09.08.2013 Views

The role of human and Drosophila NXF proteins in nuclear mRNA ...

The role of human and Drosophila NXF proteins in nuclear mRNA ...

The role of human and Drosophila NXF proteins in nuclear mRNA ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Introduction 30<br />

<strong>prote<strong>in</strong>s</strong> also differentially affect stripe <strong>mRNA</strong> stability (Nabel-Rosen et al., 1999; Nabel-<br />

Rosen et al., 2002).<br />

In mammals, an example <strong>of</strong> regulated <strong>mRNA</strong> export has recently been reported to<br />

occur dur<strong>in</strong>g differentiation <strong>of</strong> the nervous system <strong>in</strong> mice. <strong>The</strong> Quak<strong>in</strong>g prote<strong>in</strong> is required<br />

for the maturation <strong>of</strong> Schwann cells <strong>in</strong>to myel<strong>in</strong>-form<strong>in</strong>g cells. Different forms <strong>of</strong> the<br />

Quak<strong>in</strong>g prote<strong>in</strong> are generated by alternative splic<strong>in</strong>g, <strong>and</strong> the balance between these<br />

different is<strong>of</strong>orms was shown to control the <strong>nuclear</strong> export <strong>of</strong> mbp <strong>mRNA</strong>. mbp encodes<br />

the "myel<strong>in</strong> basic prote<strong>in</strong>" <strong>and</strong> is a major component <strong>of</strong> myel<strong>in</strong> (Larocque et al., 2002).<br />

Interest<strong>in</strong>gly, both How <strong>and</strong> Quak<strong>in</strong>g, belong to a family <strong>of</strong> RNA-b<strong>in</strong>d<strong>in</strong>g <strong>prote<strong>in</strong>s</strong> called<br />

"signal transduction <strong>and</strong> activation <strong>of</strong> RNA" (STAR) family, suggest<strong>in</strong>g that conserved<br />

features found <strong>in</strong> STAR family members might enable them to regulate <strong>nuclear</strong> export <strong>of</strong><br />

specific <strong>mRNA</strong>s by a similar mechanism (Larocque et al., 2002; Nabel-Rosen et al., 1999).<br />

<strong>The</strong>se examples illustrate that the tightly controlled export <strong>of</strong> specific <strong>mRNA</strong>s can<br />

regulate differentiation. However, the precise molecular mechanisms underly<strong>in</strong>g these<br />

observations e.g. how the <strong>nuclear</strong> retention <strong>of</strong> specific <strong>mRNA</strong>s is achieved, rema<strong>in</strong> to be<br />

<strong>in</strong>vestigated.<br />

<strong>The</strong> <strong>role</strong> <strong>of</strong> Crm1 <strong>in</strong> <strong>mRNA</strong> export<br />

As described above, Crm1 is essential for the export <strong>of</strong> U snRNAs, ribosomal<br />

subunits <strong>and</strong> <strong>prote<strong>in</strong>s</strong> conta<strong>in</strong><strong>in</strong>g leuc<strong>in</strong>e-riche NESs (see 1.1.4, 1.2.2 <strong>and</strong> 1.2.3). Crm1 is<br />

also <strong>in</strong>volved <strong>in</strong> the <strong>nuclear</strong> export <strong>of</strong> late <strong>mRNA</strong>s <strong>of</strong> some retroviruses (e.g. HIV-1), but is<br />

believed to play a rather limited <strong>role</strong> <strong>in</strong> the <strong>nuclear</strong> export <strong>of</strong> cellular <strong>mRNA</strong>s (Cullen,<br />

2003)<br />

In yeast, a temperature-sensitive mutant <strong>of</strong> CRM1 shows a strong <strong>nuclear</strong><br />

accumulation <strong>of</strong> poly(A) + RNA with<strong>in</strong> 15 m<strong>in</strong>utes after the shift to the non-permissive<br />

temperature. This observation first led to the proposal that Crm1p is also an essential <strong>and</strong><br />

general export receptor for <strong>mRNA</strong>s (Stade et al., 1997). However, subsequent experiments<br />

us<strong>in</strong>g a S. cerevisiae stra<strong>in</strong> <strong>in</strong> which Crm1p function can be <strong>in</strong>hibited with LMB showed<br />

that the <strong>nuclear</strong> accumulation poly(A) + RNA follow<strong>in</strong>g LMB treatment occurs with a<br />

significant delay compared to the effect on NES-mediated export. Moreover, LMB<br />

treatment did not result <strong>in</strong> a marked decrease <strong>of</strong> prote<strong>in</strong> synthesis, argu<strong>in</strong>g aga<strong>in</strong>st a <strong>role</strong> <strong>of</strong><br />

Crm1p <strong>in</strong> general <strong>mRNA</strong> export (Neville <strong>and</strong> Rosbash, 1999). This does not exclude a <strong>role</strong><br />

for Crm1p <strong>in</strong> the <strong>nuclear</strong> export <strong>of</strong> specific <strong>mRNA</strong>s.<br />

In vertebrates, the follow<strong>in</strong>g observations argue aga<strong>in</strong>st a <strong>role</strong> for Crm1 <strong>in</strong> general<br />

<strong>mRNA</strong> export: first, <strong>in</strong>jection <strong>of</strong> leuc<strong>in</strong>e-rich NES <strong>in</strong>to Xenopus oocytes competes with<br />

U snRNA export, but not with <strong>mRNA</strong> export (Fischer et al., 1995; Fornerod et al., 1997).<br />

Similarly, high amounts <strong>of</strong> NES peptide <strong>in</strong>hibit Crm1-dependent prote<strong>in</strong> export <strong>in</strong><br />

mammalian cells, but not bulk <strong>mRNA</strong> export (Gallouzi <strong>and</strong> Steitz, 2001). Second, LMB

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!