10.08.2013 Views

Fatigue cracking of bearing and failure of railway axles - Integrity of ...

Fatigue cracking of bearing and failure of railway axles - Integrity of ...

Fatigue cracking of bearing and failure of railway axles - Integrity of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

N. Gubeljak 1 , U. Očko 2 , J. Predan 1 , V. Šinkovec 3 , M. Kljajin 4<br />

1-University <strong>of</strong> Maribor, Faculty <strong>of</strong> Mechanical Engineering, Smetanova 17, SI-2000 Maribor, Slovenia,<br />

2-Unior d.o.o, Zreče, Slovenia<br />

3-Slovenian Railways Ltd, Ljubljana, Slovenia,<br />

4-University <strong>of</strong> Osijek, Faculty <strong>of</strong> Mech. Engineering, Slavonski Brod, Croatia<br />

1


Motivation<br />

Case 1: The wagon’s <strong>bearing</strong> <strong>and</strong> axle wer distroyed <strong>and</strong> about<br />

8km <strong>of</strong> <strong>railway</strong> line were ruined!<br />

Wear <strong>of</strong> inner surface <strong>of</strong> the inner<br />

<strong>bearing</strong>’s ring due to the sliding <strong>of</strong><br />

the axle in it. Demaged inner <strong>bearing</strong> <strong>of</strong> the axle!


Motivation<br />

Case 1: The wagon’s <strong>bearing</strong> <strong>and</strong> axle wer distroyed <strong>and</strong> about<br />

8km <strong>of</strong> <strong>railway</strong> line were ruined!<br />

Demaged inner <strong>bearing</strong> <strong>and</strong> axle box housing!


Motivation!<br />

Failure occured on a freight wagon!<br />

Wagon had been in service for about 30 years!<br />

New <strong>bearing</strong> since five years ago!


MOTIVATION<br />

Case 2 (a few months later): Examination shows the inner reangs<br />

<strong>of</strong> both <strong>bearing</strong> wer broken!<br />

The axle <strong>and</strong> the damaged inner ring on<br />

inner <strong>bearing</strong>.<br />

Fracture <strong>of</strong> the inner ring <strong>of</strong> outer <strong>bearing</strong>.


Motivation<br />

Pitting <strong>of</strong> inner ring <strong>of</strong> outer <strong>bearing</strong> <strong>of</strong> freight wagon axle!


Motivation<br />

Pitting <strong>of</strong> inner ring <strong>of</strong> outer <strong>bearing</strong> <strong>of</strong> freight wagon axle!


Freight wagon axle!<br />

M 90<br />

Ø120<br />

5<br />

179<br />

226,5<br />

Ø146<br />

79<br />

Ø185<br />

10<br />

185<br />

Motivation<br />

Ø160<br />

1250<br />

1998<br />

2251<br />

R75<br />

R15<br />

R40<br />

226,5


Motivation<br />

Wheel-pair <strong>bearing</strong> <strong>of</strong> the freight wagon!


Pleminar Investigation<br />

All components <strong>of</strong> wagon are design for permanent dynamic loading:<br />

Number <strong>of</strong> load cycles (speed) <strong>of</strong> rail’s components such as <strong>axles</strong>,<br />

<strong>bearing</strong>s, wheels should be 2 x 10 8 cycles, it is more than 10 6 , as<br />

permanent dynamic strength, it is in the range <strong>of</strong> giga cycles<br />

Deviation from the assumed surface components, due to the impact on the<br />

surface. The surface cracks occur up to two millimeters in depth. In addition,<br />

the damaged corrosion’s protective layer, resulting in further growth <strong>of</strong> cracks<br />

through the cross-section<br />

Complex loads are more stochastic than envisaged at design <strong>and</strong><br />

testing <strong>of</strong> single components..<br />

Irregularities in the assembly can lead to addditonal tension load<br />

higher than assumed


Pleminar Investigation<br />

On the wagon, which was to derail the investigation was carried out on<br />

the damaged shaft <strong>and</strong> <strong>bearing</strong>. It was carried out a visual examination,<br />

chemical analysis <strong>of</strong> the shaft, the shaft tensile tests, hardness test shafts<br />

<strong>and</strong> <strong>bearing</strong>s <strong>and</strong> microscopic metallographic investigation <strong>of</strong> theshaft<br />

<strong>and</strong> <strong>bearing</strong><br />

An investigation has been a finding that the <strong>failure</strong> occurred due to<br />

damage to the <strong>bearing</strong> shaft.<br />

The heat <strong>of</strong> the shaft, the <strong>bearing</strong> inner ring, rollers <strong>and</strong> cages exceeded<br />

+1000 ˚ C <strong>and</strong> melted <strong>bearing</strong> <strong>and</strong> <strong>bearing</strong> housing melted, causing the<br />

damage <strong>of</strong> rail’s trial.<br />

The final decision <strong>of</strong> the investigation was that the first fatigue crack<br />

occurred in the internal ring, where it was exceeded long-term operation <strong>of</strong><br />

the dynamic load capacity <strong>of</strong> the ri.


Problem:<br />

Fracture <strong>of</strong> the housing roller inner ring <strong>of</strong> the burst, which is<br />

mounted on varicose nasedom axle shaft rate doubles!


Tensile tests


Tensile properties <strong>of</strong> <strong>bearing</strong> material<br />

Napetost (N/mm 2 )<br />

Stress<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Yield stress R p0.2 = 1100Nmm 2<br />

UTS R m = 1401Nmm 2<br />

0<br />

Tensile strength from σ-ε plot<br />

0 0,001 0,002 0,003 0,004 0,005 0,006 0,007 0,008<br />

2<br />

Deformacija<br />

Strain, -<br />

R p<br />

Meritev<br />

Aproksimacija<br />

Linearna (E)<br />

R m


Fracture mechanics toughness testing


<strong>Fatigue</strong> pre-<strong>cracking</strong> pre <strong>cracking</strong> by four bending<br />

• Maximum force <strong>of</strong> four bending fatigue:<br />

2 2<br />

2,52×B×(W-a) 2,52×10×(10-4)<br />

P = ×R = ×1100=15023,5N<br />

f p<br />

3×(S -S ) 3×(52,5-14,15)<br />

1 2<br />

F =0,1×F =0,1×9014=901,4N<br />

min max<br />

F =0,6×P =0,6×15023=9014N<br />

max f<br />

F<br />

F


Fracture mechanics toughness testing<br />

• Three point bending:<br />

F<br />

<strong>Fatigue</strong> crack after test!<br />

No stable crack extension!


Fracture mechanics toughness testing<br />

Force<br />

Sila (kN)<br />

2<br />

1,8<br />

1,6<br />

1,4<br />

1,2<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

0<br />

0 0,003 0,006 0,009 0,012 0,015 0,018 0,021 0,024 0,027 0,03<br />

CMOD (mm)<br />

F-CMOD plot shows plane strain conditions!<br />

P Q =P max<br />

F, kN<br />

95%<br />

Linearno (F, kN)


Fracture mechanics toughness testing<br />

• SIF calculation<br />

⎛ P×S ⎞ ⎛ 1764,1×52,5 ⎞<br />

K = ⎜ ⎟×f(a/W)= ⎜ ⎟×2,0043=587N/mm<br />

⎝ ⎠<br />

mat<br />

Q<br />

1/2 3/2<br />

⎝(B×B ) ×W N ⎠<br />

1/2 3/2<br />

(10×10) ×10<br />

[ ]<br />

1/2 2<br />

3×(a/W) × 1,99-(a/W)×(1-(a/W)×(2,15-3,93×(a/W)+2,7×(a/W) )<br />

a /W)= =<br />

i 3/2<br />

2×(1+2×a/W)×(1-a/W)<br />

[ ]<br />

1/2 2<br />

3×(4/10) × 1,99-(4/10)×(1-(4/10)×(2,15-3,93×(4/10)+2,7×(4/10) )<br />

a /W)= =2,00438<br />

i 3/2<br />

2×(1+2×4/10)×(1-4/10)<br />

a [mm] -crack length<br />

P Q [N] -Force <strong>of</strong> <strong>failure</strong><br />

S [N] -span distance<br />

B [mm] -thickness <strong>of</strong> specimen<br />

W [mm] -width <strong>of</strong> specimen<br />

3/2


Stress in inner ring induced by rollers<br />

Two extreme conditions are going to analysis!<br />

tion <strong>of</strong> ring!<br />

A<br />

A<br />

Crack is between two rollers!<br />

F<br />

Section <strong>of</strong> ring<br />

A<br />

A<br />

Crack is bellow roller!<br />

F


Stress distribution through the section<br />

Stress<br />

Rolling<br />

surface<br />

x<br />

Thickness <strong>of</strong> ring<br />

Crack is between two rollers!<br />

σ t obr<br />

σ zz<br />

σ xy<br />

σ r obr<br />

von Mises<br />

Axle


Stress distribution through the section<br />

Stress<br />

x<br />

Rolling<br />

surface<br />

Thickness <strong>of</strong> ring<br />

Crack is bellow roller!<br />

von Mises<br />

σ obr<br />

t<br />

σxy σ r obr<br />

σ zz<br />

Axle


Stress distribution through the section<br />

T<br />

p = 0<br />

p = 23.4Mpa<br />

Distribution <strong>of</strong> press fit stresses (σ t ) in case <strong>of</strong> overlap <strong>of</strong> 0,074 mm.


Analysis <strong>of</strong> results<br />

• Calculation <strong>of</strong> the <strong>bearing</strong> is made at SINTAP procedure (Structural <strong>Integrity</strong><br />

Assessment Procedures) - a procedure to ensure the integrity <strong>of</strong> structures.<br />

• The crack in the inner ring is deemed as a radial surface cracks in the cylinder<br />

wall.<br />

•Included are two different points on the crack on the surface <strong>and</strong> inside.<br />

• The calculations take account <strong>of</strong> tensions due to the burden <strong>and</strong> tension<br />

compression joints.<br />

Included are different values <strong>of</strong> the surplus between the axis <strong>and</strong> the inner ring bearin<br />

• Simulated two different situations depending on the crack roller <strong>and</strong> thus provides<br />

for two different stress intensity factor K I <strong>and</strong> K II.


K I (N/mm 1,5 )<br />

120<br />

118<br />

116<br />

114<br />

112<br />

110<br />

108<br />

106<br />

104<br />

102<br />

100<br />

Analysis <strong>of</strong> results<br />

1 2 3 4 5 6<br />

1<br />

K Imax<br />

2<br />

K Imin<br />

0 60 120 180 240 300 360<br />

Distribution <strong>of</strong> SIF K I .<br />

3<br />

4<br />

Rotacija Rotation notranjega<br />

<strong>of</strong> axle!<br />

obroča<br />

Rotacija Rotation valjčka <strong>of</strong> roller<br />

Rotation angle(˚)<br />

K Imax<br />

5<br />

6


K II (N/mm 1,5 )<br />

-0,2<br />

-0,5<br />

-0,8<br />

-1,1<br />

-1,4<br />

-1,7<br />

-2<br />

Analysis <strong>of</strong> results<br />

K IImax =K IIimin<br />

0 60 120 180 240 300 360<br />

Distribution <strong>of</strong> SIF K II.<br />

Angle (˚)


F<br />

Analysis <strong>of</strong> results<br />

Razpoka na<br />

notranjem obroču<br />

Razpoka na<br />

notranjem obroču<br />

Crack between rollers Crack below roller<br />

Two different position <strong>of</strong> roller regarding to surface crack<br />

Geometry <strong>of</strong> the crack caused by pitting!<br />

F


SIF K 1<br />

Application <strong>of</strong> Fracture mechanics<br />

K= I<br />

3 a 2c R i<br />

π×a∑σ×f( , , )<br />

i i<br />

i=0 t a t<br />

a[mm] -crack depth<br />

t[mm] -thickness <strong>of</strong> ring<br />

2c[mm] -crack length <strong>of</strong> surface<br />

Ri [mm]<br />

σ[N/mm<br />

-inner radius <strong>of</strong> ring<br />

2 98<br />

96<br />

94<br />

92<br />

90<br />

88<br />

] -stress through thickness <strong>of</strong> ring<br />

Maximum SIF K IAmax in point A:<br />

K = π×a×(σ ×f +σ ×f +σ ×f +σ ×f )<br />

IAmax 0 0 1 1 2 2 3 3<br />

σ,σ,σ,σ obr kr<br />

0 1 2 3<br />

f 0,f 1,f 2,f 3<br />

[N/mm2 ] -aproximation parametrs (σ +σ )<br />

t t<br />

-from SINTAP h<strong>and</strong>book for point A<br />

Napetost (N/mm 2 )<br />

102<br />

100<br />

(σ t obr + σt kr )<br />

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15<br />

Položaj na obroču (mm)


Application <strong>of</strong> Fracture mechanics<br />

Minimum SIF K IAmin in point A.<br />

K = π×a×(σ ×f +σ ×f +σ ×f +σ ×f )<br />

1Amin 0 0 1 1 2 2 3 3<br />

Napetost (N/mm 2 )<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

σ t kr<br />

0 2 4 6 8 10 12 14


M×τ× π×a<br />

2 K= II<br />

Φ<br />

[ ] 1/2<br />

1.64<br />

Φ= 1+1,464(a/c)<br />

Calculation <strong>of</strong> SIF in point A<br />

M 2 -coeficient <strong>of</strong> geometry<br />

τ [N/mm 2 ] - shear stress in inner ring<br />

a [mm] -crack depth<br />

c [mm] -half <strong>of</strong> crack length


Maksimum value <strong>of</strong> SIF K IIAmax at point A.<br />

M×τ × π×a<br />

2 max<br />

K =<br />

IIAmax<br />

Φ<br />

[ ] 1/2<br />

1.64<br />

Φ= 1+1.464(a/c)<br />

τ =σ +σ<br />

kr<br />

max r xy<br />

Calculation <strong>of</strong> SIF in point A<br />

M2 [N/mm2 ]<br />

[N/mm<br />

- coeficient <strong>of</strong> geometry<br />

2 ] -maximum shear stress in inner ring<br />

a[mm] -crack depth<br />

c[mm] -hal <strong>of</strong> crack length on surface<br />

σ kr<br />

r [N/mm2 ] -radial stress <strong>of</strong> press fit<br />

σxy [N/mm2 τ max<br />

] -shear stress caused by loading <strong>of</strong> <strong>bearing</strong>


Minimal value <strong>of</strong> SIF K IIAmin at point A.<br />

M×τ × π×a<br />

2 min<br />

K = IIAmin<br />

Φ<br />

τ =σ min r<br />

kr<br />

τ<br />

min<br />

[N/mm 2 ] - minimal shear sress in inner ring!<br />

Ker je σ = 0 ⇒ τ = τ ⇒ K = K<br />

xy max min IIAmax IIAmin<br />

T<br />

2B<br />

Calculation <strong>of</strong> SIF at point A<br />

a<br />

2H<br />

A<br />

φ<br />

φ c<br />

A<br />

φ<br />

φ c<br />

B<br />

B


K = π×a×(σ ×f +σ ×f +σ ×f +σ ×f )<br />

IBmax 0 0 1 1 2 2 3 3<br />

Minimum at point B.<br />

Calculation <strong>of</strong> SIF at point B<br />

K = π×a×(σ ×f +σ ×f +σ ×f +σ ×f )<br />

IBmin 0 0 1 1 2 2 3 3


Relevant for both modes B.<br />

K = K +K<br />

2 2<br />

prim(B)max IBmax IIBmax<br />

K = K +K<br />

2 2<br />

prim(B)min IBmin IIBmin<br />

SIF in point B


Limit load:<br />

σ σ<br />

gζ ( ) ⋅ + g( ζ) ⋅ + (1 −ζ) ⋅σ<br />

max<br />

=<br />

3 9<br />

r<br />

2<br />

(1 −ζ) ⋅Rp<br />

1<br />

σ = ⋅( σ −σ<br />

)<br />

b<br />

1 2<br />

2<br />

1<br />

σ = ⋅ ( σ + σ )<br />

m<br />

1 2<br />

2<br />

3 0.75<br />

( ) 1 20 ( )<br />

a<br />

gζ = − ⋅ζ⋅ l<br />

al ⋅<br />

ζ =<br />

T⋅ ( l+ 2 ⋅T)<br />

σ<br />

σ<br />

R<br />

b<br />

m<br />

p<br />

Estimation <strong>of</strong> Struc. <strong>Integrity</strong><br />

b 2<br />

2<br />

b<br />

2 2<br />

m<br />

[N/mm 2 ] - bending stress<br />

[N/mm 2 ] - membrane stress<br />

[N/mm 2 ] - yield stress<br />

σ 1<br />

f(σ t obr + σt kr )<br />

σ 2<br />

σ 2


−1/2<br />

⎡ 1 ⎤<br />

f( L ) =<br />

⎢<br />

1+ ⋅L ⋅ 0,3+ 0,7⋅exp( −µ ⋅L<br />

⎣ 2 ⎥⎦<br />

[ ]<br />

2 6<br />

r r r<br />

⎧ E<br />

⎪0,001⋅<br />

µ = min ⎨ Rp<br />

⎪⎩ 0,6<br />

( N 1)<br />

2⋅N<br />

= = ⋅<br />

r r r<br />

f( L) f( L 1) L −<br />

N<br />

L<br />

r max<br />

⎡ R ⎤ p<br />

= 0,3 ⋅⎢1− R<br />

⎥<br />

⎣ m ⎦<br />

1 ⎡R⋅R⎤ p m<br />

= ⋅⎢ ⎥<br />

2 ⎣ Rp<br />

⎦<br />

za<br />

FAC<br />

1 ≤ L ≤ L<br />

r r<br />

max<br />

za<br />

0≤L≤1 r


Structure assessment <strong>of</strong> inner ring<br />

K r, f(L r )<br />

Kr<br />

1,2<br />

1,1<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

K r , B<br />

K r,A<br />

f(Lr)<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1<br />

Lr =σref /σy FAD- overlap <strong>of</strong> 0,037 mm for crack depth a=15mm.<br />

f(Lr)<br />

Točka A<br />

Point<br />

Točka B


Structure assessment <strong>of</strong> inner ring<br />

K r, , f(L r )<br />

Kr<br />

1,2<br />

1,1<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

K r , B<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1<br />

Lr =σref /σy FAD-overlap <strong>of</strong> 0,05 mm.<br />

K r,A<br />

f(Lr)<br />

f(Lr)<br />

Točka Point<br />

A<br />

Točka B


Structure assessment <strong>of</strong> inner ring<br />

K r , f(L r )<br />

Kr<br />

1,2<br />

1,1<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

K r , B<br />

K r,A<br />

f(Lr)<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1<br />

FAD- overlap <strong>of</strong> 0,052 mm.<br />

f(Lr)<br />

Point<br />

Točka A<br />

Točka B<br />

L r =σ ref /σ y


Structure assessment <strong>of</strong> inner ring<br />

K r , f(L r )<br />

Kr<br />

1,2<br />

1,1<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

K r , B<br />

K r,A<br />

f(Lr)<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1,1<br />

FAD- overlap <strong>of</strong> 0,074 mm.<br />

f(Lr)<br />

Točka Point<br />

A<br />

Točka B<br />

L r =σ ref /σ y


Structure assessment <strong>of</strong> inner ring<br />

K r , f(L r )<br />

Kr<br />

Kr<br />

1,2<br />

1,2<br />

1,1 1,1<br />

1<br />

0,9 0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

K r , B<br />

0,3<br />

0,2<br />

0,1 0,1<br />

0<br />

0 0,1 0,2 0,3 0,4 0,5 0,6 0,6 0,7 0,7 0,8 0,8 0,9 0,9 1 1 1,1 1,1<br />

FAD-overlap <strong>of</strong> 0,1 mm.<br />

K r,A<br />

f(Lr)<br />

f(Lr)<br />

Točka Point<br />

f(Lr) A<br />

Točka BA<br />

Točka B<br />

L r =σ ref /σ y σ


Structure assessment <strong>of</strong> inner ring<br />

Critical crack length regarding to ovelaping<br />

PRESEŽEK δ=0,037 δ=0,05 δ=0,052 δ=0,055 δ=0,06 δ=0,074 δ=0,1 δ=0,15<br />

ac (mm) - - 15 14,6 14,3 12,5 9 5,5


1<br />

Press stress has not effect to crack.<br />

Dangerous for <strong>failure</strong>.<br />

Discussion<br />

Press stress causes crack propagation<br />

0,000 0,030 0,060 0,090 0,120 0,150<br />

0,037 0,052<br />

Safe service<br />

Appropriate overlaping!<br />

Fail <strong>of</strong> inner ring.<br />

0,037 0,074<br />

Reality?<br />

Overlap (mm)<br />

Prescribed by SŽ


Analysis<br />

The size <strong>of</strong> the surplus gap dl.<br />

The size <strong>of</strong> the surplus gap regarding to overlap δ.<br />

δ (mm) aC (mm) dl (mm)<br />

0,037 - 0,11618<br />

0,05 - 0,157<br />

0,052 15 0,16328<br />

0,055 14,6 0,1727<br />

0,06 14,3 0,1884<br />

0,074 12,5 0,23236<br />

0,1 9 0,314<br />

F


Conclusion<br />

The purpose <strong>of</strong> the work was to determine factors that affect the function <strong>of</strong><br />

<strong>bearing</strong> <strong>failure</strong> at the rate <strong>of</strong> freight <strong>railway</strong> vehicle axle.<br />

On the basis <strong>of</strong> the checks <strong>bearing</strong> <strong>failure</strong> is found that fracture occurs by the<br />

breakage <strong>of</strong> the <strong>bearing</strong> inner ring, which is mounted as press fit.<br />

In some cases, the <strong>bearing</strong> can have through crack, but inner ring still operates.<br />

It is possible in a manner that press force is adequate not too high <strong>and</strong> the rolling<br />

rollers rotate normally.<br />

On the other h<strong>and</strong>, it happened that there was a burst <strong>of</strong> <strong>bearing</strong> ring, rollers <strong>and</strong><br />

housing are overheating <strong>and</strong> rail car derailment.<br />

Thus, the immediate aim <strong>of</strong> the study was to determine the reasons which lead<br />

to a limited two-destructive state <strong>of</strong> the internal ring, namely the functional<br />

operation <strong>of</strong> the <strong>bearing</strong> or <strong>bearing</strong> <strong>failure</strong>.


The analysis shows that the inner tension ring, which is due to press fit is crucial<br />

for the integrity <strong>of</strong> the internal ring with a crack.<br />

Indeed, a sufficiently low tolerance overlaping between ring <strong>and</strong> axle the size <strong>of</strong><br />

the surplus gap will be enough small that rollers <strong>and</strong> <strong>bearing</strong> can be still in use<br />

even a crack will be through whole ring.<br />

In the case <strong>of</strong> excessive tension stresses, the ring is going to open <strong>and</strong> the rollers<br />

wedged into a crevice, <strong>and</strong> thus lead to <strong>bearing</strong> <strong>failure</strong> <strong>and</strong> the derailment <strong>of</strong> the<br />

vehicle. However, it must be oversized enough to prevent the rotation <strong>of</strong> the inner<br />

ring at the rate axis but not to high that crack in inner <strong>bearing</strong>’s ring has to large<br />

gap.


Thank you for your attention!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!