06.08.2013 Views

Enhanced Coal Bed Methane (ECBM) - Australian Institute of Energy

Enhanced Coal Bed Methane (ECBM) - Australian Institute of Energy

Enhanced Coal Bed Methane (ECBM) - Australian Institute of Energy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Enhanced</strong> <strong>Coal</strong> <strong>Bed</strong> <strong>Methane</strong> (<strong>ECBM</strong>) and CO 2<br />

storage in <strong>Australian</strong> coals<br />

Dr Abouna Saghafi<br />

<strong>Coal</strong> Seam <strong>Methane</strong> and Greenhouse Gas Research<br />

CSIRO <strong>Energy</strong> Technology, P.O. Box 330, Newcastle, NSW, Australia<br />

abouna.saghafi@csiro.au<br />

www.csiro.au


Gas in coal<br />

<strong>Coal</strong> is a sedimentary reservoir<br />

rock but it differs markedly from<br />

other conventional reservoirs in<br />

its capacity to retain significant<br />

volumes <strong>of</strong> gas in its pore<br />

system.<br />

Though coal pore volume is<br />

small (


Outline<br />

Aspects <strong>of</strong> coal seam gas (CSG) in Australia<br />

Mine safety<br />

Greenhouse gas emissions<br />

<strong>Coal</strong> seam methane (CSM)<br />

Petroleum and coal seam gas production<br />

<strong>Enhanced</strong> methane recovery (<strong>ECBM</strong>) and CO 2<br />

sequestration<br />

CO 2 occurrence in <strong>Australian</strong> coal seams<br />

CO 2 and methane storage and diffusion properties <strong>of</strong><br />

coal (Sydney Basin)<br />

Estimates <strong>of</strong> CO 2 storage potential in <strong>Australian</strong> coal<br />

seams


Aspects <strong>of</strong> coal seam gas, mine safety<br />

In the past the occurrence<br />

<strong>of</strong> seam gas has been the<br />

cause <strong>of</strong> myriad <strong>of</strong><br />

explosions, fire and<br />

fatalities in <strong>Australian</strong> coal<br />

mines<br />

Some coal mines closed<br />

because <strong>of</strong> severity and<br />

frequency <strong>of</strong> gas emissions,<br />

Nymboida colliery<br />

(1975); Clarence-<br />

Moreton Basin<br />

Leichhardt (1983);<br />

Bowen Basin<br />

Outburst (Photo Photo Courtesy Tahmoor Mine)<br />

Moura (1994) gas and<br />

spon-com; Bowen<br />

Basin Tahmoor Colliery Gas outburst (Year 1985) – Relatively<br />

small gas-rock event: 330 tonnes <strong>of</strong> rock/coal and<br />

3000 m 3 <strong>of</strong> gas filled the roadway in few seconds.<br />

High gas emissions and gas outbursts occur frequently<br />

in underground coal mines around the world.


By early 1990’s,<br />

some 30,000 gas<br />

outbursts had<br />

been occurred<br />

worldwide.<br />

The gas outburst<br />

can be very large<br />

e.g. in in Gagarin<br />

Colliery (Donetsk<br />

coalfield, Russia)<br />

some outbursts<br />

caused the<br />

ejection <strong>of</strong><br />

14,500 tonnes <strong>of</strong><br />

coal and release<br />

<strong>of</strong> 60,000 m 3 <strong>of</strong><br />

methane in few<br />

seconds<br />

(Lama and<br />

Saghafi, 2002).<br />

History <strong>of</strong> gas outburst in underground<br />

coal mines<br />

China<br />

14,000<br />

6,814<br />

France<br />

4,689<br />

Ukraine<br />

Number <strong>of</strong> gas outbursts<br />

(recorded before 1990)<br />

1,792<br />

Poland<br />

920 669 600 521 487 482 411 359 250 200 60 58 45 20 5<br />

Japan<br />

Australia<br />

Hungary<br />

Russia<br />

Belgium<br />

Czech Rep.<br />

Canada<br />

… and some<br />

700 outbursts<br />

in Sydney Basin<br />

Germany<br />

Bulgaria<br />

UK<br />

Taiwan<br />

Turkey<br />

Kazakstan<br />

Romania<br />

S. Africa<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0


Annual methane emissions (Mm 3 )<br />

Annual <strong>Methane</strong> Emission (Mm 3 )<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Aspects <strong>of</strong> coal seam gas, greenhouse emissions<br />

0<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

<strong>Methane</strong> emissions from <strong>Australian</strong> u/g mines<br />

Ventilation<br />

Drainage<br />

Specific emission<br />

Q = 4.13 P.C i<br />

Wyee<br />

Teralba<br />

Munmorah<br />

Nth Goonyella<br />

Wallsend<br />

Newstan<br />

Gordonstone<br />

Oaky Creek<br />

Metropolitan<br />

South Bulli<br />

South Bulga<br />

Tahmoor<br />

Cordeaux<br />

Westcliff<br />

Central Colliery<br />

Tower<br />

Appin<br />

Haenke<br />

Dartbrook<br />

Oakdale<br />

0 5 10 15 20 25 30 35<br />

<strong>Methane</strong> volume in mined coal<br />

Emission<br />

from<br />

underground<br />

Total<br />

emission<br />

Fitted<br />

emission<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Specific emission (m 3 /t)<br />

More than a<br />

billion m 3 <strong>of</strong><br />

methane is<br />

vented to the<br />

atmosphere<br />

each year<br />

from<br />

<strong>Australian</strong><br />

underground<br />

coal mines


<strong>Coal</strong> Mine <strong>Methane</strong> (CMM), from a<br />

safety hazard to a source <strong>of</strong> <strong>Energy</strong><br />

Since 1980’s gas from<br />

active mines were<br />

used for local use<br />

initially).<br />

The first significant<br />

coal gas project in<br />

Australia was the<br />

Appin-Tower project<br />

with a nominal<br />

electricity production<br />

<strong>of</strong> 94 MW.<br />

The operation is still<br />

running (since 1996)<br />

though at lower<br />

capacity <strong>of</strong>


Mine Gas Utilisation (Appin-Tower<br />

Project)<br />

The 54 engines at Appin colliery uses the<br />

drained gas but also uses the mine ventilation<br />

air as combustion air, thereby destroying all<br />

methane from the coal mine.<br />

The project reduces GHGE by ~2.5 Mt/y CO 2 -e.<br />

Appin-Tower is the largest mine gas GHGE<br />

reduction in the world.


Aspects <strong>of</strong> coal seam gas, a new ‘green<br />

energy’ for Australia<br />

Many <strong>Australian</strong> coal<br />

seams contain high<br />

volumes <strong>of</strong> methane gas<br />

(up to 25 m 3 /t).<br />

With continuos reduction in the<br />

cost <strong>of</strong> seam gas production<br />

and depletion <strong>of</strong> conventional<br />

energy resources, combined<br />

with the greenhouse gas<br />

benefits, the CSM is rapidly<br />

developing in Australia<br />

CH 4


<strong>Australian</strong> commercial<br />

CBM production started<br />

in 1996 in the state <strong>of</strong><br />

Queensland<br />

<strong>Coal</strong> seam gas compensates the<br />

shortfall in natural gas!<br />

Queensland<br />

NSW<br />

Bowen and Sydney coal basins


Qld has a<br />

CSM<br />

resources<br />

<strong>of</strong> 150 to<br />

500 kPJ<br />

(250 TCF)<br />

and<br />

reserves <strong>of</strong><br />

up to 6 kPJ<br />

(6 TCF)<br />

Evolution <strong>of</strong> CSM production<br />

(QLD)<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

<strong>Methane</strong><br />

production<br />

(million m 3 )<br />

CSM productioin in Queensland<br />

1994 1996 1998 2000 2002 2004 2006<br />

Year<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

<strong>Methane</strong><br />

production<br />

x 10 15 joules<br />

Mm3<br />

PJ


<strong>Coal</strong> Seam <strong>Methane</strong>, Queensland<br />

1996 – Production from Dawson Valley gas field and Moura Mine<br />

started; gas supplied to Wallumbilla-Gladstone pipeline<br />

1998 – Production from Fairview field started; gas supplied to<br />

Wallumbilla-Gladstone pipeline.<br />

2001 – Peat gas field came into production.<br />

2002 – Scotia gas field came into production.<br />

2002 – Queensland government released the new energy policy<br />

mandating 13% electricity generation from natural gas (by 2005).<br />

2004 – Mungi field near Moura came into production.<br />

2005 – Moranbah project, producing gas for electricity generation<br />

in Townsville, as part <strong>of</strong> the project a pipeline between Moranbah<br />

and Townsville was constructed. Also innovative horizontal 1 km<br />

in-seam drilling was used.<br />

Currently 40% <strong>of</strong> Qld gas consumption is sourced from coal<br />

seam gas.


<strong>Coal</strong> seam methane (CSM), New South<br />

Wales<br />

NSW Government has no set target for natural gas<br />

use. But a greenhouse gas mitigation scheme<br />

penalises energy producers for over reliance on<br />

coal<br />

NSW government had sponsored a project managed<br />

by Sydney Gas Company to optimise the<br />

production <strong>of</strong> CBM from Sydney Basin<br />

Tens <strong>of</strong> exploration and production gas wells to<br />

depths <strong>of</strong> >900 m were drilled in the Southern<br />

and Hunter Valley coalfields in Sydney Basin


<strong>Coal</strong> seam methane (CSM) production in<br />

Australia, well flowrates <strong>of</strong> 20-25 x10 3 m 3 /day<br />

<strong>Australian</strong> 20 CSM production (PJ/y)<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Origin <strong>Energy</strong><br />

Santos/ Tipperary<br />

BHP<br />

CH4<br />

Anglo <strong>Coal</strong><br />

Sydney Gas<br />

Arrow<br />

CS <strong>Energy</strong><br />

Current (year 2005) active CSM<br />

fields are: Southern Sydney<br />

Basin, Moranbah, Fairview<br />

(Comet Ridge), Durhm Ranch<br />

(Spring Gully), Dawson Valley,<br />

Moura, Peat, Walloons, and<br />

Scotia.<br />

In Queensland ~55 PJ/y <strong>of</strong> coal<br />

seam methane is now (2005)<br />

produced from Bowen and<br />

Surat Basins, this constitutes<br />

40% <strong>of</strong> the total gas<br />

consumption in Queensland<br />

(~120 PJ/y)


<strong>Coal</strong> Seam Gas and Petroleum Gas<br />

Resources and production<br />

<strong>Coal</strong> Seam <strong>Methane</strong><br />

Qld CSM resources: ~150,000 - 500,000 PJ<br />

Qld CSM reserves:<br />

3P (proved, probable and possible) : ~6000 PJ<br />

Qld gas consumption: 110-130 PJ per year<br />

Petroleum Gas<br />

Australia total petroleum gas reserves: ~140,000 PJ<br />

Petroleum gas is mainly destined for exportation;<br />

Australia is 5 th world largest exporter <strong>of</strong> LNG<br />

415 PJ/y to Japan, USA, S Korea,..<br />

160 PJ/y to China alone for 25 years (from 2006)


ustralian<br />

Natural Gas<br />

reserves<br />

and<br />

distribution<br />

(2001) :<br />

52.7<br />

%<br />

16.2%<br />

19.5%<br />

Reserves ~140,000 PJ,<br />

Production :1,200 PJ/y<br />

Cooper Basin<br />

200 PJ/y<br />

production.<br />

Reservoir<br />

is depleting at a<br />

rate <strong>of</strong> 10% per<br />

year!<br />

4.2%<br />

Cooper<br />

Basin<br />

Proposed PNG<br />

gas pipeline,<br />

starts 2009/10<br />

7.5%


Greenhouse gas emissions and <strong>Australian</strong><br />

dependence on fossil fuel<br />

NSW and Queensland secures 90-95% <strong>of</strong> their electricity<br />

from coal-fired and to a lesser extent from gas-fired<br />

power plants.<br />

There are no realistic prospects in the foreseeable future<br />

that this heavy dependence on fossil fuel (coal and gas)<br />

will decrease.<br />

Demand for electricity meanwhile continues to rise<br />

steadily, to 50% by year 2020, meaning that the overall<br />

emissions <strong>of</strong> CO 2 are set to rise, probably substantially.<br />

Increasingly, carbon capture and sequestration (CCS) is<br />

seen as a means whereby we can continue our<br />

dependence upon coal and gas to generate electricity<br />

without consequential increases in atmospheric carbon<br />

dioxide levels.


Per capita Australia is the most intensive GHG<br />

Emitter<br />

In absolute<br />

terms<br />

Australia<br />

contributes<br />

to 1.3% <strong>of</strong><br />

total world<br />

GHGE<br />

and 3.4% <strong>of</strong><br />

the Annex 1<br />

emissions.<br />

Spain<br />

France<br />

Italy<br />

Japan<br />

Germany<br />

UK<br />

Russia<br />

Ireland<br />

Canada<br />

US<br />

Australia<br />

0.4<br />

0.1<br />

0.6<br />

0.5<br />

1.0<br />

0.7<br />

0.7<br />

0.5<br />

1.4<br />

2.0<br />

7.0<br />

9.3<br />

9.5<br />

9.5<br />

10.9<br />

12.1<br />

12.6<br />

13.7<br />

x 10 9 tonnes per year<br />

GhGE, CO2-e<br />

Annex 1 countries (UNFCCC, 2001)<br />

United Nations Framework Convention on Climate Change<br />

tonnes per year (per capita)<br />

17.5<br />

23.0<br />

23.8<br />

25.5<br />

0 5 10 15 20 25 30


<strong>Enhanced</strong> <strong>Coal</strong> <strong>Bed</strong> <strong>Methane</strong> (<strong>ECBM</strong>)<br />

Injection<br />

well<br />

Diluting<br />

gas<br />

mixture<br />

(flue gas)<br />

CH 4<br />

Production<br />

well<br />

<strong>ECBM</strong> is the<br />

process <strong>of</strong><br />

injecting a pure or<br />

a mixture <strong>of</strong> gases<br />

(flue gas into a<br />

coal seam to<br />

enhance the<br />

recovery <strong>of</strong><br />

coalbed methane<br />

(CBM).


<strong>Enhanced</strong> gas recovery from coal seams,<br />

N2-<strong>ECBM</strong> CO2-<strong>ECBM</strong> Injection<br />

well<br />

N 2 or CO 2<br />

CH 4<br />

Production<br />

well<br />

N 2 or CO 2 can be injected<br />

into coal seams to<br />

enhance methane release.<br />

N 2 is a diluent reducing<br />

partial pressure <strong>of</strong><br />

methane and hence<br />

stimulates its release; CO 2<br />

adsorbs stronger to the<br />

coal, would replace<br />

methane and enhance its<br />

release<br />

Simultaneous CO 2 storage<br />

and CH 4 capture is an<br />

appealing option because<br />

<strong>of</strong> combined GhGE<br />

mitigation and energy<br />

recovery benefits


Field experiences <strong>of</strong> <strong>ECBM</strong><br />

So far there has been no <strong>ECBM</strong> trial in Australia; worldwide<br />

limited pilot operation have been conducted in USA (St Juan<br />

Basin), Canada (Manville) and China (Qinshui Basin)<br />

The first small scale N 2 -<strong>ECBM</strong> trial was undertaken in<br />

December 1993 in the St Juan Basin from Fruitland<br />

formation in Colorado (BP-Amoco).<br />

Alberta Research Council (ARI) and partners performed a<br />

CO 2 -<strong>ECBM</strong> into the Manville Formation coal seams at the<br />

Fen Big Valley in Alberta.<br />

A Canadian consortium (CIDA) and China United CBM<br />

corporation are currently (year 2005) undertaking a micro<br />

pilot operation in Shanxi province injecting CO 2 into semianthracite<br />

coal seams <strong>of</strong> Qinshui Basin.


<strong>ECBM</strong> research issues<br />

<strong>Coal</strong> capacity for storing seam gases<br />

Adsorbed gas; preferential CO 2/CH /CH4 sorption into coal and controls <strong>of</strong><br />

gas saturation levels<br />

Free gas storage<br />

Diffusive gas flow in coal<br />

Preferential CO 2/CH /CH4 diffusive flow<br />

<strong>Coal</strong> water/gas permeability and variations with<br />

adsorption/desorption<br />

Relative permeability<br />

Effect <strong>of</strong> swelling/shrinkage<br />

• Origin <strong>of</strong> gas in coal seam and variations in gas types<br />

• Biogenic/thermogenic origin<br />

• CO2, CH4 and C2+


<strong>ECBM</strong>/CBM issues, water<br />

Formation water in <strong>Australian</strong> coal measures <strong>of</strong> Sydney and<br />

Bowen Basins do not occur in large volumes and so far<br />

water production from CBM in Australia has been relatively<br />

small (less than 500 barrels <strong>of</strong> water per day and per well).<br />

Such volumes <strong>of</strong> water could be dealt with by evaporation in<br />

water ponds.<br />

However with increase in <strong>Australian</strong> CBM production and<br />

move to younger basins where CBM production is<br />

accompanied with high volumes <strong>of</strong> water (such as Surat<br />

Basin in Queensland) other solutions including reinjecting<br />

<strong>of</strong> water in depleted wells are envisaged. Reinjecting could<br />

take place after a reverse osmosis treatment to remove<br />

salts.<br />

Also for CBM wells close to potential consumption points<br />

the use <strong>of</strong> water for irrigation, coal washeries and coal fired<br />

plants ( cooling water) is being studied.


<strong>Coal</strong> seam reservoir, storage size<br />

How much gas is (could be) stored in coal?<br />

Total gas volume in-situ = adsorbed phase + free phase<br />

per tonne <strong>of</strong> coal<br />

m 3 /t<br />

= f ( p,<br />

T , coal rank & type)<br />

+<br />

pM<br />

RT<br />

ε<br />

ρ<br />

c


CO 2 /CH 4 storage in rock/coal, free phase<br />

Compared to other<br />

seam gases much<br />

less void space is<br />

required to store<br />

CO 2 (free phase<br />

gas)<br />

m 3 <strong>of</strong><br />

void<br />

space<br />

required<br />

to store<br />

one<br />

tonne <strong>of</strong><br />

gas<br />

CH4<br />

N2<br />

CO2<br />

1000<br />

100<br />

10<br />

1<br />

Measurement at 55°C<br />

0 2 4 6 8 10 12 14 16<br />

Gas pressure, MPa


CO 2 /CH 4 storage in coal, adsorbed phase<br />

Compared to other<br />

seam gases<br />

much less mass<br />

<strong>of</strong> coal is<br />

required to store<br />

CO 2<br />

(adsorbed phase)<br />

Tonne <strong>of</strong><br />

coal<br />

required<br />

to store<br />

one tonne<br />

<strong>of</strong> gas<br />

N2<br />

CH4<br />

CO2<br />

1000<br />

100<br />

10<br />

1<br />

Gas adsorbed at 55°C<br />

0 2 4 6 8 10 12 14 16<br />

Absolute pressure (MPa)


c<br />

Gas is retained in coal by adsorption forces<br />

Adsorption isotherm<br />

p<br />

Gas is adsorbed<br />

in coal following<br />

a micro-pore<br />

filling<br />

mechanism,<br />

Once micro-pores<br />

are filled no<br />

further<br />

adsorption<br />

occurs.<br />

c<br />

=<br />

p<br />

V<br />

L<br />

+<br />

Majority <strong>of</strong><br />

pores in<br />

coal are <strong>of</strong><br />

order <strong>of</strong><br />

nano-meter<br />

size<br />

p<br />

P<br />

L<br />

~nm<br />

Free phase<br />

gas<br />

pressure:<br />

p<br />

<strong>Coal</strong> gas content: c<br />

Adsorbed gas<br />

<strong>Coal</strong>


Gas storage capacity <strong>of</strong> Bowen Basin coals<br />

At a mining depth<br />

<strong>of</strong> 300 m some<br />

Bowen Basin<br />

coal can retain<br />

up to 20 m 3 /t <strong>of</strong><br />

CH 4 and 40 m 3 /t<br />

<strong>of</strong> CO 2 .<br />

50<br />

40<br />

30<br />

20<br />

The storage<br />

capacity<br />

10<br />

increases with<br />

depth 0<br />

<strong>Coal</strong> as received, Gas adsorption at 27°C<br />

Gas content (m<br />

60<br />

3 /t)<br />

100 m 200 m 300 m 400 m<br />

Depth<br />

CH 4<br />

CO 2<br />

Absolute pressure (kPa)<br />

0 1000 2000 3000 4000 5000 6000


Measurement <strong>of</strong> gas flow/storage<br />

properties <strong>of</strong> coal<br />

⎛ K P M ⎞ ⎛ M −αt<br />

−∇•<br />

⎜<br />

⎜(<br />

ρa<br />

+ Dsε<br />

) ∇P<br />

=<br />

e c<br />

Pa<br />

z R T ⎟<br />

⎜<br />

⎜−ε<br />

+ ( 1−<br />

) ρ ρ<br />

⎝ η ⋅ ⋅ ⎠ ⎝ zR⋅T<br />

1 – Laminar flow <strong>of</strong> free gas<br />

by permeation ( Darcy’s<br />

law)<br />

2 –Desorption and flow <strong>of</strong><br />

desorbed gas by<br />

diffusion (slipping flow,<br />

Knudsen flow, Fick’s law)<br />

a<br />

V P<br />

L<br />

L<br />

( P+<br />

P )<br />

L<br />

2<br />

⎞∂P<br />

⎟<br />

⎠ ∂t<br />

Gas flow<br />

k ∂p<br />

ψ 1 = −<br />

η ∂x<br />

ψ<br />

2<br />

∂c<br />

= −D<br />

∂x<br />

1<br />

2<br />

2<br />

2


Measurement <strong>of</strong> rate <strong>of</strong> diffusion <strong>of</strong> coal seam gases,<br />

Bowen Basin coal<br />

Access <strong>of</strong> gas to the<br />

micropores where<br />

most <strong>of</strong> gas is stored<br />

occurs only by<br />

diffusion.<br />

Therefore the injection<br />

and storage <strong>of</strong> gas in<br />

coal is ultimately<br />

controlled by the rate<br />

<strong>of</strong> diffusive flow <strong>of</strong> gas<br />

in coal.<br />

The diffusivity values<br />

obtained are:<br />

CO 2 :6.37 x 10 -10 m 2 /s<br />

CH 4 : 3.41 x 10 -10 m 2 /s<br />

Gas volume diffused per<br />

unit surface area <strong>of</strong> coal<br />

(Litre/m 2 )<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

CO 2<br />

0 20 40 60 80 100 120<br />

Time elapsed (hour)<br />

CH 4<br />

12.1<br />

mL/min/m 2<br />

6.7<br />

mL/min/m 2


Fate <strong>of</strong> coalification generated CO 2<br />

Transformation <strong>of</strong> peat to lignite to bituminous<br />

coal (coalification) has been an ongoing<br />

process over many millions <strong>of</strong> years.<br />

<strong>Coal</strong>ification process produces high volumes<br />

<strong>of</strong> CO 2 ,CH 4 and water.<br />

This occurs through various chemical<br />

reactions such as: decarboxylation,<br />

dehydration and, de-alkalisation.<br />

Though much more CO 2 than CH 4 had<br />

been generated during coallification, and<br />

that coal can retain much more CO 2 than<br />

CH 4 most world coal seams contain mainly<br />

methane.<br />

Gas generation (m 3 /t)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Gas generation from laboratory coalification<br />

<strong>Australian</strong> coal<br />

CO2<br />

CH4<br />

Vitrinite reflectance (%)<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

Lignite<br />

High/low voltaile<br />

bituminous<br />

Maturation<br />

Anthracite<br />

The reason for the absence <strong>of</strong> primary CO 2 is<br />

that most had been dissolved in water produced<br />

during coalification. The dissolved CO 2 had<br />

then either migrated away or have formed<br />

carbonate in the coal fractures and<br />

neighbouring formations.


Sources <strong>of</strong> secondary CO 2 generation<br />

in coal<br />

Though methane is dominant seam gas, <strong>Australian</strong><br />

coal basins including Sydney Basin contain various<br />

amount <strong>of</strong> CO 2<br />

The secondary sources <strong>of</strong> CO 2 in coal seams could<br />

be,<br />

Thermal destruction <strong>of</strong> carbonate and<br />

carbonate dissolution<br />

Bacterial activities (hydrocarbon oxidation,<br />

degradation <strong>of</strong> organic matters)<br />

Igneous activities and magma migration


Sources <strong>of</strong> CO 2 in Sydney Basin coal<br />

It is believed that most <strong>of</strong> CO 2 in Sydney<br />

Basin is <strong>of</strong> igneous origin (Smith et al, 1985),<br />

because:<br />

High CO 2 content areas have generally<br />

isotopic compositions corresponding to<br />

CO 2 magmatic sources (d 13 C=-7 ‰)<br />

The highest concentrations <strong>of</strong> CO 2 are<br />

localised laterally along major faults.


Sydney Basin CO 2 adsorption study<br />

Some 27 coals<br />

from 17 seams in<br />

13 locations in<br />

Sydney Basin were<br />

measured. The<br />

coal seams depths<br />

varied from less<br />

than 57 to more<br />

than 723 m.<br />

<strong>Coal</strong> rank varied<br />

from low volatile<br />

bituminous to high<br />

volatile bituminous<br />

(Rv= 0.66 to 1.45%)<br />

0<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

0 10 20 30 40 50<br />

800<br />

Seam depth (m)<br />

Metamorphosed<br />

coals<br />

Volatile matter (%)


CO 2 adsorption capacity <strong>of</strong> Sydney Basin coal<br />

Gas adsorption<br />

behaviour was<br />

presented by<br />

Langmuir type<br />

isotherm:<br />

c<br />

=<br />

p<br />

V<br />

L<br />

+<br />

Difference in<br />

adsorption<br />

capacity (V L )<br />

across Sydney<br />

Basin was<br />

tw<strong>of</strong>old<br />

p<br />

P<br />

L<br />

Gas adsorbed, daf (m 3 /t)<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

<strong>Coal</strong>13<br />

<strong>Coal</strong>14<br />

0 2000 4000 6000 8000<br />

Absolute gas pressure (kPa)


Preferential storage <strong>of</strong> gas in coal<br />

CO 2 , CH 4 and N 2<br />

adsorb to coal in<br />

decreasing<br />

strength <strong>of</strong><br />

adsorption,<br />

For this coal, 2-<br />

2.5 molecules <strong>of</strong><br />

CO 2 would<br />

replace<br />

1 molecule <strong>of</strong> CH 4<br />

depending on gas<br />

pressure<br />

Total gas adsorbed (m 3 /t)<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Carbon dioxide<br />

<strong>Methane</strong><br />

Nitrogen<br />

0 1000 2000 3000 4000 5000 6000<br />

Absolute pressure (kPa)


Storage capacity Sydney Basin coals; Effect <strong>of</strong><br />

coal maturation<br />

Capacity increases<br />

with rank; and two<br />

trends can be<br />

observed for<br />

higher and lower<br />

rank coals <strong>of</strong> the<br />

Sydney Basin in<br />

the North and<br />

South <strong>Coal</strong>fields<br />

This could have<br />

important<br />

implications for a<br />

pilot CO 2<br />

sequestration<br />

project in Australia<br />

Langmuir volume (m 3 /t)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Northern<br />

Sydney<br />

Basin<br />

coalfields<br />

0.50 0.70 0.90 1.10 1.30 1.50<br />

Vitrinite reflectance (%)<br />

Southern<br />

Sydney Basin<br />

coalfields<br />

<strong>Coal</strong> maturation


CO 2 storage at different depths, Sydney Basin<br />

coals<br />

CO 2 adsorption<br />

capacity <strong>of</strong> the<br />

Sydney Basin<br />

coals increases<br />

with seam depth<br />

following a<br />

power function.<br />

This could have<br />

important<br />

implications for<br />

a pilot CO 2<br />

sequestration<br />

project in<br />

Australia.<br />

0<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

800<br />

900<br />

1000<br />

CO2 storage capacity (m 3 /t)<br />

0 20 40 60 80<br />

Seam depth (m)<br />

C = C 0 (h/h 0) a


Estimate <strong>of</strong> CO 2 sequestration potential <strong>of</strong><br />

NSW coals (1)<br />

NSW coal<br />

•Demonstrated: 34 billion tonnes<br />

•Inferred resources: 57 billion tonnes<br />

Assume all demonstrated<br />

resources are mined and all<br />

inferred resources are used<br />

for CO 2 storage (57 Bt)<br />

An average in-situ CO 2<br />

adsorption capacity <strong>of</strong><br />

~40 m 3 /t<br />

can be used based on the<br />

developed equation<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

800<br />

900<br />

1000<br />

CO2 storage capacity (m 3 /t)<br />

0 20 40 60 80<br />

0<br />

Seam depth (m)<br />

C = C 0 (h/h 0) a<br />

Depth >600 m<br />

Storage = or<br />

> 40 m 3 /t


Estimate <strong>of</strong> CO 2 storage potential <strong>of</strong> NSW coals<br />

(2)<br />

If only the inferred coal resources (57 Bt) are<br />

used for the sequestration projects then total<br />

CO 2 storage capacity <strong>of</strong> NSW is<br />

CO 2 storage =<br />

2.28 trillion m 3<br />

4.1 billion tonnes<br />

45 years NSW electricity emissions


Estimate <strong>of</strong> CO 2 sequestration potential <strong>of</strong><br />

Queensland coals<br />

• Assuming that<br />

the unmineable<br />

reserves <strong>of</strong> coal<br />

in Queensland<br />

is as much as<br />

the<br />

underground<br />

mineable<br />

reserves<br />

• Seam depths<br />

<strong>of</strong> >700 m<br />

Estimate <strong>of</strong> Qld CO 2 storage potential<br />

Qld coal reserves<br />

Open cut<br />

Underground<br />

CO 2 storage<br />

capacity <strong>of</strong> Qld<br />

coal based on<br />

CSIRO studies<br />

CO 2 potential<br />

38.94<br />

15.91<br />

23.03<br />

40.00<br />

921.20<br />

32.53<br />

1.7<br />

Bt<br />

Bt<br />

Bt<br />

m 3 /t<br />

billion m 3<br />

tcf<br />

billion<br />

tonnes (gt)


Summary (1)<br />

Australia’s CBM Industry is growing as a results <strong>of</strong><br />

depletion in conventional petroleum gas reservoir,<br />

advance in drilling and completion technology, and<br />

better understating <strong>of</strong> the behaviour <strong>of</strong> coal gas<br />

interaction.<br />

Measurement <strong>of</strong> storage and flow properties <strong>of</strong> numerous<br />

<strong>Australian</strong> coals shows that,<br />

CO 2 storage capacity <strong>of</strong> Sydney Basin coal varies from 40 to 80 m 3<br />

per tonne <strong>of</strong> coal.<br />

CH 4 adheres weaker to coal than CO 2, coal capacity for CH 4 is half <strong>of</strong><br />

its capacity for CO 2.<br />

CO 2 diffuses much faster than CH 4 in coal and gas injection rate is<br />

diffusion rate dependent.


Summary (2)<br />

NSW has large resources <strong>of</strong> coal and if only<br />

the deferred coal resources are used for CO 2<br />

sequestration, then up to 4.1 billion tonnes <strong>of</strong><br />

CO 2 can be sequestered in NSW.<br />

If there were as much unmineable coal at<br />

depth <strong>of</strong> 700 m and over in Qld than at current<br />

underground depths then there would be a<br />

capacity <strong>of</strong> 1.7 billion tonnes CO 2 storage in<br />

unmineable coal seams <strong>of</strong> Qld.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!