. Corn <strong>Ethanol</strong> Plants Has Decreased Significantly<br />

140,000<br />

120,000<br />

100,000<br />

80,000<br />

60,000<br />

40,000<br />

20,000<br />

0<br />

Historical <strong>Ethanol</strong> Plant Energy Use: Btu/Gallon<br />

Dry Mill Wet Mill Average<br />

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010<br />

12


Fertilizer Use in U.S. Corn Farming Has<br />

Reduced Significantly in the Past 40 Years<br />

Fertilizer Use Per Bushel <strong>of</strong> Corn (relative to 1970)<br />

110%<br />

100%<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

Nitrogen<br />

K2O<br />

P2O5<br />

13


Energy Use for Corn Farming Has Been Reduced<br />

The unusual high farming energy use in 1996 may be caused by the wet weather<br />

in that year in the Midwest.<br />

14


Intensity <strong>of</strong> Fertilizer Use in U.S. Corn Farming and Energy Use and<br />

GHG Emissions <strong>of</strong> Fertilizer Production and Use<br />

Nitrogen Phosphate Potash Lime<br />

Fertilizer Use Intensity: lb <strong>of</strong><br />

nutrient per bushel <strong>of</strong> corn<br />

Energy Use for Fertilizer<br />

0.96 0.34 0.40 2.44<br />

Production: Btu/lb <strong>of</strong> nutrient<br />

GHG Emissions <strong>of</strong> Fertilizer<br />

20,741 5,939 3,719 3,398<br />

Production: g CO2e/lb <strong>of</strong> nutrient<br />

GHG Emissions from Fertilizer in<br />

1,359 460 302 274<br />

Field: g CO2e/lb <strong>of</strong> nutrient 2,965a 0 0 200b Total GHG Emissions: g CO2e/lb<br />

<strong>of</strong> fertilizer<br />

Total GHG Emissions: g<br />

4,324 460 302 474<br />

CO2e/bushel <strong>of</strong> corn 4,151 156 121 1,157<br />

a This is CO2e emissions <strong>of</strong> N 2O from nitrification and denitrification <strong>of</strong> nitrogen fertilizer in cornfields.<br />

b This is CO2 emissions <strong>of</strong> converting calcium carbonate (limestone) to calcium oxide (burnt lime) in cornfields.<br />

15


GHG Emissions Benefits <strong>of</strong> Animal Feed By-<br />

Products<br />

Distillers’ Grains Solids (DGS) can <strong>of</strong>fset animal feeds <strong>of</strong> corn,<br />

soybeans, and urea<br />

Conventional feed displacement yields GHG “credits” for<br />

ethanol that are simulated in GREET<br />

Reduction in LUCs also results from conventional feed<br />

displacement<br />

Displacement <strong>of</strong> corn<br />

Displacement <strong>of</strong> soy meals<br />

16


Displacement Ratios between DGS and<br />

Conventional Animal Feeds<br />

DDGS and WDGS<br />

DDGS Dispalcement Ratio<br />

WDGS Displacement Ratio<br />

US Market Share<br />

(kg/kg DDGS)<br />

(kg/kg WDGS)<br />

Market<br />

Market Share Soybean<br />

Share<br />

Soybean<br />

Feedlot Level<br />

(%) Corn meal Urea (%) Corn meal Urea<br />

Beef Cattle 40.6% 35.7% 1.203 0.000 0.068 50.0% 1.276 0.000 0.037<br />

Dairy Cattle 40.6% 35.7% 0.445 0.545 0.000 50.0% 0.445 0.545 0.000<br />

Swine 12.8% 19.5% 0.577 0.419 0.000<br />

Poultry 6.0% 9.2% 0.552 0.483 0.000<br />

Average 0.751 0.320 0.024 0.861 0.273 0.019<br />

DDGS and WDGS Displacement Ratio<br />

(kg/kg DDGS&WDGS)<br />

Soybean<br />

Corn meal Urea<br />

U.S. Consumption Level a<br />

U.S. and Export Market Combined b<br />

0.788 0.304 0.022<br />

0.781 0.307 0.023<br />

17


Most Recent Studies Show Positive Net Energy<br />

Balance for Corn <strong>Ethanol</strong><br />

Energy balance here is defined as Btu content a gallon <strong>of</strong> ethanol minus fossil energy used to produce a gallon <strong>of</strong> ethanol<br />

18


Energy Use by Type Varies Considerably Among<br />

Energy Products<br />

<strong>Life</strong>-<strong>Cycle</strong> Energy Use (MJ/MJ)<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

Renewable<br />

Petroleum<br />

NG<br />

Coal<br />

Corn <strong>Ethanol</strong> Cellulosic <strong>Ethanol</strong> Electricity Gasoline<br />

19


GHG Emissions <strong>of</strong> Corn <strong>Ethanol</strong> Vary Considerably<br />

Among Process Fuels in Plants; Cellulosic <strong>Ethanol</strong><br />

Consistently Achieve Large Reductions<br />

20


GHG Emission Sources <strong>of</strong> <strong>Ethanol</strong> and Gasoline<br />

21


gCO2e/MJ<br />

Well-to-Pump GHG Emissions <strong>of</strong> Petroleum Gasoline<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Charpentier et al. (2009)<br />

GREET (2010)<br />

Bruijn (2010)<br />

Energy-Redefining, LLC (2010)<br />

Conventional Crude<br />

Without Gas<br />

Flaring<br />

Conventional Crude - Flaring<br />

Breakdown<br />

Gasoline combustion: about 75 g/MJ GHG emissions<br />

With Significant Gas Flaring<br />

Surface Mining<br />

In-Situ Production<br />

Surface Mining<br />

Average<br />

Average<br />

Oil Sands<br />

In-Situ Production<br />

Surface Mining<br />

Average<br />

In-Situ Production: With Cyclic Steam Stimulation<br />

In Situ Production: With Steam-Assisted Gravity Drainage<br />

22


Conclusions<br />

Corn ethanol life cycle GHG emissions are approximately 24%<br />

below those <strong>of</strong> gasoline<br />

Cellulosic ethanol life cycle GHG emissions could achieve close to<br />

100% below those <strong>of</strong> gasoline<br />

It is critical to consider evolving technology and feedstock types in<br />

bi<strong>of</strong>uel LCAs<br />

A philosophic issue in ethanol LCAs in the past several years:<br />

If we are not certain about the magnitude <strong>of</strong> certain risks, should we assign<br />

somewhat high negative values to manage them?<br />

However, doing so may indeed generate other risks<br />

Lost opportunities <strong>of</strong> achieving GHG reductions immediately (though moderate and<br />

incremental)<br />

High-carbon fuels may seize the opportunity<br />

To use analysis results for policy making, should we pursue<br />

underlined causes to address uncertainties, or should we aggregate<br />

old and new results all together to address “perceived”<br />

uncertainties/risks?<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!