10.08.2013 Views

Fatigue cracking of bearing and failure of railway axles - Integrity of ...

Fatigue cracking of bearing and failure of railway axles - Integrity of ...

Fatigue cracking of bearing and failure of railway axles - Integrity of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

N. Gubeljak 1 , U. Očko 2 , J. Predan 1 , V. Šinkovec 3 , M. Kljajin 4<br />

1-University <strong>of</strong> Maribor, Faculty <strong>of</strong> Mechanical Engineering, Smetanova 17, SI-2000 Maribor, Slovenia,<br />

2-Unior d.o.o, Zreče, Slovenia<br />

3-Slovenian Railways Ltd, Ljubljana, Slovenia,<br />

4-University <strong>of</strong> Osijek, Faculty <strong>of</strong> Mech. Engineering, Slavonski Brod, Croatia<br />

1


Motivation<br />

Case 1: The wagon’s <strong>bearing</strong> <strong>and</strong> axle wer distroyed <strong>and</strong> about<br />

8km <strong>of</strong> <strong>railway</strong> line were ruined!<br />

Wear <strong>of</strong> inner surface <strong>of</strong> the inner<br />

<strong>bearing</strong>’s ring due to the sliding <strong>of</strong><br />

the axle in it. Demaged inner <strong>bearing</strong> <strong>of</strong> the axle!


Motivation<br />

Case 1: The wagon’s <strong>bearing</strong> <strong>and</strong> axle wer distroyed <strong>and</strong> about<br />

8km <strong>of</strong> <strong>railway</strong> line were ruined!<br />

Demaged inner <strong>bearing</strong> <strong>and</strong> axle box housing!


Motivation!<br />

Failure occured on a freight wagon!<br />

Wagon had been in service for about 30 years!<br />

New <strong>bearing</strong> since five years ago!


MOTIVATION<br />

Case 2 (a few months later): Examination shows the inner reangs<br />

<strong>of</strong> both <strong>bearing</strong> wer broken!<br />

The axle <strong>and</strong> the damaged inner ring on<br />

inner <strong>bearing</strong>.<br />

Fracture <strong>of</strong> the inner ring <strong>of</strong> outer <strong>bearing</strong>.


Motivation<br />

Pitting <strong>of</strong> inner ring <strong>of</strong> outer <strong>bearing</strong> <strong>of</strong> freight wagon axle!


Motivation<br />

Pitting <strong>of</strong> inner ring <strong>of</strong> outer <strong>bearing</strong> <strong>of</strong> freight wagon axle!


Freight wagon axle!<br />

M 90<br />

Ø120<br />

5<br />

179<br />

226,5<br />

Ø146<br />

79<br />

Ø185<br />

10<br />

185<br />

Motivation<br />

Ø160<br />

1250<br />

1998<br />

2251<br />

R75<br />

R15<br />

R40<br />

226,5


Motivation<br />

Wheel-pair <strong>bearing</strong> <strong>of</strong> the freight wagon!


Pleminar Investigation<br />

All components <strong>of</strong> wagon are design for permanent dynamic loading:<br />

Number <strong>of</strong> load cycles (speed) <strong>of</strong> rail’s components such as <strong>axles</strong>,<br />

<strong>bearing</strong>s, wheels should be 2 x 10 8 cycles, it is more than 10 6 , as<br />

permanent dynamic strength, it is in the range <strong>of</strong> giga cycles<br />

Deviation from the assumed surface components, due to the impact on the<br />

surface. The surface cracks occur up to two millimeters in depth. In addition,<br />

the damaged corrosion’s protective layer, resulting in further growth <strong>of</strong> cracks<br />

through the cross-section<br />

Complex loads are more stochastic than envisaged at design <strong>and</strong><br />

testing <strong>of</strong> single components..<br />

Irregularities in the assembly can lead to addditonal tension load<br />

higher than assumed


Pleminar Investigation<br />

On the wagon, which was to derail the investigation was carried out on<br />

the damaged shaft <strong>and</strong> <strong>bearing</strong>. It was carried out a visual examination,<br />

chemical analysis <strong>of</strong> the shaft, the shaft tensile tests, hardness test shafts<br />

<strong>and</strong> <strong>bearing</strong>s <strong>and</strong> microscopic metallographic investigation <strong>of</strong> theshaft<br />

<strong>and</strong> <strong>bearing</strong><br />

An investigation has been a finding that the <strong>failure</strong> occurred due to<br />

damage to the <strong>bearing</strong> shaft.<br />

The heat <strong>of</strong> the shaft, the <strong>bearing</strong> inner ring, rollers <strong>and</strong> cages exceeded<br />

+1000 ˚ C <strong>and</strong> melted <strong>bearing</strong> <strong>and</strong> <strong>bearing</strong> housing melted, causing the<br />

damage <strong>of</strong> rail’s trial.<br />

The final decision <strong>of</strong> the investigation was that the first fatigue crack<br />

occurred in the internal ring, where it was exceeded long-term operation <strong>of</strong><br />

the dynamic load capacity <strong>of</strong> the ri.


Problem:<br />

Fracture <strong>of</strong> the housing roller inner ring <strong>of</strong> the burst, which is<br />

mounted on varicose nasedom axle shaft rate doubles!


Tensile tests


Tensile properties <strong>of</strong> <strong>bearing</strong> material<br />

Napetost (N/mm 2 )<br />

Stress<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Yield stress R p0.2 = 1100Nmm 2<br />

UTS R m = 1401Nmm 2<br />

0<br />

Tensile strength from σ-ε plot<br />

0 0,001 0,002 0,003 0,004 0,005 0,006 0,007 0,008<br />

2<br />

Deformacija<br />

Strain, -<br />

R p<br />

Meritev<br />

Aproksimacija<br />

Linearna (E)<br />

R m


Fracture mechanics toughness testing


<strong>Fatigue</strong> pre-<strong>cracking</strong> pre <strong>cracking</strong> by four bending<br />

• Maximum force <strong>of</strong> four bending fatigue:<br />

2 2<br />

2,52×B×(W-a) 2,52×10×(10-4)<br />

P = ×R = ×1100=15023,5N<br />

f p<br />

3×(S -S ) 3×(52,5-14,15)<br />

1 2<br />

F =0,1×F =0,1×9014=901,4N<br />

min max<br />

F =0,6×P =0,6×15023=9014N<br />

max f<br />

F<br />

F


Fracture mechanics toughness testing<br />

• Three point bending:<br />

F<br />

<strong>Fatigue</strong> crack after test!<br />

No stable crack extension!


Fracture mechanics toughness testing<br />

Force<br />

Sila (kN)<br />

2<br />

1,8<br />

1,6<br />

1,4<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

0 0,003 0,006 0,009 0,012 0,015 0,018 0,021 0,024 0,027 0,03<br />

CMOD (mm)<br />

F-CMOD plot shows plane strain conditions!<br />

P Q =P max<br />

F, kN<br />

95%<br />

Linearno (F, kN)


Fracture mechanics toughness testing<br />

• SIF calculation<br />

⎛ P×S ⎞ ⎛ 1764,1×52,5 ⎞<br />

K = ⎜ ⎟×f(a/W)= ⎜ ⎟×2,0043=587N/mm<br />

⎝ ⎠<br />

mat<br />

Q<br />

1/2 3/2<br />

⎝(B×B ) ×W N ⎠<br />

1/2 3/2<br />

(10×10) ×10<br />

[ ]<br />

1/2 2<br />

3×(a/W) × 1,99-(a/W)×(1-(a/W)×(2,15-3,93×(a/W)+2,7×(a/W) )<br />

a /W)= =<br />

i 3/2<br />

2×(1+2×a/W)×(1-a/W)<br />

[ ]<br />

1/2 2<br />

3×(4/10) × 1,99-(4/10)×(1-(4/10)×(2,15-3,93×(4/10)+2,7×(4/10) )<br />

a /W)= =2,00438<br />

i 3/2<br />

2×(1+2×4/10)×(1-4/10)<br />

a [mm] -crack length<br />

P Q [N] -Force <strong>of</strong> <strong>failure</strong><br />

S [N] -span distance<br />

B [mm] -thickness <strong>of</strong> specimen<br />

W [mm] -width <strong>of</strong> specimen<br />

3/2


Stress in inner ring induced by rollers<br />

Two extreme conditions are going to analysis!<br />

tion <strong>of</strong> ring!<br />

A<br />

A<br />

Crack is between two rollers!<br />

F<br />

Section <strong>of</strong> ring<br />

A<br />

A<br />

Crack is bellow roller!<br />

F


Stress distribution through the section<br />

Stress<br />

Rolling<br />

surface<br />

x<br />

Thickness <strong>of</strong> ring<br />

Crack is between two rollers!<br />

σ t obr<br />

σ zz<br />

σ xy<br />

σ r obr<br />

von Mises<br />

Axle


Stress distribution through the section<br />

Stress<br />

x<br />

Rolling<br />

surface<br />

Thickness <strong>of</strong> ring<br />

Crack is bellow roller!<br />

von Mises<br />

σ obr<br />

t<br />

σxy σ r obr<br />

σ zz<br />

Axle


Stress distribution through the section<br />

T<br />

p = 0<br />

p = 23.4Mpa<br />

Distribution <strong>of</strong> press fit stresses (σ t ) in case <strong>of</strong> overlap <strong>of</strong> 0,074 mm.


Analysis <strong>of</strong> results<br />

• Calculation <strong>of</strong> the <strong>bearing</strong> is made at SINTAP procedure (Structural <strong>Integrity</strong><br />

Assessment Procedures) - a procedure to ensure the integrity <strong>of</strong> structures.<br />

• The crack in the inner ring is deemed as a radial surface cracks in the cylinder<br />

wall.<br />

•Included are two different points on the crack on the surface <strong>and</strong> inside.<br />

• The calculations take account <strong>of</strong> tensions due to the burden <strong>and</strong> tension<br />

compression joints.<br />

Included are different values <strong>of</strong> the surplus between the axis <strong>and</strong> the inner ring bearin<br />

• Simulated two different situations depending on the crack roller <strong>and</strong> thus provides<br />

for two different stress intensity factor K I <strong>and</strong> K II.


K I (N/mm 1,5 )<br />

120<br />

118<br />

116<br />

114<br />

112<br />

110<br />

108<br />

106<br />

104<br />

102<br />

100<br />

Analysis <strong>of</strong> results<br />

1 2 3 4 5 6<br />

1<br />

K Imax<br />

2<br />

K Imin<br />

0 60 120 180 240 300 360<br />

Distribution <strong>of</strong> SIF K I .<br />

3<br />

4<br />

Rotacija Rotation notranjega<br />

<strong>of</strong> axle!<br />

obroča<br />

Rotacija Rotation valjčka <strong>of</strong> roller<br />

Rotation angle(˚)<br />

K Imax<br />

5<br />

6


K II (N/mm 1,5 )<br />

-0,2<br />

-0,5<br />

-0,8<br />

-1,1<br />

-1,4<br />

-1,7<br />

-2<br />

Analysis <strong>of</strong> results<br />

K IImax =K IIimin<br />

0 60 120 180 240 300 360<br />

Distribution <strong>of</strong> SIF K II.<br />

Angle (˚)


F<br />

Analysis <strong>of</strong> results<br />

Razpoka na<br />

notranjem obroču<br />

Razpoka na<br />

notranjem obroču<br />

Crack between rollers Crack below roller<br />

Two different position <strong>of</strong> roller regarding to surface crack<br />

Geometry <strong>of</strong> the crack caused by pitting!<br />

F


SIF K 1<br />

Application <strong>of</strong> Fracture mechanics<br />

K= I<br />

3 a 2c R i<br />

π×a∑σ×f( , , )<br />

i i<br />

i=0 t a t<br />

a[mm] -crack depth<br />

t[mm] -thickness <strong>of</strong> ring<br />

2c[mm] -crack length <strong>of</strong> surface<br />

Ri [mm]<br />

σ[N/mm<br />

-inner radius <strong>of</strong> ring<br />

2 98<br />

96<br />

94<br />

92<br />

90<br />

88<br />

] -stress through thickness <strong>of</strong> ring<br />

Maximum SIF K IAmax in point A:<br />

K = π×a×(σ ×f +σ ×f +σ ×f +σ ×f )<br />

IAmax 0 0 1 1 2 2 3 3<br />

σ,σ,σ,σ obr kr<br />

0 1 2 3<br />

f 0,f 1,f 2,f 3<br />

[N/mm2 ] -aproximation parametrs (σ +σ )<br />

t t<br />

-from SINTAP h<strong>and</strong>book for point A<br />

Napetost (N/mm 2 )<br />

102<br />

100<br />

(σ t obr + σt kr )<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

Položaj na obroču (mm)


Application <strong>of</strong> Fracture mechanics<br />

Minimum SIF K IAmin in point A.<br />

K = π×a×(σ ×f +σ ×f +σ ×f +σ ×f )<br />

1Amin 0 0 1 1 2 2 3 3<br />

Napetost (N/mm 2 )<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

σ t kr<br />

0 2 4 6 8 10 12 14


M×τ× π×a<br />

2 K= II<br />

Φ<br />

[ ] 1/2<br />

1.64<br />

Φ= 1+1,464(a/c)<br />

Calculation <strong>of</strong> SIF in point A<br />

M 2 -coeficient <strong>of</strong> geometry<br />

τ [N/mm 2 ] - shear stress in inner ring<br />

a [mm] -crack depth<br />

c [mm] -half <strong>of</strong> crack length


Maksimum value <strong>of</strong> SIF K IIAmax at point A.<br />

M×τ × π×a<br />

2 max<br />

K =<br />

IIAmax<br />

Φ<br />

[ ] 1/2<br />

1.64<br />

Φ= 1+1.464(a/c)<br />

τ =σ +σ<br />

kr<br />

max r xy<br />

Calculation <strong>of</strong> SIF in point A<br />

M2 [N/mm2 ]<br />

[N/mm<br />

- coeficient <strong>of</strong> geometry<br />

2 ] -maximum shear stress in inner ring<br />

a[mm] -crack depth<br />

c[mm] -hal <strong>of</strong> crack length on surface<br />

σ kr<br />

r [N/mm2 ] -radial stress <strong>of</strong> press fit<br />

σxy [N/mm2 τ max<br />

] -shear stress caused by loading <strong>of</strong> <strong>bearing</strong>


Minimal value <strong>of</strong> SIF K IIAmin at point A.<br />

M×τ × π×a<br />

2 min<br />

K = IIAmin<br />

Φ<br />

τ =σ min r<br />

kr<br />

τ<br />

min<br />

[N/mm 2 ] - minimal shear sress in inner ring!<br />

Ker je σ = 0 ⇒ τ = τ ⇒ K = K<br />

xy max min IIAmax IIAmin<br />

T<br />

2B<br />

Calculation <strong>of</strong> SIF at point A<br />

a<br />

2H<br />

A<br />

φ<br />

φ c<br />

A<br />

φ<br />

φ c<br />

B<br />

B


K = π×a×(σ ×f +σ ×f +σ ×f +σ ×f )<br />

IBmax 0 0 1 1 2 2 3 3<br />

Minimum at point B.<br />

Calculation <strong>of</strong> SIF at point B<br />

K = π×a×(σ ×f +σ ×f +σ ×f +σ ×f )<br />

IBmin 0 0 1 1 2 2 3 3


Relevant for both modes B.<br />

K = K +K<br />

2 2<br />

prim(B)max IBmax IIBmax<br />

K = K +K<br />

2 2<br />

prim(B)min IBmin IIBmin<br />

SIF in point B


Limit load:<br />

σ σ<br />

gζ ( ) ⋅ + g( ζ) ⋅ + (1 −ζ) ⋅σ<br />

max<br />

=<br />

3 9<br />

r<br />

2<br />

(1 −ζ) ⋅Rp<br />

1<br />

σ = ⋅( σ −σ<br />

)<br />

b<br />

1 2<br />

2<br />

1<br />

σ = ⋅ ( σ + σ )<br />

m<br />

1 2<br />

2<br />

3 0.75<br />

( ) 1 20 ( )<br />

a<br />

gζ = − ⋅ζ⋅ l<br />

al ⋅<br />

ζ =<br />

T⋅ ( l+ 2 ⋅T)<br />

σ<br />

σ<br />

R<br />

b<br />

m<br />

p<br />

Estimation <strong>of</strong> Struc. <strong>Integrity</strong><br />

b 2<br />

2<br />

b<br />

2 2<br />

m<br />

[N/mm 2 ] - bending stress<br />

[N/mm 2 ] - membrane stress<br />

[N/mm 2 ] - yield stress<br />

σ 1<br />

f(σ t obr + σt kr )<br />

σ 2<br />

σ 2


−1/2<br />

⎡ 1 ⎤<br />

f( L ) =<br />

⎢<br />

1+ ⋅L ⋅ 0,3+ 0,7⋅exp( −µ ⋅L<br />

⎣ 2 ⎥⎦<br />

[ ]<br />

2 6<br />

r r r<br />

⎧ E<br />

⎪0,001⋅<br />

µ = min ⎨ Rp<br />

⎪⎩ 0,6<br />

( N 1)<br />

2⋅N<br />

= = ⋅<br />

r r r<br />

f( L) f( L 1) L −<br />

N<br />

L<br />

r max<br />

⎡ R ⎤ p<br />

= 0,3 ⋅⎢1− R<br />

⎥<br />

⎣ m ⎦<br />

1 ⎡R⋅R⎤ p m<br />

= ⋅⎢ ⎥<br />

2 ⎣ Rp<br />

⎦<br />

za<br />

FAC<br />

1 ≤ L ≤ L<br />

r r<br />

max<br />

za<br />

0≤L≤1 r


Structure assessment <strong>of</strong> inner ring<br />

K r, f(L r )<br />

Kr<br />

1,2<br />

1,1<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

K r , B<br />

K r,A<br />

f(Lr)<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1<br />

Lr =σref /σy FAD- overlap <strong>of</strong> 0,037 mm for crack depth a=15mm.<br />

f(Lr)<br />

Točka A<br />

Point<br />

Točka B


Structure assessment <strong>of</strong> inner ring<br />

K r, , f(L r )<br />

Kr<br />

1,2<br />

1,1<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

K r , B<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1<br />

Lr =σref /σy FAD-overlap <strong>of</strong> 0,05 mm.<br />

K r,A<br />

f(Lr)<br />

f(Lr)<br />

Točka Point<br />

A<br />

Točka B


Structure assessment <strong>of</strong> inner ring<br />

K r , f(L r )<br />

Kr<br />

1,2<br />

1,1<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

K r , B<br />

K r,A<br />

f(Lr)<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1<br />

FAD- overlap <strong>of</strong> 0,052 mm.<br />

f(Lr)<br />

Point<br />

Točka A<br />

Točka B<br />

L r =σ ref /σ y


Structure assessment <strong>of</strong> inner ring<br />

K r , f(L r )<br />

Kr<br />

1,2<br />

1,1<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

K r , B<br />

K r,A<br />

f(Lr)<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1<br />

FAD- overlap <strong>of</strong> 0,074 mm.<br />

f(Lr)<br />

Točka Point<br />

A<br />

Točka B<br />

L r =σ ref /σ y


Structure assessment <strong>of</strong> inner ring<br />

K r , f(L r )<br />

Kr<br />

Kr<br />

1,2<br />

1,2<br />

1,1 1,1<br />

1<br />

0,9 0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

K r , B<br />

0,3<br />

0,2<br />

0,1 0,1<br />

0<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,8 0,9 0,9 1 1 1,1 1,1<br />

FAD-overlap <strong>of</strong> 0,1 mm.<br />

K r,A<br />

f(Lr)<br />

f(Lr)<br />

Točka Point<br />

f(Lr) A<br />

Točka BA<br />

Točka B<br />

L r =σ ref /σ y σ


Structure assessment <strong>of</strong> inner ring<br />

Critical crack length regarding to ovelaping<br />

PRESEŽEK δ=0,037 δ=0,05 δ=0,052 δ=0,055 δ=0,06 δ=0,074 δ=0,1 δ=0,15<br />

ac (mm) - - 15 14,6 14,3 12,5 9 5,5


1<br />

Press stress has not effect to crack.<br />

Dangerous for <strong>failure</strong>.<br />

Discussion<br />

Press stress causes crack propagation<br />

0,000 0,030 0,060 0,090 0,120 0,150<br />

0,037 0,052<br />

Safe service<br />

Appropriate overlaping!<br />

Fail <strong>of</strong> inner ring.<br />

0,037 0,074<br />

Reality?<br />

Overlap (mm)<br />

Prescribed by SŽ


Analysis<br />

The size <strong>of</strong> the surplus gap dl.<br />

The size <strong>of</strong> the surplus gap regarding to overlap δ.<br />

δ (mm) aC (mm) dl (mm)<br />

0,037 - 0,11618<br />

0,05 - 0,157<br />

0,052 15 0,16328<br />

0,055 14,6 0,1727<br />

0,06 14,3 0,1884<br />

0,074 12,5 0,23236<br />

0,1 9 0,314<br />

F


Conclusion<br />

The purpose <strong>of</strong> the work was to determine factors that affect the function <strong>of</strong><br />

<strong>bearing</strong> <strong>failure</strong> at the rate <strong>of</strong> freight <strong>railway</strong> vehicle axle.<br />

On the basis <strong>of</strong> the checks <strong>bearing</strong> <strong>failure</strong> is found that fracture occurs by the<br />

breakage <strong>of</strong> the <strong>bearing</strong> inner ring, which is mounted as press fit.<br />

In some cases, the <strong>bearing</strong> can have through crack, but inner ring still operates.<br />

It is possible in a manner that press force is adequate not too high <strong>and</strong> the rolling<br />

rollers rotate normally.<br />

On the other h<strong>and</strong>, it happened that there was a burst <strong>of</strong> <strong>bearing</strong> ring, rollers <strong>and</strong><br />

housing are overheating <strong>and</strong> rail car derailment.<br />

Thus, the immediate aim <strong>of</strong> the study was to determine the reasons which lead<br />

to a limited two-destructive state <strong>of</strong> the internal ring, namely the functional<br />

operation <strong>of</strong> the <strong>bearing</strong> or <strong>bearing</strong> <strong>failure</strong>.


The analysis shows that the inner tension ring, which is due to press fit is crucial<br />

for the integrity <strong>of</strong> the internal ring with a crack.<br />

Indeed, a sufficiently low tolerance overlaping between ring <strong>and</strong> axle the size <strong>of</strong><br />

the surplus gap will be enough small that rollers <strong>and</strong> <strong>bearing</strong> can be still in use<br />

even a crack will be through whole ring.<br />

In the case <strong>of</strong> excessive tension stresses, the ring is going to open <strong>and</strong> the rollers<br />

wedged into a crevice, <strong>and</strong> thus lead to <strong>bearing</strong> <strong>failure</strong> <strong>and</strong> the derailment <strong>of</strong> the<br />

vehicle. However, it must be oversized enough to prevent the rotation <strong>of</strong> the inner<br />

ring at the rate axis but not to high that crack in inner <strong>bearing</strong>’s ring has to large<br />

gap.


Thank you for your attention!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!