10.08.2013 Views

An Elementary Approach to the Jordan Form of a Matrix H. Valiaho ...

An Elementary Approach to the Jordan Form of a Matrix H. Valiaho ...

An Elementary Approach to the Jordan Form of a Matrix H. Valiaho ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>An</strong> <strong>Elementary</strong> <strong>Approach</strong> <strong>to</strong> <strong>the</strong> <strong>Jordan</strong> <strong>Form</strong> <strong>of</strong> a <strong>Matrix</strong><br />

H. <strong>Valiaho</strong><br />

The American Ma<strong>the</strong>matical Monthly, Vol. 93, No. 9. (Nov., 1986), pp. 711-714.<br />

Stable URL:<br />

http://links.js<strong>to</strong>r.org/sici?sici=0002-9890%28198611%2993%3A9%3C711%3AAEATTJ%3E2.0.CO%3B2-P<br />

The American Ma<strong>the</strong>matical Monthly is currently published by Ma<strong>the</strong>matical Association <strong>of</strong> America.<br />

Your use <strong>of</strong> <strong>the</strong> JSTOR archive indicates your acceptance <strong>of</strong> JSTOR's Terms and Conditions <strong>of</strong> Use, available at<br />

http://www.js<strong>to</strong>r.org/about/terms.html. JSTOR's Terms and Conditions <strong>of</strong> Use provides, in part, that unless you have obtained<br />

prior permission, you may not download an entire issue <strong>of</strong> a journal or multiple copies <strong>of</strong> articles, and you may use content in<br />

<strong>the</strong> JSTOR archive only for your personal, non-commercial use.<br />

Please contact <strong>the</strong> publisher regarding any fur<strong>the</strong>r use <strong>of</strong> this work. Publisher contact information may be obtained at<br />

http://www.js<strong>to</strong>r.org/journals/maa.html.<br />

Each copy <strong>of</strong> any part <strong>of</strong> a JSTOR transmission must contain <strong>the</strong> same copyright notice that appears on <strong>the</strong> screen or printed<br />

page <strong>of</strong> such transmission.<br />

The JSTOR Archive is a trusted digital reposi<strong>to</strong>ry providing for long-term preservation and access <strong>to</strong> leading academic<br />

journals and scholarly literature from around <strong>the</strong> world. The Archive is supported by libraries, scholarly societies, publishers,<br />

and foundations. It is an initiative <strong>of</strong> JSTOR, a not-for-pr<strong>of</strong>it organization with a mission <strong>to</strong> help <strong>the</strong> scholarly community take<br />

advantage <strong>of</strong> advances in technology. For more information regarding JSTOR, please contact support@js<strong>to</strong>r.org.<br />

http://www.js<strong>to</strong>r.org<br />

Mon Jan 28 19:24:46 2008


19861 NOTES 711<br />

Problem 2. Are <strong>the</strong>re reasonable criteria <strong>to</strong> distinguish those q-series in which <strong>the</strong> coefficients<br />

in absolute value tend <strong>to</strong> infinity?<br />

Since I can prove none <strong>of</strong> Conjectures 1-6, I have little <strong>to</strong> contribute <strong>to</strong> <strong>the</strong> solution <strong>of</strong> <strong>the</strong>se<br />

more general questions. However progress on Conjectures 1-6 might allow advances on <strong>the</strong>se<br />

more general questions.<br />

It is a very easy matter <strong>to</strong> compute <strong>the</strong> power series coefficients for functions such as those in<br />

equations (1)-(7). I will be happy <strong>to</strong> supply upon request a simple BASIC program implementable<br />

on most small home computers.<br />

This work was partially supported by National Science Foundation Grant DMS-8503324.<br />

References<br />

1. G. E. <strong>An</strong>drews, On <strong>the</strong> <strong>the</strong>orems <strong>of</strong> Watson and Dragonette for Ramanujan's mock <strong>the</strong>ta functions, her. J.<br />

Math., 88 (1966) 454-490.<br />

2. G. E. <strong>An</strong>drews, Enumerative pro<strong>of</strong>s <strong>of</strong> certain q-identities, Glasgow Math. J., 8 (1967) 33-40.<br />

3. G. E. <strong>An</strong>drews, The Theory <strong>of</strong> Partitions, Encyclopedia <strong>of</strong> Ma<strong>the</strong>matics and Its Applications, Vol. 2, G.-C.<br />

Rota ed., Addison-Wesley, 1976.<br />

4. G. E. <strong>An</strong>drews, Ramanujan's "Lost" notebook IV. Stacks and alternating parity in partitions, Adv. in Math.,<br />

53 (1984) 55-74.<br />

5. G. E. <strong>An</strong>drews, Ramanujan's "Lost" notebook V. Euler's partition identity, Adv. in Math. (<strong>to</strong> appear).<br />

6. L. A. Dragonette, Some asymp<strong>to</strong>tic formulae for <strong>the</strong> mock <strong>the</strong>ta series <strong>of</strong> Ramanujan, Trans. her. Math.<br />

SOC., 72 (1952) 474-500.<br />

7. P. Erdiis, On an elementary pro<strong>of</strong> <strong>of</strong> some asymp<strong>to</strong>tic formulas in <strong>the</strong> <strong>the</strong>ory <strong>of</strong> partitions, <strong>An</strong>n. <strong>of</strong> Math., 43<br />

(1942) 437-450.<br />

8. G. Meinardus, ~ ber Partitionen mit Differenzenbedingungen, Math. Z., 59 (1954) 388-398.<br />

9. L. J. Rogers, On two <strong>the</strong>orems <strong>of</strong> combina<strong>to</strong>ry analysis and some allied identities, Proc. London Math. Soc.<br />

(2), 16 (1916) 315-336.<br />

10. G. N. Watson, The final problem: an account <strong>of</strong> <strong>the</strong> mock <strong>the</strong>ta functions, J. London Math. Soc., 11 (1936)<br />

55-80.<br />

NOTES<br />

EDITED BY SABRA S. ANDERSON, SI~ELDON AXLER, AND 3. ARTHURSEEBACH, JR.<br />

For instructions about submitting Notes for publication in this department see <strong>the</strong> inside front cover.<br />

AN ELEMENTARY APPROACH TO THE JORDAN FORM OF A MATRIX<br />

H. V~L~AHO<br />

Department <strong>of</strong> Ma<strong>the</strong>matics, University <strong>of</strong> Helsinki, Hallituskatu 15, SF-00100 Helsinki 10, Finland<br />

1. Introduction. There are numerous pro<strong>of</strong>s <strong>of</strong> <strong>the</strong> existence <strong>of</strong> <strong>the</strong> <strong>Jordan</strong> normal form <strong>of</strong> a<br />

square complex matrix. In addition <strong>to</strong> <strong>the</strong> classical algebraic and geometric approaches (see, e.g.,<br />

Gantmacher [4]), several elementary pro<strong>of</strong>s have been presented, for example Noble [5], Filippov<br />

[I] (see also [q),Galperin and Waksman [3], and Fletcher and Sorensen [2]. Filippov as well as<br />

Galperin and Waksman establish <strong>the</strong> existence <strong>of</strong> <strong>the</strong> <strong>Jordan</strong> form by induction, applying <strong>the</strong><br />

<strong>the</strong>ory <strong>of</strong> linear mappings. In an inductive step, Filippov reduces by one <strong>the</strong> order <strong>of</strong> every<br />

<strong>Jordan</strong> block associated with an eigenvalue <strong>of</strong> <strong>the</strong> matrix, whereas Galperin and Waksman<br />

determine <strong>the</strong>se blocks entirely. Thus <strong>the</strong> inductive step <strong>of</strong> Galperin and Waksman is, in general,<br />

equivalent <strong>to</strong> several consecutive steps <strong>of</strong> Filippov, associated with <strong>the</strong> same eigenvalue. Noble's<br />

pro<strong>of</strong>, like Fletcher's and Sorensen's, are given in terms <strong>of</strong> matrices. With <strong>the</strong> aid <strong>of</strong> <strong>the</strong> Schur


712 H. VALIAHO [November<br />

unitary triangularization [a,<strong>the</strong>y reduce <strong>the</strong> determination <strong>of</strong> <strong>the</strong> <strong>Jordan</strong> form <strong>of</strong> a square<br />

complex matrix <strong>to</strong> <strong>the</strong> determination <strong>of</strong> <strong>the</strong> <strong>Jordan</strong> forms <strong>of</strong> nilpotent matrices. The main result<br />

<strong>of</strong> Fletcher and Sorensen is refining a strict upper triangular matrix <strong>to</strong> <strong>Jordan</strong> form by means <strong>of</strong> a<br />

sequence <strong>of</strong> similarity transformations. The pivot <strong>of</strong> Noble's pro<strong>of</strong> is <strong>the</strong> construction <strong>of</strong> <strong>the</strong><br />

<strong>Jordan</strong> strings <strong>of</strong> a general nilpotent matrix. The pro<strong>of</strong>s <strong>of</strong> <strong>the</strong> main <strong>the</strong>orems <strong>of</strong> Noble and <strong>of</strong><br />

Fletcher and Sorensen are constructive.<br />

We shall propose an elementary inductive pro<strong>of</strong> <strong>of</strong> <strong>the</strong> existence <strong>of</strong> <strong>the</strong> <strong>Jordan</strong> form. The basic<br />

idea <strong>of</strong> <strong>the</strong> induction is <strong>the</strong> same as in Galperin and Waksman [3]. The construction <strong>of</strong> <strong>Jordan</strong><br />

strings within <strong>the</strong> inductive step bears some resemblance <strong>to</strong> Noble's [5] approach. It is, however,<br />

carried out by a more straightforward method. Contrary <strong>to</strong> [2] and [5], no preliminary unitary<br />

triangularization is needed, although a simplified version <strong>of</strong> <strong>the</strong> pro<strong>of</strong>, using this triangularization,<br />

is outlined in a remark. The only nonconstructive step in <strong>the</strong> pro<strong>of</strong> is <strong>the</strong> determination <strong>of</strong><br />

<strong>the</strong> eigenvalues <strong>of</strong> a matrix.<br />

Of <strong>the</strong> earlier elementary approaches <strong>to</strong> <strong>the</strong> <strong>Jordan</strong> form mentioned above, only Galperin and<br />

Waksman [3] includes a pro<strong>of</strong> <strong>of</strong> <strong>the</strong> uniqueness <strong>of</strong> <strong>the</strong> <strong>Jordan</strong> form; Noble [5] establishes this<br />

result for <strong>the</strong> part <strong>of</strong> nilpotent matrices. We give <strong>the</strong> pro<strong>of</strong> <strong>of</strong> Galperin and Waksman in a more<br />

elementary and shorter form.<br />

If A E Cmxn (A is a complex m X n matrix), let r(A), g(A) and .&"(A)stand for <strong>the</strong> rank,<br />

<strong>the</strong> column space, and <strong>the</strong> null space <strong>of</strong> A, respectively. The spectrum <strong>of</strong> a square matrix A is<br />

denoted by o(A),and <strong>the</strong> similarity <strong>of</strong> two square matrices A and B is indicated by A = B. The<br />

identity matrix will be denoted by I and <strong>the</strong> dimension <strong>of</strong> a vec<strong>to</strong>r space S by dim S. The matrix<br />

with Jl(o) = [o] is called a <strong>Jordan</strong> block. A <strong>Jordan</strong> matri; J is a block diagonal matrix<br />

J = Jl @ . . . @J,, where <strong>the</strong> diagonal blocks 4 are <strong>Jordan</strong> blocks.<br />

2. Results. We shall give an elementary pro<strong>of</strong> <strong>of</strong> <strong>the</strong> following <strong>the</strong>orem:<br />

THEOREM(<strong>Jordan</strong> form). For any A E CnXn <strong>the</strong>re exists a nonsingular matrix P E CnX"such<br />

that<br />

where 4 = Jn,(A,),Xi E o(A), i = 1; ..,s. The matrix J, termed <strong>the</strong> <strong>Jordan</strong> normal form <strong>of</strong> A, is<br />

unique up <strong>to</strong> <strong>the</strong> order <strong>of</strong> <strong>the</strong> <strong>Jordan</strong> blocks.<br />

REMARK1. Denote <strong>the</strong> columns <strong>of</strong> P in (1) by x,~, ...,x ,,,, i = 1,. ..,s, successively. Then<br />

(1) is equivalent <strong>to</strong><br />

(2) Axil =Xixil; AX,~=X,X~~+X,,~-~, j=2 ,...,n,,<br />

for i = 1,. . . ,s, where <strong>the</strong> vec<strong>to</strong>rs xi, form a basis <strong>of</strong> Cn. <strong>An</strong>y such sequence xil,..., xin, is<br />

called a <strong>Jordan</strong> string.<br />

REMARK2. Denote B, = A - Ail; it follows from (2) that<br />

Because, in addition, B,xil = 0, we have<br />

xil E ./lr(Bi) n ~(B?I-') and xinZE N(B?~)<br />

Pro<strong>of</strong> <strong>of</strong> <strong>the</strong> Theorem. (Uniqueness; cf. [3].) Let X E u(A) be <strong>of</strong> algebraic multiplicity v and let


19861 NOTES 71 3<br />

<strong>the</strong>re exist, associated with A, q, <strong>Jordan</strong> blocks <strong>of</strong> order i, i = 1,. ..,n (set q, = 0 for i > n).<br />

Note that for i = 0,1,2,. .., <strong>the</strong> rank <strong>of</strong> JL(o) equals k or max(0, k - i) according <strong>to</strong> whe<strong>the</strong>r<br />

a f 0 or a = 0. Now<br />

implying<br />

n+2<br />

r ( ~ ~ ) = (j-i)qJ+(n-v), i=0,1, ...,n+1.<br />

j=i+l<br />

From <strong>the</strong>se equations we obtain uniquely<br />

(3) q, = r(~'-l)- 2r(Bi) + r(~'+l), i = 1,. . .,n.<br />

(Existence.) We proceed by induction on <strong>the</strong> order <strong>of</strong> A. In <strong>the</strong> inductive step, we first<br />

construct a set <strong>of</strong> vec<strong>to</strong>rs forming <strong>the</strong> <strong>Jordan</strong> strings associated with an eigenvalue <strong>of</strong> A and <strong>the</strong>n<br />

extend this set <strong>to</strong> a basis <strong>of</strong> 6".<br />

The <strong>the</strong>orem is obvious for n = 1. We assume it <strong>to</strong> hold for matrices <strong>of</strong> order < n. To<br />

establish <strong>the</strong> existence <strong>of</strong> <strong>the</strong> <strong>Jordan</strong> form <strong>of</strong> a matrix A E CnX",we choose any eigenvalue X <strong>of</strong><br />

A, define B = A -XI, let p be <strong>the</strong> smallest positive integer for whch r(BP") = r(BP) =: qo<br />

and, motivated by Remark 2, define <strong>the</strong> subspaces<br />

Then S, and Jlr(Bi-I), respectively, are <strong>the</strong> range and <strong>the</strong> kernel <strong>of</strong> <strong>the</strong> linear mapping<br />

whence<br />

We deduce that<br />

dim S, = dim Jlr( B') - dim Jlr( Bi-') = r( B'-') - r( B' )<br />

(0) # Sp c Sp-, c ... c S, =Jlr(B).<br />

The leading vec<strong>to</strong>rs y,j <strong>of</strong> <strong>the</strong> <strong>Jordan</strong> strings <strong>of</strong> B, associated with <strong>the</strong> zero eigenvalue, are<br />

determined as follows: starting from a basis y,,, .. .,y, <strong>of</strong> Sp, we extend <strong>the</strong> basis <strong>of</strong> S,+<br />

sequentially for i = p - 1, p - 2,. .. ,1, <strong>to</strong> that <strong>of</strong> S, Ly means <strong>of</strong> vec<strong>to</strong>rs yil,.. . , y,, (if<br />

S, = S,,,, this sequence is empty). Then, by (4), <strong>the</strong>re exist vec<strong>to</strong>rs ti, E Jlr(Bi) such that<br />

y.,= B'-' ti,, j=l, ..., q,, i=l, ...,p.<br />

1J<br />

We shall show that <strong>the</strong> vec<strong>to</strong>rs<br />

(5)<br />

<strong>to</strong>ge<strong>the</strong>r with any basis<br />

~'-lt,,? ~'-'t,~,. ..,~t,,, t,,, j = I,. .., q,, i = I,. . . ,p<br />

(6) z=[zl,...,zq,,l<br />

<strong>of</strong> 9(Bp) form a basis <strong>of</strong> Cn. First, <strong>the</strong> number <strong>of</strong> <strong>the</strong>se vec<strong>to</strong>rs is<br />

To establish <strong>the</strong> linear independence <strong>of</strong> <strong>the</strong> vec<strong>to</strong>rs included in (5-6), let


where /3 is a 9,-vec<strong>to</strong>r and <strong>the</strong> aijk are scalars, implying BPf = Bp(Z/3) = 0. The linear mapping<br />

G: ~ (BP)+ .%(BPf1) = ~ (BP),t * Bt,<br />

is surjective. To see this, note that any 1) E 9(BP") can be expressed in <strong>the</strong> form y = ~ P+lt=<br />

B(BPt) with t E @", whence y = Bu with u = Bpt E .%(Bp). Because G is surjective, it is an<br />

isomorphism, and so is GP. Thus BP(Zj3) = 0 * Z/3 = 0 * /3 = 0. The equation (7) reduces <strong>to</strong><br />

To show that <strong>the</strong> aijk in (8) are equal <strong>to</strong> zero, we apply induction on (decreasing) k. From<br />

~p-lf, = 0 we deduce easily that aPjP = 0, j = 1,. . . ,qp. Then, assuming aijk = 0 for j =<br />

1,. . .,qi, i = k,. .. ,p, k = h + 1,..., p, we obtain<br />

implying aijh= 0 for j = 1,.. . ,qi, i = h,... ,p. This completes <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> linear indepen-<br />

dence <strong>of</strong> <strong>the</strong> vec<strong>to</strong>rs included in (5-6).<br />

Because G is an isomorphism, we have BZ = ZC, where C (<strong>of</strong> order q,) is nonsingular. If X<br />

is <strong>the</strong> matrix consisting <strong>of</strong> <strong>the</strong> vec<strong>to</strong>rs (5) in <strong>the</strong> indicated order, <strong>the</strong>n<br />

where Kl is a <strong>Jordan</strong> matrix with zero diagonal elements, <strong>the</strong> blocks <strong>of</strong> which correspond <strong>to</strong> <strong>the</strong><br />

strings (5). So B = C @ K,. According <strong>to</strong> <strong>the</strong> induction hypo<strong>the</strong>sis, C has a <strong>Jordan</strong> form, say K2.<br />

But <strong>the</strong>n<br />

B = K2 @ K, =: K,<br />

and A = B + XI has <strong>the</strong> <strong>Jordan</strong> form J := K + XI.<br />

REMARK3. In <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> existence <strong>of</strong> <strong>the</strong> <strong>Jordan</strong> form, <strong>the</strong> <strong>Jordan</strong> strings associated with<br />

a given eigenvalue <strong>of</strong> A are constructed in an inductive step. Thus <strong>the</strong> pro<strong>of</strong> yields a means <strong>of</strong><br />

determining <strong>the</strong> <strong>Jordan</strong> form and <strong>the</strong> <strong>Jordan</strong> strings <strong>of</strong> a matrix, provided that its eigenvalues are<br />

given (if only <strong>the</strong> <strong>Jordan</strong> form is needed, equation (3) can be applied).<br />

RE~RK4. It is not difficult <strong>to</strong> reduce <strong>the</strong> determination <strong>of</strong> <strong>the</strong> <strong>Jordan</strong> form <strong>of</strong> a square<br />

complex matrix <strong>to</strong> <strong>the</strong> determination <strong>of</strong> <strong>the</strong> <strong>Jordan</strong> forms <strong>of</strong> nilpotent matrices (see, e.g., [5]).It<br />

should be noted that <strong>the</strong> pro<strong>of</strong> <strong>of</strong> <strong>the</strong> Theorem is especially simple in <strong>the</strong> case <strong>of</strong> a nilpotent<br />

matrix A f 0: X = 0, B = A, p is <strong>the</strong> index <strong>of</strong> A, q, = 0, and 2, C and /3 are void. The pro<strong>of</strong> is<br />

complete in one step; no induction is needed.<br />

References<br />

1. A. F. Filippov, A short pro<strong>of</strong> <strong>of</strong> <strong>the</strong> <strong>the</strong>orem on <strong>the</strong> reduction <strong>of</strong> a matrix <strong>to</strong> <strong>Jordan</strong> form, Moscow Univ.<br />

Math. Bull., 26 (1971) 70-71.<br />

2. R. Fletcher and D. C. Sorensen, <strong>An</strong> algorithmic derivation <strong>of</strong> <strong>the</strong> <strong>Jordan</strong> canonical form, this MONTHLY, 90<br />

(1983) 12-16.<br />

3. A. Galperin and Z. Waksman, <strong>An</strong> elementary approach <strong>to</strong> <strong>Jordan</strong> <strong>the</strong>ory, this MONTHLY, 87 (1981) 728-732.<br />

4. F. R. Gantmacher, The Theory <strong>of</strong> Matrices, Vol. 1, Chelsea, New York, 1959.<br />

5. B. Noble, Applied Linear Algebra, Prentice-Hall, Englewood Cliffs, NJ, 1969.<br />

6. I. Schur, ~ber die characteristischen Wurzeln einer linearen Substitution mit einer <strong>An</strong>wendung auf die<br />

Theone der Integralgleichungen, Math. <strong>An</strong>n., 66 (1909) 488-510.<br />

7. G. Strang, Linear Algebra and Its Applications, 2nd ed., Academic Press, New York, 1980.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!