12.08.2013 Views

Extremes Weather Potential Weather and Climate Impact ...

Extremes Weather Potential Weather and Climate Impact ...

Extremes Weather Potential Weather and Climate Impact ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Modeling the <strong>Potential</strong> for<br />

Extreme Convective <strong>Weather</strong><br />

<strong>Weather</strong> <strong>and</strong> <strong>Climate</strong> <strong>Impact</strong> Assessment Program<br />

Matt Pocernich*, Barbara Brown*,<br />

Eric Gillel<strong>and</strong>* <strong>and</strong> Harold Brooks +<br />

*National Center for Atmospheric Research, Boulder, USA<br />

+ NOAA, Norman, Oklahoma, USA<br />

IMSC Bejing 2007


The problem is …<br />

There is a desire to make inferences about<br />

severe storm activity under climate change.<br />

But…<br />

Severe convective storms are not directly<br />

predicted or indicated by climate models nor reanalysis<br />

data.<br />

Historical records rely on human observations<br />

Limited temporal <strong>and</strong> spatial coverage<br />

Determining changes in the frequency <strong>and</strong><br />

intensity of these events is problematic.<br />

IMSC Bejing 2007


CAPE, shear <strong>and</strong> severe<br />

storms<br />

Work by Brooks, Lee <strong>and</strong> Craven (2003)<br />

links CAPE <strong>and</strong> shear to discriminating<br />

convective events<br />

CAPE = convective available potential<br />

energy; Shear = changes in vertical<br />

velocity with height<br />

The influence of both variables can be<br />

captured by modeling CAPE * Shear<br />

IMSC Bejing 2007


Limitations of CAPE*Shear in<br />

discriminating storm types.<br />

IMSC Bejing 2007<br />

Discrimination plot <strong>and</strong><br />

empirical distribution<br />

functions for match<br />

proximity soundings by<br />

storm type. Data from<br />

Craven <strong>and</strong> Brooks,<br />

2002.


Limitations of CAPE*Shear in<br />

discriminating storm types.<br />

IMSC Bejing 2007<br />

Discrimination plot <strong>and</strong><br />

empirical distribution<br />

functions for match<br />

proximity soundings by<br />

storm type. Data from<br />

Craven <strong>and</strong> Brooks,<br />

2002.<br />

Median values<br />

indicate reasonable<br />

spread


NCEP/NCAR Reanalysis Data<br />

(Kalnay 1996)<br />

Resolution ~1.9x1.9 degree lat lon, 27<br />

levels (Approx 17,000 gridpoints).<br />

Every 6 hours from June 1, 1957- Dec<br />

31, 1999 with global coverage.<br />

Values of CAPE <strong>and</strong> shear were<br />

calculated using the re-analysis data at<br />

each grid point.<br />

IMSC Bejing 2007


Other approaches<br />

Satellite based analysis for Tropics<br />

(Zipser, BAMS 2006)<br />

Observation based (Europe, US)<br />

Model CAPE based on radiosonde data.<br />

(Derubertis, 2006)<br />

IMSC Bejing 2007


What is new…<br />

Global dataset<br />

Modeling extreme values<br />

Address issues of multiple comparisons<br />

Use spatial statistics techniques<br />

IMSC Bejing 2007


Mean Annual 95 th percentile CAPE<br />

IMSC Bejing 2007


Mean annual 95 th percentile<br />

shear<br />

IMSC Bejing 2007


Mean Annual 95 th Percentile<br />

CAPE*Shear<br />

IMSC Bejing 2007


20 year return level for CAPE *<br />

shear estimated with GEV (Gillel<strong>and</strong>, 2006)<br />

IMSC Bejing 2007


Compare with satellite derived<br />

data Zipser (BAMS, 2006)<br />

/scratch/pocernic/josh2/<br />

IMSC Bejing 2007<br />

Minimum brightness<br />

temperatures<br />

Max height of 40dBZ<br />

echo<br />

Lightning flash rate


Controlling for multiple<br />

comparisons<br />

Simplest: Bonferroni<br />

Sets significance level at α/N.<br />

Very restrictive. (Our N = 17,800)<br />

Livezey <strong>and</strong> Chen (1983)<br />

Tests field significance rather than individual tests<br />

Number of p-values less than α compared with the expected<br />

number from a binomial distribution.<br />

Does not take into account strength of p-value.<br />

False Discovery Rate (FDR) – Ventura et al (2004)<br />

Controls number of falsely rejected Ho compare with the<br />

number of rejected.<br />

Wilks (2006) demonstrated use of FDR to measure global<br />

significance.<br />

IMSC Bejing 2007


Hypothesis tests <strong>and</strong> the FDR<br />

TRUTH Decision<br />

Accept Ho Reject Ho<br />

Ho n Ho -n FP n FP<br />

Ha n FN n Ha -n FN<br />

Col Totals n accept n reject<br />

FDR Rule:<br />

Reject all Ho when<br />

⎧ i ⎫<br />

= ⎨ ≤ ⎬<br />

⎩ ⎭<br />

k max i: p() i q<br />

i= 0,..., n n<br />

Row<br />

Totals<br />

n Ho<br />

n Ho True<br />

n Ho False<br />

n total<br />

Where q = FDR <strong>and</strong> p-values are ordered<br />

IMSC Bejing 2007<br />

Typical local<br />

significance level α =<br />

n FP/n Ho<br />

FDR = α global <strong>and</strong><br />

equals E(n FP/n reject)<br />

Provides upper bound<br />

for determining<br />

significant p-values.


Other attributes of the FDR<br />

method.<br />

Much less restrictive than the<br />

Bonferroni.<br />

More powerful when the number of true<br />

Ha is small<br />

Robust to spatial correlation which is a<br />

common feature of climate <strong>and</strong> weather<br />

data.<br />

IMSC Bejing 2007


Trends of Annual 95 th<br />

percentile CAPE<br />

IMSC Bejing 2007


Trends in CAPE, 1973 – 1997<br />

Derubertis, 2006<br />

Spring<br />

IMSC Bejing 2007<br />

Summer


Trends in Annual 95 th<br />

percentile Shear<br />

IMSC Bejing 2007


Trends in CAPE * Shear<br />

IMSC Bejing 2007


Conclusions<br />

CAPE*shear has utility in identifying<br />

convective events, but limited utility is<br />

discriminating between storm types.<br />

Trends in the CAPE values calculated from<br />

soundings generally concur with those from<br />

the reanalysis data.<br />

Regions of high storms identified by other<br />

methods concur with CAPE*shear values<br />

calculated using reanalysis data.<br />

IMSC Bejing 2007


Future work<br />

Compare results with those of climate<br />

model data.<br />

Address differences in spatial resolution<br />

between climate models <strong>and</strong> reanalysis.<br />

Develop methods for applying GEV in a<br />

spatial context to improve robustness.<br />

Communicate these findings.<br />

IMSC Bejing 2007


Trend in extremes using GEV<br />

distribution<br />

IMSC Bejing 2007


References<br />

Brooks, H.E, J. L., <strong>and</strong> J. Craven, 2003: The spatial distribution of severe<br />

thunderstorm <strong>and</strong> tornado environments from global reanalysis data.<br />

ATMOSPHERIC RESEARCH, 67-8, 73–94.<br />

Benjamini , Y. <strong>and</strong> Y. Hochberg, 1995: Controlling the false discovery rate: A practical<br />

<strong>and</strong> powerful approach to multiple testing. J. Roy. Stat. Soc. 57B, 289-300.<br />

Craven, J., <strong>and</strong> H. E. Brooks, 2006: Baseline climatology of sounding derived<br />

parameters associated with deep, moist convection. Nat. Wea. Digest, in<br />

press.<br />

Marsh, P. T., H. E. Brooks, <strong>and</strong> David J. Karoly (2007). Assesment Of The Severe<br />

<strong>Weather</strong> Environment In North America Simulated By A Global <strong>Climate</strong><br />

Model. Accepted Atmospheric Science Letters<br />

Ventura, V., C.J. Paciorek, <strong>and</strong> J.S. Risbey, 2004: Controlling the proportion of falsely<br />

rejected hypotheses when conducting multiple tests with climatological data.<br />

J. <strong>Climate</strong>, 17, 4343-4356.<br />

Wilks, D.S. 2006: On “Field Significance” <strong>and</strong> the False Discovery Rate. J. of Applied<br />

Meteorology <strong>and</strong> Climatology, 45, p 1181 – 1189.<br />

Zipser, E. J., Daniel J. Cecil, Chuntao Liu, Stephen W. Nesbitt, <strong>and</strong> David P. Yorty,<br />

2006: Where are the most intense thunderstorms on earth? (87), 8 Bulletin<br />

of the American Meteorological Society page 1057–1071.<br />

IMSC Bejing 2007


FDR rule (Benjamini <strong>and</strong> Hochberg, 1995)<br />

Reject all Ho when<br />

⎧ i ⎫<br />

⎨ ⎬<br />

⎩ ⎭<br />

k = max i: p() i ≤q<br />

i= 0,..., n n<br />

Where q = FDR <strong>and</strong> p-values are<br />

ordered<br />

IMSC Bejing 2007


Illustration of false discovery<br />

rate. (Venturi et al, 2004)<br />

IMSC Bejing 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!