13.08.2013 Views

Towards Large Area, Picosecond-Level Photodetectors - Capp.iit.edu

Towards Large Area, Picosecond-Level Photodetectors - Capp.iit.edu

Towards Large Area, Picosecond-Level Photodetectors - Capp.iit.edu

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Friday, November 18, 2011<br />

Development of <strong>Large</strong> <strong>Area</strong><br />

Microchannel Plate <strong>Photodetectors</strong><br />

for the <strong>Large</strong> <strong>Area</strong> <strong>Picosecond</strong> Photodetector Development Collaboration<br />

Bob Wagner, Argonne National Laboratory<br />

Antiproton Physics at the Intensity Frontier<br />

Fermilab<br />

Friday 18 Nov 2011


Microchannel Plate Photomultipliers<br />

!"#$"%#&'()%*$+(,-.//#0(10.2#3(1)43(<br />

Incoming Particle<br />

or Photon<br />

Photocathode Multichannel Plates Anode (stripline) structure<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

Front-End Electronics<br />

Vacuum Assembly<br />

Multiple plates to increase gain<br />

Chevron<br />

!"#$#%&'%(&)*)+$,#%&-'$".&',)&."#,$&&/)0&11&$#&12+,#%.&0"2+"&,).3*$.&2%&/'.$4&&<br />

arrangement to inhibit positive ion freeback to photocathode<br />

3%2/#,1&!*'%',&5)#1)$,64&&.+'*'7*)&$#&*',5)&',)'.&<br />

Friday, November 18, 2011<br />

Typical pore size is 6-40µm<br />

2


MCP-PMT Module & Readout Concept<br />

2×3 array of MCP Tiles<br />

for paneling detector, e.g.<br />

water Cherenkov tank<br />

Friday, November 18, 2011<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

Strip readout pattern<br />

3.8mm strips, 5mm pitch (40 strip anode)<br />

4.6mm strips, 6.8mm pitch (30 strip anode)<br />

Coordinate readout:<br />

• Time difference along strip<br />

• Charge division for ⊥ direction<br />

3


LAPPD Project Scope<br />

<strong>Large</strong>, Cheap, Fast Microchannel Plate Photomultiplier<br />

‣ 20×20 cm 2 active area (development on 3.3cm diam. disk)<br />

‣ Novel, inexpensive MCP substrate<br />

• Borofloat glass capillary substrates (20-40μm pores, L/D ∼60-40)<br />

• Anodic aluminum oxide (AAO) (research ended) -- ceramic<br />

‣ Pore activation via Atomic Layer Deposition (ALD)<br />

• Separate material for resistive and secondary emission layers<br />

• Optimize resistive and emissive layers via study of range of materials<br />

‣ Customized anode readout<br />

• Strip line double-ended readout for picosecond timing & water Cherenkov<br />

• Pad readout for energy and/or coarse spatial resolution -- gamma-ray<br />

telescope camera, dual readout calorimeters, medical imaging<br />

‣ High quantum efficiency photocathode --- ≥25%<br />

• Bialkali (baseline), multialkali<br />

• “III-V” materials, e.g. GaAs, GaN<br />

• Systematic program of photocathode development and analysis<br />

‣ Waveform sampling switched capacitor array ASIC for readout<br />

‣ Use simulation to vet and tune design<br />

Friday, November 18, 2011<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

5


Glass Capillary Substrate Development<br />

Borosilicate glass capillary substrates from<br />

Incom, Inc. (Charlton, MA, USA)<br />

Technology development on 32.8mm<br />

diameter disk substrates<br />

– 20μm (L/D=60) & 40μm (L/D=40)<br />

pore size<br />

20cm × 20cm plates for working detector<br />

(18) 40μm pore substrates delivered<br />

(35) 20μm pore substrates delivered<br />

Baseline is 20μm pore<br />

All substrate pores have 8˚ bias w.r.t axis<br />

⊥ to substrate<br />

Used in pair chevron configuration to<br />

r<strong>edu</strong>ce positive ion feedback damage<br />

to photocathode<br />

Friday, November 18, 2011<br />

substrate detail 2010<br />

photo credit: Jason McPhate, SSL<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

20cm × 20 cm glass<br />

substrates October, 2011<br />

photo credit: Joe Gregar, Argonne<br />

substrate detail<br />

August, 2011<br />

6


Advances in Glass Capillary Array Development<br />

1st Batch vs. Present Batch 20µm pores<br />

Multifiber stacking<br />

evident<br />

Triple point gaps<br />

Pore crushing at<br />

multifiber boundaries<br />

Triple point gaps<br />

eliminated<br />

Minimal pore<br />

distortion<br />

Still some stacking<br />

issues<br />

Friday, November 18, 2011<br />

>?@A-"* 82 "B8"(


F>;00'@%$!"&FE';&5'0">"#%&'D;@)$'($%#)00"&F'?)#-&%>%F")0A''7"F=$)'G'"0';'@>%D#-;$?'?-;?'5)!%&0?$;?)0';<br />

%.)$.")D'%@'?-"0'($%#)5=$)A''H&'%$5)$'?%'($%5=#)';&'*+,E'%&)'&))50'?%'#$);?)'?-)';(($%($";?)'C=">5"&F<br />

@))5'?-)'($%#)00A'B-)$)@%$)E'%=$')@@%$?'C)F;&'CJ'!)>?"&F'&)D'F>;00'!;?)$";>0'($"%$'?%'0?;$?"&F';&J'@"C)$'5<br />

#>;55"&F'6?=C):'!;?)$";>'"0';'($%($")?;$J'F>;00'5).)>%()5'CJ'KLMNO'"&?)$&;>>J'6I&%D&';0'N%&F'N"@) '*<br />

;&5' ?-)' #%$)' 6$%5:' C;$' "0' ;' (-J0"#;>>J' #%!(;?"C>)' F>;00' ?-;?' -;0' C))&' 5)0"F&)5' ?%' C)' #-)!"#;>>J' =&0<br />

?-)$)@%$)'.)$J'0%>=C>)'"&';#"5A'''<br />

Commercial Microchannel Plate Fabrication<br />

Glass is gravity-fed via<br />

cylindrical furnace<br />

Glass is typically lead glass<br />

tube with solid soft glass core<br />

Borosilicate glass capillaries<br />

are hollow core<br />

Chemical processing to<br />

remove soft core glass<br />

hollow core glass capillaries<br />

skip this step<br />

Friday, November 18, 2011<br />

[>;00 *%&%@"C)$ \$;D<br />

[>;00 *=>?"@"C)$ \$;D<br />

K">>)?'7;C$"#;?"%&<br />

K">>)?'U>"#)E'[$"&5E',%>"0-<br />

+-)!"#;>',$%#)00"&F'<br />

ALD replaces<br />

this step<br />

Before sealing in tube, plate must be<br />

subjected to prolonged exposure to electrons<br />

A'234567#8##)/&#29:63;9#2?=@#/A96;00)0';$)'?-)&'5$;D&'"&?%'!%&%@"C)$0A''P&#)'?-)'!%&%@"C)$0'-;.)'C))&'@;C$"#;?)5<br />

8<br />

;00)!C>)5' "&?%' ;' -)Q;F%&;>' ;$$;J' ;&5' $)5$;D&' "&?%' !=>?"R@"C)$0A' H?' "0' ?-)0)' !=>?"R@"C)$0' ?-;?' ;$)' =0)5<br />

C%=>)' %$' C">>)?A' ' B-"0' C=&5>)' "0' @=0)5' ;&5' "0' ?-)&' $);5J' @%$' 0>"#"&FE' F$"&5"&F' ;&5' (%>"0-"&F' !=#-' >"I)' ;<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

Graphic Credit: B. Laprade & R. Starcher, Burle (2001)<br />

9J5$%F)&'M)5=#?"%&<br />

O>)#?$%5)'O.;(%$;?"%&<br />

7"&;>'B)0?'Z'H&0()#?"%&


!"#$%&'&()*+&,-.$/-)+01$234&5$<br />

Pore Activation via Atomic Layer Deposition<br />

%&*)60-0),$<br />

/5;),,&9$/553D03,1&$<br />

%&*)60-0),$<br />

/5;),,&9$/553D03,1&$<br />

A A conformal, self-limiting process.<br />

Allows Allows atomic level level thickness control.<br />

Conformal, self-limiting process<br />

Molecular mono-layer thickness control<br />

<strong>Large</strong> variety of applicable materials<br />

Applicable Applicable for for a large large variety of of materials.<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

!7$8(3+9$/7$!3,&9$:7$#&,;9$2.8?%@A8#B9$$<br />

>7$?C((0'3,$=/553D03,1&B9$/7$7$?C((0'3,$=/553D03,1&B9$/7$


Pore Activation via Atomic Layer Deposition (ALD)<br />

Example:<br />

• OH on surface provide reaction sites<br />

• Trimethyl aluminum reacts liberating<br />

methane, forms Al2O3 layer. Leaves methyl<br />

group inhibiting further reaction on surface<br />

• Exposure to H2O removes methyl group.<br />

Leaves OH sites for next reaction<br />

pore<br />

Friday, November 18, 2011<br />

pore<br />

Resistive ALD<br />

OH OH OH<br />

Al<br />

CHAl 3CH3<br />

Al<br />

OH OH OH<br />

CH3 <strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

pore<br />

Emissive ALD<br />

CH3 CH3 1 KV<br />

CH 3<br />

Al<br />

CH3 Trimethyl Aluminum<br />

Al<br />

(TMA) O O O<br />

CH CH3 3<br />

pore<br />

Al(CH 3 ) 3<br />

H 2 O<br />

Conductive<br />

Electrode<br />

OH<br />

Al Al<br />

OH OH OH<br />

OH OH<br />

10


ALD Functionalization of Micro-Channel Plates<br />

New ALD chemistries for resistive coating developed at Argonne<br />

Friday, November 18, 2011<br />

Resistance is reproducibly tunable<br />

βT = -0.02 for commercial MCP (literature)<br />

= -0.027 “New Chemistry 1”<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

Al2O3 Secondary Emission Layer<br />

Signal from MCP pair coated with new<br />

resistive layer + Al2O3 emissive layer<br />

image credit: M. Wetstein<br />

11


Secondary Emissive Materials Characterization<br />

Characterization Chamber<br />

• UV Photoelectron Spectrometer<br />

• X-ray Photoelectron Spectrometer<br />

• Low Energy Electron Diffraction<br />

Friday, November 18, 2011<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

12


Electroding - End Spoiling<br />

h = b/d<br />

End-spoiling on output<br />

‣ Increases spatial resolution<br />

‣ Decreases gain<br />

‣ Trade-off h = 1-2<br />

End-spoiling on input ~ h = 0.5-0.8<br />

b<br />

Electroding system for 8”×8” MCPs nearing<br />

completion<br />

Friday, November 18, 2011<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

Electroding system at<br />

Fermilab for 33mm MCPs<br />

Line-of-sight evaporation<br />

13


MCP Testing at Argonne -- APS UV Laser Facility<br />

Gap 1: “first strike”<br />

Impacts on variability of<br />

transit time and<br />

amplification<br />

Gap 2: Impact on saturation<br />

of MCP pair, spatial spread<br />

of signal<br />

Gap 3:spatial and temporal<br />

spreading of the charge<br />

cloud. Space charge effects.<br />

Interface with anode.<br />

Friday, November 18, 2011<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

Operational voltages<br />

Plate geometry (pore size,<br />

L/D)<br />

Chemistry (SEE, resistive<br />

layer)<br />

Plate quality<br />

Uniformity<br />

Noise<br />

Stability<br />

Plate resistance<br />

Saturation<br />

Relaxation time<br />

14


MCP Testing at Argonne -- APS UV Laser Facility<br />

Gap 1: “first strike”<br />

Impacts on variability of<br />

transit time and<br />

amplification<br />

Gap 2: Impact on saturation<br />

of MCP pair, spatial spread<br />

of signal<br />

Gap 3:spatial and temporal<br />

spreading of the charge<br />

cloud. Space charge effects.<br />

Interface with anode.<br />

Friday, November 18, 2011<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

Operational voltages<br />

Plate geometry (pore size,<br />

L/D)<br />

Chemistry (SEE, resistive<br />

layer)<br />

Plate quality<br />

Uniformity<br />

Noise<br />

Stability<br />

Plate resistance<br />

Saturation<br />

Relaxation time<br />

14


MCP Testing at Argonne -- “Mock Tile” MCPs<br />

Friday, November 18, 2011<br />

Eight 33mm MCP disks functionalized with identical<br />

“Chemistry 2” resistive coating and Al2O3 SEE layer<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

15


Commissioning of 8” Test Chamber at Argonne APS<br />

4<br />

8” MCP Vacuum Test Assembly<br />

Friday, November 18, 2011<br />

8” Tile base with<br />

Tuesday Meeting, 8-9-11<br />

33mm MCP pair<br />

Tuesday, August 9, 2011<br />

ready for insertion<br />

into chamber<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

Tuesday Meeting, 8-9-11<br />

Tuesday, August 9, 2011<br />

16<br />

9


First Pulse Measurements with 8” Anode Strip Line<br />

!"#$%&'()*$$+,)*-$$+,)*-$<br />

Adjacent Strip<br />

Adjacent Strip<br />

Friday, November 18, 2011<br />

5 ns<br />

30 mV<br />

Signal<br />

Crosstalk<br />

!"#$%&'()*$$%&'()*$$+,)*-$<br />

Crosstalk<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

!"#$%&'()*$$+,)*-$$+,)*-$<br />

25 mV<br />

Signal<br />

Signal<br />

Crosstalk<br />

17<br />

S


Meeting, 9-27-11<br />

mber 27, 2011<br />

First Pulses on 20cm × 20cm MCP Plate<br />

Friday, November 18, 2011<br />

Signal from ends of strip line<br />

Laser timing signal<br />

Tuesday Meeting, 9-27-11<br />

Simple soldered wire connection to strip 4 line<br />

Readout and differential timing with fast scope<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

Tuesday, September 27, 2011<br />

5<br />

differential arrival time distribution<br />

0<br />

1.5 1 0.5 0 0.5 1 1.5<br />

500 ps<br />

18<br />

x 10 9


MCP Testing at Space Sciences Lab (SSL)/Berkeley<br />

25mm Phosphor on<br />

4.5” CF Flange<br />

25mm Cross Strip Delay<br />

Line photon counting<br />

detector on 4.5” CF Flange<br />

Single MCP Phosphor Image Pair MCP XDL Image<br />

Friday, November 18, 2011<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

Double Chamber UHV Test Station<br />

Amp/TDC and PC Acq/display<br />

for XDL<br />

Nikon camera or electrometer<br />

for Phosphor<br />

19


Improvement in Glass Capillary Array Fabrication<br />

1 MCP, Phosphor readout<br />

2 MCPs, Photon counting<br />

Friday, November 18, 2011<br />

Early 2010 July 2011<br />

UV 184nm illumination<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

• 20 µm MCP, L/D = 60, 8˚ pore bias,<br />

1000V applied to each MCP<br />

• Imaging & gain comparable to<br />

commercial MCPs<br />

• Sample performance shows dramatic<br />

improvement due to capillary<br />

process improvements<br />

20


Argonne ALD MCP Pair Background Test<br />

!"#$#%&'#(%$)%*&+,-*)%*&.)$"&/'!&!-)01&<br />

MCP pair, 20µm pores, 8° bias, 60:1 L/d, 0.7mm gap with 300V bias<br />

GHI#8>%4,#6,#T=U;#-V+,##="W((#8>%4#'>8#F%E7#X==C#M%>6"###<br />

.(>'&#3?#;@A*(#BC#D%'7E,#673F6#E38#GHI#7&J#<br />

(3+)D>E%3*#K67>48L#>*+#?>%*E##GHI#7&J>'3*>D#<br />

(3+)D>E%3*#?43(#M3EE3(#GHI"#N#?&F#+&?&OE6,#<br />

185nm UV illumination. Top MCP hex<br />

M)E#'&*&4>DDP#:&4P#'33+"#Q+'&#&??&OE6#>4&#?%&D+#<br />

modulation (sharp) and faint bottom MCP<br />

?4%*'%*'#+)&#E3#E7&#GHI#6)8834E#?D>*'&"#<br />

modulation<br />

Friday, November 18, 2011<br />

X===#6&O#M>O5'43)*+,#="=@YA#&:&*E6#O( Z< #<br />

6&OZ; #>E#W#J#;= T #'>%*,#;=A=:#M%>6#3*#&>O7#<br />

GHI"#/&E#6>(&#M&7>:%34#?34#(36E#3?#E7&#<br />

O)44&*E#


Robustness<br />

MCP 162, 2 nd Batch MCPs, 20µm<br />

Breakdown event with a phosphor screen which essentially<br />

evaporated away the electrode on a part of MCP162.<br />

Inspection showed no melting of the pores.<br />

Electroded on top of the damaged face and tested in phosphor detector – no sign of damage!<br />

Any regular MCP would have been toast – melted!!!<br />

Friday, November 18, 2011<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

22


!!""#$%&'()*#*+,-./0121./1/3#4,525#<br />

33mm ALD MCP Pre-Conditioning Tests<br />

Friday, November 18, 2011<br />

?H@))(#JX=SF#AH5&3)V#U%V7#Y/C#(3*%V34%*'#B%46V,#V7&*#>?#BW33+#W3U#'H%*,#V7&*#<br />

<br />

#JOCT"##E36V#4&@&*V#C-D#B34()WHV%3*PK#<br />

!"#$%#$&'(")()%*+%,-.%/0'#$1%*"2(3%%"45('%-%6%&789 %:$;+%4(


Hermetic Packaging<br />

‣ For working MCP Photodetector, need to provide<br />

• Functionalized, Scrubbed MCP Plates<br />

• Vacuum tight housing<br />

- Bottom plate with anode strip lines<br />

- Sidewall<br />

- Top plate with photocathode<br />

- Getter strip for long term pumping<br />

• Support/Spacers to separate<br />

MCPs, bottom/top plates<br />

MCP - 1<br />

MCP - 2<br />

Anode on Base plate<br />

Ceramic body:<br />

Expensive, brazed ⇒ proven in smaller designs<br />

HV & Signal via pins thru body<br />

SSL Design<br />

Friday, November 18, 2011<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

Borosilicate all glass design:<br />

Frugal, innovative ⇒ higher risk<br />

No pin penetration into housing<br />

Under development at Argonne<br />

Window with Photocathode inside<br />

HV Distribution pattern<br />

Grid Spacer – Type A<br />

Getter Strip<br />

Grid Spacer – Type B<br />

Grid Spacer – Type C<br />

Side wall<br />

Getter Bead<br />

24


Demountable 8” Tile Prototype<br />

Leak checking of assembled<br />

demountable structure<br />

Friday, November 18, 2011<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

Inner, outer retainer<br />

rings for demountable<br />

O-ring seal<br />

Inner, outer retainer<br />

rings for demountable<br />

O-ring seal<br />

25<br />

O


Photocathode Fabrication -- SSL<br />

B33, B33+ITO, B33+MgO/ITO substrates<br />

Substrates with ITO are very bad, ITO-MgO better, but not great<br />

Friday, November 18, 2011<br />

Cathode test run #6B, Na 2 KSb cathode, Sb<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

26


8.7” Photocathode & Seal Test Chamber<br />

8.7” Photocathode/Seal Test Chamber<br />

Friday, November 18, 2011<br />

Ion Pump<br />

Lines<br />

16.5” Flange<br />

Chamber Access<br />

Forming<br />

Well of 6”<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

Same All-<br />

Metal Valves<br />

Same Rough<br />

Pump Line<br />

27


<strong>Large</strong> Process Chamber for Ceramic Tube Fabrication<br />

at SSL<br />

Vacuum Chamber 18”<br />

O.D x 30” Long<br />

14” Access Tube<br />

Detector Body Stack<br />

on 16.5” CF Flange<br />

Friday, November 18, 2011<br />

Multiple Viewports<br />

Multi- Motion<br />

Manipulator Arms<br />

All-Metal Valves to<br />

Three Pumping Ports<br />

8” P-C Forming Well Tube<br />

Two UHV Ion<br />

Pumps<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

28


Bialkali Photocathode Development at Argonne<br />

‣ Shoot photocathode<br />

similar to traditional<br />

PMT method<br />

• metal beads activated<br />

by current heating<br />

‣ Use glass containment<br />

vessel with bead<br />

support structure &<br />

detachable top window<br />

‣ Learn method by<br />

making photocathodes<br />

on small PMTs<br />

• PMT processing<br />

equipment obtained<br />

from Burle Industries<br />

Friday, November 18, 2011<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

29


Results from Photocathode Growth in Burle Process<br />

Chamber<br />

/01,23,45356722,89&$'&:,;?@


!"#$%&'%()"*+(,%+--,#%.$#/($/#,%"-0%<br />

to o-ring;<br />

Bialkali Photocathode -- Scale-Up to 4” Photocathode<br />

Friday, November 18, 2011<br />

)+1)%$,23,#"$/#,%45%6)2%(&"7%<br />

("8*,<br />

Chalice Mounted To The Burle System<br />

• Began pumping on empty chalice body last Thursday;<br />

• Performed bake-out Friday and Monday. Limited bake-out temperature to 200 C due<br />

to o-ring;<br />

• Pressure: 1!10 -7 Torr this morning. Reached 8!10 -8 Torr yesterday morning;<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

• Pressure: 1!10 -7 Torr this morning. Reached 8!1<br />

Vacuum<br />

pump port<br />

Connector pins<br />

Vacuum<br />

pump port<br />

Glass top plate<br />

O-ring seal<br />

Support stand<br />

31<br />

C


Summary<br />

‣ <strong>Large</strong> <strong>Area</strong> Microchannel Plate Photodetector project has completed 2 nd year<br />

‣ Many critical milestones achieved for detector realization<br />

• Signals acquired from full-sized tile base with 33mm MCP pair in 8” test ch.<br />

• ALD coatings of 33mm glass capillary disks producing gain >10 6 for MCP pair<br />

• Observation of gain from 8”×8” MCP<br />

• Production of detector quality 8”×8” glass capillary arrays<br />

• Developed 3 ALD resistive + 2 ALD emissive chemistries<br />

• Low temperature (120˚C) In(52)Sn(48) seal made on 1” sidewall/window<br />

• Readout ASIC for picosecond resolution fabricated & tested (4 th gen. chip due in<br />

October)<br />

‣ Mature mechanical designs for hermetically sealed tube<br />

• Proven design in ceramic by SSL<br />

• Well-advanced inexpensive glass design -- hermetic prototypes<br />

‣ Facility for 8”×8” photocathode fabrication and study near completion at SSL<br />

• Full-size process chamber installed, near commissioning<br />

‣ Tile production facility for All-Glass MCP-PMT in design at Argonne<br />

Friday, November 18, 2011<br />

Visit our web site for more information:<br />

http://psec.uchicago.<strong>edu</strong><br />

(“Blog” and “Library” links are a good starting place)<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

32


Friday, November 18, 2011<br />

BACKUP SLIDES<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

33


Anodic Aluminum Oxide (AAO) Development<br />

‣ Self-ordering fabrication of pore structure<br />

in aluminum by anodization<br />

‣ Alternative to glass capillary MCP<br />

‣ Argonne AAO fabrication is 2-step<br />

• Form 10nm pore matrix through<br />

anodization (more “natural” size for<br />

process)<br />

• Pattern and etch 2-10μm pore via<br />

photolithography<br />

- Initial 10nm pore structure enables uniform etch<br />

larger diameter pores<br />

‣ Development at Argonne is very successful<br />

• Now producing pores with funneled pores<br />

Friday, November 18, 2011<br />

- Potential for large effective open area ratio<br />

- Addresses first-strike problem<br />

- Possible future generation of MCP with<br />

Photocathode coated on funnel via ALD<br />

<br />

<br />

10μm pore<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

<br />

40μm spacing<br />

1 st testable AAO based MCP at Argo<br />

SEM (Scanning Electron Microscope)<br />

Front<br />

5μm funnel<br />

"#$$%&%$'()$*%<br />

32.8mm AAO test substrate<br />

20µm pore, L/D~10, 23% open area<br />

34<br />

!


Scale-up to <strong>Large</strong> Surface <strong>Area</strong><br />

Process scale-up test: ALD chemistry #2<br />

Process scale-up on large reactor<br />

est: ALD chemistry #2<br />

!"#$#%$&"'()*%$+,'-.)("##'%"#%"/'<br />

)+'(0#%)1'1*/"'2*.,"'#03#%.*%"'<br />

-.)("##$+,'456'."*(%). <br />

"#%"/'<br />

#%.*%"'<br />

!"#$%&'(()*'+),-'.%/00,-.1<br />

45566%7-%8)90+<br />

300mm Si wafer coated with Chemistry #2 23<br />

:;25;


Scale-Up of ALD Processing -- Beneq Reactor<br />

Arrived 18 May 2010<br />

Studying ALD on<br />

<strong>Large</strong> Surface <strong>Area</strong>s<br />

• 33mm disk surface area<br />

is 0.13m 2<br />

• 8”x8” surface area is<br />

6.4m 2<br />

• 20 MCPs area is 129m 2<br />

Development of <strong>Large</strong> <strong>Area</strong> Fast MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, DOE Site Visit, 20100825<br />

Development of Lower Cost <strong>Large</strong> <strong>Area</strong> MCP Photodetector, R. Wagner, Argonne, LIGHT11, Ringberg Castle, 20111101<br />

Wednesday, August 25, 2010<br />

Friday, November 18, 2011<br />

Tray top Tray Bottom<br />

8”x8” tile<br />

Stackable 20cm × 20cm plate<br />

holders for multiple plate coating<br />

in Beneq Reactor<br />

8”x8” tile<br />

500 mm<br />

10 trays<br />

8<br />

36


8”×8” MCP Plate Testing at SSL<br />

ALD Coated 8”×8” 20µm MCPs<br />

1 st production quality plates (Apr, 2011)<br />

Develop process for Resistive Coating<br />

Tuning parameters now for ALD coating in<br />

Beneq reactor<br />

Friday, November 18, 2011<br />

8” electroded MCP in the open face test detector.<br />

MCP #3 and MCP #2 have been electroded on both sides with 1700Å inconel.<br />

#2 is 31kΩ and #3 is 3MΩ in air - and vacuum (Needs to be ~10-30MΩ).<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

37


Visual Study of ALD Coated MCP at SSL<br />

Glass capillaries coated by<br />

Arradiance, Inc.<br />

Pair test at Space Sciences<br />

Lab/UC-Berkeley<br />

Electron map of MCP<br />

“Multi” boundaries visible,<br />

fade at higher gain<br />

Friday, November 18, 2011<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

38


Mock Tile Fabrication<br />

‣ Short-cut to testing full assembled<br />

large area MCP-PMT<br />

‣ Glass 8”×8” Mock MCP w/4 holes<br />

for 33mm functional MCP pairs<br />

‣ Use tile bases with pump-out port<br />

on sidewall & standard anode<br />

bottom plate<br />

‣ Top window with Al photocathode<br />

‣ Top seal with glass frit (like<br />

bottom seal)<br />

Friday, November 18, 2011<br />

First successful sealed box<br />

with two scrap 8”×8” MCPs<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

39


Mock Tile Fabrication -- Tile Base<br />

Apply Frit Paste to Sidewall 350˚C Fire to Dry Paste 470˚C Fire to Glaze<br />

Attach Getter Holders<br />

Silver Ink Frit @ 350˚C<br />

Friday, November 18, 2011<br />

470˚C Fire to<br />

Bond Anode Plate<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

Completed Tile Base<br />

w/Vacuum Tight Bond<br />

40


Anode<br />

Ceramic Body Design -- SSL<br />

Vacuum-side<br />

Air-side pinout<br />

Graphic courtesy of Jason McPhate, SSL<br />

Getter Stack<br />

Friday, November 18, 2011<br />

<strong>Towards</strong> <strong>Large</strong> <strong>Area</strong> MCP <strong>Photodetectors</strong>, R. Wagner, Argonne, Antiproton Physics Workshop, Fermilab, 20111118<br />

• Single step braze<br />

–Stamped OFHC Cu or Kovar indium<br />

well<br />

–Kovar intermediary flange<br />

–Alumina wall<br />

–Kovar getter flange<br />

–HiTemp, CuSil brazed anode<br />

• InCuSil braze alloy (750°C<br />

braze)<br />

–Avoids remelt of anode CuSil<br />

• Four braze joints in final<br />

assembly<br />

Illustrative Tube Stack<br />

41


Opaque GaN Deposited on 33mm ALD MCP<br />

>3436%?%@AB&CD-E#FGH#@3AB&+#IJ#F>K#L%B7#HM+38&+#/A9CD?9#3N#:A4%3)6#B7%@5*&66&6<br />

OA(34873)6C83?J@4J6BA??%*&P#A*+#B&6B&+#%*#A#873B3*#@3)*B%*'#%(A'%*'#+&B&@B34#<br />

.*B&'4AB&+#873B3*#@3)*B%*'#%(A'&##<br />

)6%*'#;QR#*(#ST#673L6#)*843@&66&+#<br />

/A9#?AJ&4#4&683*6&#:6#IA4&#FGH"#<br />

Friday, November 18, 2011<br />

!"#$%&'(#)'*&"+,-.&/'+0'12*'345,'<br />

;"VU#<br />

="


General proc<strong>edu</strong>res for Fabrication of MCPs<br />

Pristine<br />

MCPs<br />

4 hrs<br />

Electrode<br />

coating<br />

Testing<br />

resistance<br />

3 hrs<br />

courtesy Qing Peng, Argonne ALD Group<br />

Friday, November 18, 2011<br />

30mins 2 hrs<br />

Acetone<br />

sonication clean<br />

Baking at 400C<br />

under N2<br />

6 hrs<br />

Deliver for testing<br />

Air dry at<br />

200C >2h<br />

ALD coatings<br />

10 hrs<br />

Loading in<br />

Vacuum reactor<br />

2 hrs<br />

Ozone clean<br />

For fabricating one pair<br />

MCPs:<br />

~20-30hrs<br />

if everything is right

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!