13.08.2013 Views

Insecticides in the Urban Environment: Mode of Action

Insecticides in the Urban Environment: Mode of Action

Insecticides in the Urban Environment: Mode of Action

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Insecticides</strong> Used <strong>in</strong> <strong>the</strong> <strong>Urban</strong> <strong>Environment</strong>: <strong>Mode</strong> <strong>of</strong><br />

<strong>Action</strong> 1<br />

S. M. Valles and P. G. Koehler 2<br />

Most people know that <strong>in</strong>secticides kill <strong>in</strong>sects.<br />

However, <strong>the</strong> way <strong>in</strong> which <strong>the</strong>se chemicals work is a<br />

mystery to most <strong>of</strong> us. How an <strong>in</strong>secticide works is<br />

called its mode <strong>of</strong> action. A complete understand<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> mode <strong>of</strong> action <strong>of</strong> an <strong>in</strong>secticide requires<br />

knowledge <strong>of</strong> how it affects a specific target site<br />

with<strong>in</strong> an organism. The target site is usually a critical<br />

prote<strong>in</strong> or enzyme <strong>in</strong> <strong>the</strong> <strong>in</strong>sect, but some <strong>in</strong>secticides<br />

affect broader targets. For example, silica aerogels<br />

affect <strong>the</strong> entire lipid layer on <strong>the</strong> <strong>in</strong>sect cuticle.<br />

Although most <strong>in</strong>secticides have multiple biological<br />

effects, toxicity is usually attributed to a s<strong>in</strong>gle major<br />

effect. This fact sheet is <strong>in</strong>tended to expla<strong>in</strong> what<br />

<strong>in</strong>secticides do <strong>in</strong> <strong>in</strong>sects to cause toxicity and death<br />

(Table 1).<br />

<strong>Insecticides</strong> can be classified accord<strong>in</strong>g to <strong>the</strong>ir<br />

mode <strong>of</strong> entry <strong>in</strong>to <strong>the</strong> <strong>in</strong>sect 1) stomach poisons, 2)<br />

contact poisons, and 3) fumigants. However, many<br />

<strong>in</strong>secticides belong to more than one category when<br />

grouped <strong>in</strong> this way, limit<strong>in</strong>g its usefulness. Ano<strong>the</strong>r<br />

way <strong>in</strong>secticides can be classified is by <strong>the</strong>ir mode <strong>of</strong><br />

action. Most <strong>in</strong>secticides affect one <strong>of</strong> five biological<br />

systems <strong>in</strong> <strong>in</strong>sects. These <strong>in</strong>clude 1) <strong>the</strong> nervous<br />

system, 2) <strong>the</strong> production <strong>of</strong> energy, 3) <strong>the</strong> production<br />

<strong>of</strong> cuticle, 4) <strong>the</strong> endocr<strong>in</strong>e system, and 5) water<br />

balance. This method <strong>of</strong> classification is preferred<br />

among scientists.<br />

ENY-282<br />

<strong>Insecticides</strong> that Affect <strong>the</strong> Nervous<br />

System<br />

Most traditional <strong>in</strong>secticides fit <strong>in</strong>to this category.<br />

Pyrethroid, organophosphorus, and carbamate<br />

<strong>in</strong>secticides all adversely affect <strong>the</strong> nervous system.<br />

Pyrethroids are syn<strong>the</strong>tic chemicals whose<br />

structures mimic <strong>the</strong> natural <strong>in</strong>secticide pyrethr<strong>in</strong>.<br />

Pyrethr<strong>in</strong>s are found <strong>in</strong> <strong>the</strong> flower heads <strong>of</strong> plants<br />

belong<strong>in</strong>g to <strong>the</strong> family Compositae (e.g.<br />

chrysan<strong>the</strong>mums). These <strong>in</strong>secticides have a unique<br />

ability to knock down <strong>in</strong>sects quickly. Syn<strong>the</strong>tic<br />

pyrethr<strong>in</strong>s (also known as pyrethroids) have been<br />

chemically altered to make <strong>the</strong>m more stable.<br />

Pyrethroids are axonic poisons (<strong>the</strong>y poison <strong>the</strong> nerve<br />

fiber). They b<strong>in</strong>d to a prote<strong>in</strong> <strong>in</strong> nerves called <strong>the</strong><br />

voltage-gated sodium channel. Normally, this prote<strong>in</strong><br />

opens caus<strong>in</strong>g stimulation <strong>of</strong> <strong>the</strong> nerve and closes to<br />

term<strong>in</strong>ate <strong>the</strong> nerve signal. Pyrethroids b<strong>in</strong>d to this<br />

gate and prevent it from clos<strong>in</strong>g normally which<br />

results <strong>in</strong> cont<strong>in</strong>uous nerve stimulation. This expla<strong>in</strong>s<br />

<strong>the</strong> tremors exhibited by poisoned <strong>in</strong>sects. They lose<br />

control <strong>of</strong> <strong>the</strong>ir nervous system and are unable to<br />

produce coord<strong>in</strong>ated movement.<br />

Carbamate and organophosphorus <strong>in</strong>secticides<br />

also affect <strong>the</strong> nervous system. However, <strong>the</strong>se<br />

<strong>in</strong>secticides are synaptic poisons. The synapse is a<br />

junction between two nerves or a nerve connection<br />

1. This document is ENY-282, one <strong>of</strong> a series <strong>of</strong> <strong>the</strong> Entomology and Nematology Department, Florida Cooperative Extension Service, Institute <strong>of</strong> Food and<br />

Agricultural Sciences, University <strong>of</strong> Florida. Publication date: September 1997.<br />

2. S. M. Valles, research entomologist, USDA-ARS, Center for Medical, Agricultural and Veter<strong>in</strong>ary Entomology, 1600 SW 23rd Drive, Ga<strong>in</strong>esville, FL 32608<br />

and P. G. Koehler, pr<strong>of</strong>essor, Department <strong>of</strong> Entomology and Nematology, Cooperative Extension Service, Institute <strong>of</strong> Food and Agricultural Sciences,<br />

University <strong>of</strong> Florida, Ga<strong>in</strong>esville, 32611.<br />

The Institute <strong>of</strong> Food and Agricultural Sciences is an equal opportunity/affirmative action employer authorized to provide research,<br />

educational <strong>in</strong>formation and o<strong>the</strong>r services only to <strong>in</strong>dividuals and <strong>in</strong>stitutions that function without regard to race, color, sex, age, handicap,<br />

or national orig<strong>in</strong>. For <strong>in</strong>formation on obta<strong>in</strong><strong>in</strong>g o<strong>the</strong>r extension publications, contact your county Cooperative Extension Service <strong>of</strong>fice.<br />

Florida Cooperative Extension Service / Institute <strong>of</strong> Food and Agricultural Sciences / University <strong>of</strong> Florida / Christ<strong>in</strong>e Taylor Waddill, Dean


<strong>Insecticides</strong> Used <strong>in</strong> <strong>the</strong> <strong>Urban</strong> <strong>Environment</strong>: <strong>Mode</strong> <strong>of</strong> <strong>Action</strong> Page 2<br />

po<strong>in</strong>t (hence <strong>the</strong> name synaptic poison). Specifically,<br />

organophosphorus and carbamate <strong>in</strong>secticides b<strong>in</strong>d to<br />

an enzyme found <strong>in</strong> <strong>the</strong> synapse called<br />

acetylchol<strong>in</strong>esterase. This enzyme is designed to stop<br />

a nerve impulse after it has crossed <strong>the</strong> synapse.<br />

Organophosphorus and carbamate <strong>in</strong>secticides b<strong>in</strong>d to<br />

and prevent <strong>the</strong> enzyme from work<strong>in</strong>g. Therefore,<br />

poisoned synapses cannot stop <strong>the</strong> nerve impulse.<br />

Consequently, cont<strong>in</strong>ued stimulation <strong>of</strong> <strong>the</strong> nerve<br />

occurs as observed with pyrethroids. Aga<strong>in</strong>, poisoned<br />

<strong>in</strong>sects exhibit tremors and uncoord<strong>in</strong>ated movement.<br />

Avermect<strong>in</strong>s belong to a group <strong>of</strong> chemicals called<br />

macrolactones. These chemicals are derived from a<br />

fungus and also adversely affect <strong>the</strong> nervous system.<br />

Avermect<strong>in</strong>s are axonic poisons (affect <strong>the</strong> nerve<br />

fiber). They b<strong>in</strong>d to ano<strong>the</strong>r prote<strong>in</strong> <strong>in</strong> <strong>the</strong> nerve fiber<br />

called <strong>the</strong> (gamma) am<strong>in</strong>o butyric acid (GABA)gated<br />

chloride channel. This prote<strong>in</strong> forms a channel<br />

with<strong>in</strong> <strong>the</strong> nerve that attenuates some nerve impulses.<br />

Avermect<strong>in</strong>s block <strong>the</strong> channel caus<strong>in</strong>g nerve<br />

hyperexcitation. Aga<strong>in</strong>, <strong>the</strong> result is that <strong>the</strong> nervous<br />

system becomes overexcited result<strong>in</strong>g <strong>in</strong> tremors and<br />

uncoord<strong>in</strong>ated movement.<br />

Two new <strong>in</strong>secticides have been <strong>in</strong>troduced<br />

recently that also cause toxicity by affect<strong>in</strong>g <strong>the</strong><br />

nervous system. Imidacloprid belongs to <strong>the</strong><br />

chloronicot<strong>in</strong>yl chemical class <strong>of</strong> <strong>in</strong>secticides.<br />

Imidacloprid is also a synaptic nervous system poison.<br />

Specifically, this chemical mimics <strong>the</strong> action <strong>of</strong> a<br />

neurotransmitter called acetylchol<strong>in</strong>e. Acetylchol<strong>in</strong>e<br />

normally turns on a nerve impulse at <strong>the</strong> synapse but<br />

its effects are term<strong>in</strong>ated very quickly. Imidacloprid<br />

turns on <strong>the</strong> nerve impulse but cannot term<strong>in</strong>ate it<br />

because <strong>of</strong> its chemical structure. Therefore, <strong>the</strong><br />

nervous system is overexcited (as with<br />

organophosphates, carbamates, and pyrethroids)<br />

result<strong>in</strong>g <strong>in</strong> tremors and uncoord<strong>in</strong>ated movement.<br />

Imidacloprid is more specific for <strong>in</strong>sect nervous tissue<br />

compared with mammalian nervous tissue.<br />

The o<strong>the</strong>r new <strong>in</strong>secticide that affects <strong>the</strong> nervous<br />

system is fipronil. Fipronil is a phenylpyrazole<br />

chemical class <strong>in</strong>secticide. Its mode <strong>of</strong> action is<br />

similar to cyclodiene <strong>in</strong>secticides (e.g. chlordane or<br />

aldr<strong>in</strong>) that were used extensively as termiticides<br />

dur<strong>in</strong>g <strong>the</strong> 60's and 70's and <strong>the</strong> abamect<strong>in</strong>s described<br />

above. These chemicals are axonic poisons that affect<br />

<strong>the</strong> GABA-gated chloride channel.<br />

<strong>Insecticides</strong> that Inhibit Energy<br />

Production<br />

Only a handful <strong>of</strong> chemicals that <strong>in</strong>hibit <strong>the</strong><br />

production <strong>of</strong> energy are currently <strong>in</strong> use as<br />

<strong>in</strong>secticides. However, significant research and<br />

development <strong>of</strong> new chemicals with this mode <strong>of</strong><br />

action are currently under way by many pesticide<br />

manufacturers.<br />

The most pervasive and well-known energy<br />

<strong>in</strong>hibit<strong>in</strong>g <strong>in</strong>secticide is hydramethylnon, <strong>the</strong> active<br />

<strong>in</strong>gredient <strong>in</strong> Amdro®, Siege Gel Bait®, and<br />

Combat®. This <strong>in</strong>secticide belongs to <strong>the</strong> chemical<br />

class amid<strong>in</strong>ohydrazone. This chemical b<strong>in</strong>ds to a<br />

prote<strong>in</strong> called a cytochrome <strong>in</strong> <strong>the</strong> electron transport<br />

system <strong>of</strong> <strong>the</strong> mitochondrion. This b<strong>in</strong>d<strong>in</strong>g blocks <strong>the</strong><br />

production <strong>of</strong> ATP. Insects killed by <strong>the</strong>se chemicals<br />

die on <strong>the</strong>ir feet. They essentially “run out <strong>of</strong> gas.”<br />

Ano<strong>the</strong>r <strong>in</strong>secticide currently available that<br />

<strong>in</strong>hibits energy production is sulfluramid. This<br />

<strong>in</strong>secticide belongs to <strong>the</strong> halogenated alkyl<br />

sulphonamide chemical class. It is <strong>the</strong> active<br />

<strong>in</strong>gredient found <strong>in</strong> Raid Max® ant bait. Sulfluramid<br />

is made more toxic by <strong>the</strong> organism. The parent<br />

chemical is converted to toxic metabolites by enzymes<br />

<strong>in</strong> <strong>the</strong> body.<br />

F<strong>in</strong>ally, <strong>the</strong> fumigant sulfluryl fluoride <strong>in</strong>hibits<br />

energy production. This chemical is very volatile and<br />

typically used to fumigate houses for drywood termite<br />

<strong>in</strong>festations. Sulfluryl fluoride is fast act<strong>in</strong>g and its<br />

mode <strong>of</strong> action is similar to hydramethylnon and<br />

sulfluramid. However, <strong>the</strong> enzyme affected is<br />

different.<br />

Many new chemicals are be<strong>in</strong>g developed for use<br />

as energy production <strong>in</strong>hibitors. Chemicals <strong>in</strong> <strong>the</strong><br />

class pyrrole, thiourea, and qu<strong>in</strong>azol<strong>in</strong>e are show<strong>in</strong>g<br />

great promise as pesticides that <strong>in</strong>hibit energy<br />

production.<br />

<strong>Insecticides</strong> that Affect <strong>the</strong> Insect<br />

Endocr<strong>in</strong>e System<br />

These chemicals are typically referred to as <strong>in</strong>sect<br />

growth regulators or IGRs. IGRs act on <strong>the</strong> endocr<strong>in</strong>e<br />

or hormone system <strong>of</strong> <strong>in</strong>sects. These <strong>in</strong>secticides are<br />

specific for <strong>in</strong>sects, have very low mammalian<br />

September 1998


<strong>Insecticides</strong> Used <strong>in</strong> <strong>the</strong> <strong>Urban</strong> <strong>Environment</strong>: <strong>Mode</strong> <strong>of</strong> <strong>Action</strong> Page 3<br />

toxicity, are nonpersistent <strong>in</strong> <strong>the</strong> environment, and<br />

cause death slowly. Most <strong>of</strong> <strong>the</strong> currently registered<br />

IGRs mimic <strong>the</strong> juvenile hormone produced <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>sect bra<strong>in</strong>. Juvenile hormone tells <strong>the</strong> <strong>in</strong>sect to<br />

rema<strong>in</strong> <strong>in</strong> <strong>the</strong> immature state. When sufficient growth<br />

has occurred, <strong>the</strong> juvenile hormone production ceases<br />

trigger<strong>in</strong>g <strong>the</strong> molt to <strong>the</strong> adult stage. IGR chemicals,<br />

such as hydroprene, methoprene, pyriproxyfen, and<br />

fenoxycarb, mimic <strong>the</strong> action <strong>of</strong> juvenile hormone and<br />

keep <strong>the</strong> <strong>in</strong>sect <strong>in</strong> <strong>the</strong> immature state. Insects treated<br />

with <strong>the</strong>se chemicals are unable to molt successfully to<br />

<strong>the</strong> adult stage, and cannot reproduce normally.<br />

<strong>Insecticides</strong> that Inhibit Cuticle<br />

Production<br />

These chemicals are known as chit<strong>in</strong> syn<strong>the</strong>sis<br />

<strong>in</strong>hibitors or CSIs. They are <strong>of</strong>ten grouped with <strong>the</strong><br />

IGRs. The most notable chemical be<strong>in</strong>g used as a CSI<br />

is <strong>the</strong> benzoyphenyl ureas. This class <strong>of</strong> <strong>in</strong>secticides<br />

<strong>in</strong>cludes lufenuron (Program®) which is a systemic<br />

<strong>in</strong>secticide used for flea control (fed to your pet),<br />

diflubenzuron (Dimil<strong>in</strong>®) used aga<strong>in</strong>st fly larvae <strong>in</strong><br />

manure, and hexaflumuron (Sentricon®) used <strong>in</strong> a<br />

termite bait station. These chemicals <strong>in</strong>hibit <strong>the</strong><br />

production <strong>of</strong> chit<strong>in</strong>. Chit<strong>in</strong> is a major component <strong>of</strong><br />

<strong>the</strong> <strong>in</strong>sect exoskeleton. Insects poisoned with CSIs are<br />

unable to syn<strong>the</strong>size new cuticle, <strong>the</strong>reby prevent<strong>in</strong>g<br />

<strong>the</strong>m from molt<strong>in</strong>g successfully to <strong>the</strong> next stage.<br />

<strong>Insecticides</strong> Affect<strong>in</strong>g Water Balance<br />

<strong>Insecticides</strong> with this mode <strong>of</strong> action <strong>in</strong>clude boric<br />

acid, diatomaceous earth, and sorptive dusts. Insects<br />

have a th<strong>in</strong> cover<strong>in</strong>g <strong>of</strong> wax on <strong>the</strong>ir body that helps to<br />

prevent water loss from <strong>the</strong> cuticular surface. Silica<br />

aerogels (sorptive dusts) and diatomaceous earth are<br />

very effective at absorb<strong>in</strong>g oils. Therefore, when an<br />

<strong>in</strong>sect contacts one <strong>of</strong> <strong>the</strong>se chemicals it absorbs <strong>the</strong><br />

protective waxy cover<strong>in</strong>g on <strong>the</strong> <strong>in</strong>sect result<strong>in</strong>g <strong>in</strong><br />

rapid water loss from <strong>the</strong> cuticle and eventually death<br />

from dessication. Unfortunately, <strong>in</strong>sects that live <strong>in</strong><br />

environments with high relative humidities, or that<br />

have ready access to a water source, show an <strong>in</strong>creased<br />

tolerance to silica aerogels and diatomaceous earth.<br />

This is because water loss can be m<strong>in</strong>imized by ei<strong>the</strong>r<br />

<strong>of</strong> <strong>the</strong>se conditions and <strong>the</strong> <strong>in</strong>sect may survive despite<br />

<strong>the</strong> absence <strong>of</strong> a wax layer.<br />

Borate conta<strong>in</strong><strong>in</strong>g <strong>in</strong>secticides also disrupt water<br />

balance <strong>in</strong> <strong>in</strong>sects. The exact mode <strong>of</strong> action (more<br />

specifically <strong>the</strong> target site) <strong>of</strong> borate conta<strong>in</strong><strong>in</strong>g<br />

<strong>in</strong>secticides is not currently known.<br />

September 1998


<strong>Insecticides</strong> Used <strong>in</strong> <strong>the</strong> <strong>Urban</strong> <strong>Environment</strong>: <strong>Mode</strong> <strong>of</strong> <strong>Action</strong> Page 4<br />

Table 1. Examples <strong>of</strong> commonly used <strong>in</strong>secticides and <strong>the</strong>ir mode <strong>of</strong> action.<br />

Example Primary<br />

Insecticide Class Common Name (Trade Name) Site Affected<br />

Pyrethroid Permethr<strong>in</strong> Flee Nervous System<br />

Carbamate Propoxur Baygon Nervous System<br />

Organophosphorus Chlorpyrifos Dursban Nervous System<br />

Avermect<strong>in</strong>s Abamect<strong>in</strong> Avert Nervous System<br />

Chloronicot<strong>in</strong>yl Imidacloprid Advantage Nervous System<br />

Cyclodiene Aldr<strong>in</strong> * Nervous System<br />

Amid<strong>in</strong>ohydrazone Hydramethylnon Amdro Energy Production<br />

Sulphonamide Sulfluramid Raid Max Energy Production<br />

Fumigant (Inorganic) Sulfluryl Fluoride Vikane Energy Production<br />

Juvenile Hormone Analog Hydroprene Gencor Endocr<strong>in</strong>e System<br />

Juvenile Hormone Analog Methoprene Pharoid Endocr<strong>in</strong>e System<br />

Juvenile Hormone Mimic Fenoxycarb Logic Endocr<strong>in</strong>e System<br />

Juvenile Hormone Mimic Pyriproxyfen Archer Endocr<strong>in</strong>e System<br />

Benzoylphenyl Urea Diflubenzuron Dimil<strong>in</strong> Chit<strong>in</strong> Production<br />

Benzoylphenyl Urea Lufenuron Program Chit<strong>in</strong> Production<br />

Benzoylphenyl Urea Hexaflumuron Sentricon Chit<strong>in</strong> Production<br />

Inorganic Borates Roach Prufe Water Balance<br />

Inorganic Silica Aerogels Dri-Die Water Balance<br />

Inorganic Diatomaceous Earth Shell Shock Water Balance<br />

*No longer registered for use.<br />

September 1998

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!