14.08.2013 Views

Pavement Structural Analysis of the Design Recommendations for ...

Pavement Structural Analysis of the Design Recommendations for ...

Pavement Structural Analysis of the Design Recommendations for ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

7<br />

<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Design</strong> <strong>Recommendations</strong> <strong>for</strong> Reconstructing<br />

I-96 (M-39 to Schaeffer Road)<br />

Report No. MIDOT-15953-2/1<br />

Prepared <strong>for</strong>:<br />

Mr. Curtis Bleech<br />

Michigan Department <strong>of</strong> Tranpsortation<br />

Construction and Technology Division/Laboratory<br />

P.O. Box 30049<br />

Lansing, Michigan 48909<br />

Prepared by:<br />

Harold L. Von Quintus, P.E.<br />

ERES Consultants – A Division <strong>of</strong> Applied Research Associates<br />

26 Stillmeadow<br />

Round Rock, Texas 78664<br />

August 2004<br />

i


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Design</strong> <strong>Recommendations</strong> <strong>for</strong> Reconstructing<br />

I-96 (M-39 to Schaeffer Road)<br />

Report No. MIDOT-15953-2/1<br />

Prepared <strong>for</strong>:<br />

Mr. Curtis Bleech<br />

Michigan Department <strong>of</strong> Tranpsortation<br />

Construction and Technology Division/Laboratory<br />

P.O. Box 30049<br />

Lansing, Michigan 48909<br />

Prepared by:<br />

Harold L. Von Quintus, P.E.<br />

ERES Consultants – A Division <strong>of</strong> Applied Research Associates<br />

26 Stillmeadow<br />

Round Rock, Texas 78664<br />

Harold L. Von Quintus, P.E. August 2004<br />

Texas Registration 46169<br />

ii


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Executive Summary<br />

I-96 between M-39 and Schaeffer Road, just west <strong>of</strong> Detroit, Michigan, is planned <strong>for</strong><br />

reconstruction in 2005. The Michigan Department <strong>of</strong> Transportation (DOT) completed a<br />

design <strong>for</strong> <strong>the</strong> reconstruction <strong>of</strong> this segment <strong>of</strong> I-96 in accordance with <strong>the</strong> 1993<br />

AASHTO DARWin program. (1) The objective <strong>of</strong> this study was to analyze <strong>the</strong> proposed<br />

flexible pavement layer thickness and material types recommended <strong>for</strong> this segment<br />

along I-96. Two mechanistic-empirical (M-E) design/analysis methods were used to<br />

analyze <strong>the</strong> pavement design. One <strong>of</strong> <strong>the</strong> M-E design/analysis methods was <strong>the</strong> same one<br />

used to prepare A Simplified Catalog <strong>of</strong> Solutions, and <strong>the</strong> second one is <strong>the</strong> new M-E<br />

<strong>Pavement</strong> <strong>Design</strong> Guide developed under NCHRP 1-37A. (2,3)<br />

Results from <strong>the</strong>se analyses suggest that <strong>the</strong> proposed pavement structure will be<br />

adequate relative to cracking. In fact, <strong>the</strong> tensile strain calculated under <strong>the</strong> standard<br />

design load is less than <strong>the</strong> value that has been typically assumed <strong>for</strong> <strong>the</strong> endurance limit.<br />

The one concern is with rutting and distortion. Both M-E analysis methods predict levels<br />

<strong>of</strong> rutting that exceed <strong>the</strong> allowable level <strong>of</strong> 0.50 inches within <strong>the</strong> analysis period. Using<br />

a PG 76-22 asphalt in <strong>the</strong> top two layers (<strong>the</strong> wearing surface and leveling course) will<br />

reduce <strong>the</strong> rutting to an acceptable level. Whe<strong>the</strong>r a PG 70-22P or PG 76-22 is used<br />

should be defined based on asphalt or mixture modulus testing or some type <strong>of</strong> torture<br />

test to ensure that <strong>the</strong> HMA mixtures will be resistant to rutting.<br />

Prior to construction, it should be confirmed that <strong>the</strong> pavement materials meet or exceed<br />

<strong>the</strong> assumptions used in design, regardless <strong>of</strong> <strong>the</strong> design method. It is also recommended<br />

that sufficient testing be completed during construction to ensure that <strong>the</strong> design<br />

assumptions are satisfied.<br />

iii


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Table <strong>of</strong> Contents<br />

Section Page<br />

1. Introduction .................................................................................................................... 1<br />

2. Study/<strong>Design</strong> Objective ..................................................................................................... 1<br />

3. Project <strong>Design</strong> Parameters ................................................................................................. 1<br />

3.1 <strong>Design</strong> Traffic ........................................................................................................ 1<br />

3.2 Subsurface Investigations – Soil Support <strong>Design</strong> Value ....................................... 5<br />

3.3 Non-Frost Susceptible Material ............................................................................. 7<br />

3.4 Hot Mix Asphalt Mixtures................................................................................... 11<br />

3.5 Subsurface Drainage System ............................................................................... 13<br />

4. Mechanistic-Empirical Thickness <strong>Design</strong>-Evaluation Method ....................................... 13<br />

4.1 <strong>Pavement</strong> <strong>Structural</strong> <strong>Design</strong> Assumptions........................................................... 14<br />

4.2 Evaluation Criteria............................................................................................... 15<br />

4.3 Simplistic M-E <strong>Analysis</strong> Method......................................................................... 15<br />

4.4 New M-E <strong>Pavement</strong> <strong>Design</strong> Guide S<strong>of</strong>tware ...................................................... 19<br />

5. Summary <strong>of</strong> Evaluations.................................................................................................. 21<br />

6. Limitations .................................................................................................................. 22<br />

7. References .................................................................................................................. 23<br />

Appendices:<br />

A Summary <strong>of</strong> Truck Traffic Equivalent Single Axle Load Applications Computed<br />

<strong>for</strong> <strong>the</strong> Base Year 2005 .................................................................................................... 25<br />

B Summary <strong>of</strong> Repeated Load Resilient Modulus Tests Extracted from <strong>the</strong> LTPP<br />

Database <strong>for</strong> <strong>the</strong> Michigan Sites ...................................................................................... 32<br />

C Layer Properties and <strong>Pavement</strong> Responses Computed <strong>for</strong> <strong>the</strong> I-96 <strong>Design</strong> Cross<br />

Section .................................................................................................................. 36<br />

C.1 HMA Modulus Determination............................................................................. 36<br />

C.2 Unbound Layer Modulus Determination............................................................. 38<br />

C.3 EVERSTRS Output <strong>for</strong> Fatigue Cracking <strong>Analysis</strong> ............................................ 40<br />

C.4 EVERSTRS Output <strong>for</strong> HMA Rutting <strong>Analysis</strong> ................................................. 42<br />

D <strong>Analysis</strong> <strong>of</strong> <strong>the</strong> Proposed <strong>Design</strong> Cross Section <strong>of</strong> I-96 Using <strong>the</strong> New M-E<br />

<strong>Pavement</strong> <strong>Design</strong> Guide S<strong>of</strong>tware ................................................................................... 43<br />

iv


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

1. Introduction<br />

I-96 between M-39 and Schaeffer Road, just west <strong>of</strong> Detroit, Michigan, is planned <strong>for</strong><br />

reconstruction in 2005. The Michigan Department <strong>of</strong> Transportation (DOT) completed a<br />

design <strong>for</strong> <strong>the</strong> reconstruction <strong>of</strong> this segment <strong>of</strong> I-96 in accordance with <strong>the</strong> 1993<br />

AASHTO DARWin program. (1) Figure 1 shows <strong>the</strong> pavement design (material types and<br />

layer thickness) resulting from that design procedure.<br />

Mr. Curtis Bleech with <strong>the</strong> Michigan DOT requested that an analysis <strong>of</strong> that pavement<br />

structural design be completed using a mechanistic-empirical method <strong>for</strong> a 20 and 40year<br />

analysis period. The purpose <strong>of</strong> this document is to present <strong>the</strong> analyses completed<br />

<strong>for</strong> evaluating <strong>the</strong> design pavement cross sections (material types and layer thickness)<br />

recommended <strong>for</strong> <strong>the</strong> reconstruction <strong>of</strong> I-96 (refer to figure 1).<br />

2. Study/<strong>Design</strong> Objective<br />

The objective <strong>of</strong> this study was to analyze <strong>the</strong> flexible pavement layer thickness and<br />

material types recommended <strong>for</strong> <strong>the</strong> segment along I-96 between M-39 and Schaeffer<br />

Road using two mechanistic-empirical (M-E) design/analysis methods. One <strong>of</strong> <strong>the</strong> M-E<br />

design/analysis methods was <strong>the</strong> same one used to prepare A Simplified Catalog <strong>of</strong><br />

Solutions, and <strong>the</strong> second one is <strong>the</strong> new M-E <strong>Pavement</strong> <strong>Design</strong> Guide developed under<br />

NCHRP 1-37A. (2,3)<br />

3. Project <strong>Design</strong> Parameters<br />

3.1 <strong>Design</strong> Traffic<br />

<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> <strong>of</strong> <strong>the</strong><br />

<strong>Design</strong> <strong>Recommendations</strong> <strong>for</strong> Reconstructing<br />

I-96 (M-39 to Schaeffer Road)<br />

The traffic parameters that were used to determine <strong>the</strong> design number <strong>of</strong> 80-kN (18-kip)<br />

Equivalent Single Axle Loads (ESALs) in accordance with <strong>the</strong> 1993 AASHTO <strong>Design</strong><br />

Guide are summarized below and were provided by <strong>the</strong> Michigan DOT.<br />

Average Annual Daily Commercial Traffic in 2005 = 9,600<br />

Initial Annual ESALs, both directions = 2,382,720<br />

Directional Distribution Factor = 0.56<br />

Lane Distribution Factor = 0.70<br />

Compound Commercial Traffic Growth Rate = 2.0%<br />

1


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

20-Year ESALs, one-way traffic = 22,694,400<br />

40-Year ESALS, one-way traffic = 56,400,000<br />

HMA TOP COURSE<br />

HMA LEVELING COURSE<br />

HMA BASE COURSE<br />

AGGREGATE BASE<br />

SAND SUBBSASE<br />

SILTY CLAY SOIL<br />

Figure 1 <strong>Pavement</strong> design resulting from <strong>the</strong> 1993 AASHTO <strong>Design</strong> Guide <strong>for</strong><br />

<strong>the</strong> reconstruction <strong>of</strong> I-96.<br />

2<br />

HMA Top Course (PG 70-22P);<br />

1.5 inches; Air Voids = 7.5%;<br />

Vbe=10.5%<br />

HMA Leveling Course (PG 70-<br />

22P); 2.5 inches; Air Voids =<br />

7.5%; Vbe=10.5%<br />

HMA Base Course (PG 70-22);<br />

10 inches; Air Voids = 7.5%;<br />

Vbe= 9.5%<br />

OGDC Aggregate Base Course;<br />

16 inches (21AA-MOD)<br />

Crushed Stone Base<br />

Geotextile Separator-Fabric<br />

Sand Subbase, Class IIA; 8 inches<br />

Low Plasticity, Firm Silty Clay<br />

Soil


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

The truck traffic inputs <strong>for</strong> <strong>the</strong> new M-E <strong>Pavement</strong> <strong>Design</strong> Guide s<strong>of</strong>tware, however, are<br />

<strong>the</strong> actual truck volume distribution and axle load distributions. Table 1 shows <strong>the</strong> truck<br />

traffic distribution that was used in this pavement design study. The Truck Traffic<br />

Classification (TTC) group <strong>for</strong> this urban freeway was assumed to be 3. (3) Figures 2–4<br />

show <strong>the</strong> axle load spectra <strong>for</strong> <strong>the</strong> single, tandem and tridem axles, respectively.<br />

Table 1 Truck Traffic Volume Distribution <strong>for</strong> <strong>the</strong> Base Year, 2005.<br />

Truck Type Normalized Volume Distribution, %<br />

4 0.90<br />

5 11.6<br />

6 3.6<br />

7 0.2<br />

8 6.7<br />

9 62.0<br />

10 4.8<br />

11 2.6<br />

12 1.4<br />

13 6.2<br />

Using <strong>the</strong> default normalized truck volume and axle weight distributions determined from<br />

an analysis <strong>of</strong> <strong>the</strong> Long Term <strong>Pavement</strong> Per<strong>for</strong>mance (LTPP) traffic data and <strong>the</strong><br />

AASHTO equivalency factors, <strong>the</strong> number <strong>of</strong> 18-kip (80-kN) ESALs were estimated <strong>for</strong><br />

<strong>the</strong> base year <strong>for</strong> this section <strong>of</strong> I-96. (3) Appendix A summarizes <strong>the</strong> computations <strong>for</strong> <strong>the</strong><br />

ESALs using <strong>the</strong> normalized axle load distributions that are expected <strong>for</strong> this urban<br />

freeway. The number <strong>of</strong> ESALS was computed to be 4,411,425 in 2005 <strong>for</strong> both<br />

directions, which is almost twice <strong>the</strong> value used in <strong>the</strong> 1993 AASHTO design procedure<br />

(2,382,720 ESALs). The reason <strong>for</strong> this difference is not known, but indicates that <strong>the</strong><br />

global default distribution values embedded in <strong>the</strong> new M-E <strong>Pavement</strong> <strong>Design</strong> Guide<br />

s<strong>of</strong>tware may not be applicable to <strong>the</strong> truck traffic in Michigan, or at least should be<br />

confirmed prior to full-scale use.<br />

A lane distribution factor <strong>of</strong> 0.70 and a directional distribution <strong>of</strong> 0.56 were used to<br />

compute <strong>the</strong> design-lane ESALs <strong>for</strong> 2005 – a value <strong>of</strong> 1,729,279. As noted above, <strong>the</strong><br />

ESALs determined from <strong>the</strong> volume and axle load normalized distributions<br />

recommended <strong>for</strong> use in <strong>the</strong> new M-E <strong>Pavement</strong> <strong>Design</strong> Guide are greater than those<br />

used in <strong>the</strong> design study completed by <strong>the</strong> Michigan DOT. The average number <strong>of</strong> 18kip<br />

(80-kN) ESALS per truck application determined using <strong>the</strong> normalized distributions<br />

was computed to be 1.259 (refer to Appendix A).<br />

3


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Number <strong>of</strong> Monthly Single Axle<br />

Loads<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

0 10 20 30 40 50<br />

Single Axle Load, kips<br />

Figure 2 Monthly single axle load distribution or spectra <strong>for</strong> <strong>the</strong> base year <strong>for</strong><br />

<strong>the</strong> segment <strong>of</strong> I-96 from M-39 to Schaeffer Road.<br />

Number <strong>of</strong> Monthly Tandem Axle<br />

Loads<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

0 20 40 60 80 100<br />

Tandem Axle Load, kips<br />

Figure 3 Monthly tandem axle load distribution or spectra <strong>for</strong> <strong>the</strong> base year <strong>for</strong><br />

<strong>the</strong> segment <strong>of</strong> I-96 from M-39 to Schaeffer Road.<br />

4


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Number <strong>of</strong> Monthly Tridem Axle Loads<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 20 40 60 80 100 120<br />

Tridem Axle Load, kips<br />

Figure 4 Monthly tridem axle load distribution or spectra <strong>for</strong> <strong>the</strong> base year <strong>for</strong><br />

<strong>the</strong> segment <strong>of</strong> I-96 from M-39 to Schaeffer Road.<br />

For <strong>the</strong> simplistic M-E analysis procedure, <strong>the</strong> design values recommended <strong>for</strong> use by <strong>the</strong><br />

Michigan DOT were used in <strong>the</strong> design computations and checks because <strong>of</strong> <strong>the</strong> different<br />

types <strong>of</strong> trucks typically used in Michigan, as compared to o<strong>the</strong>r agencies from traffic<br />

data included in <strong>the</strong> LTPP database. Re-analyzing <strong>the</strong> Weighing-In-Motion (WIM) data<br />

<strong>for</strong> selected Michigan sites was beyond <strong>the</strong> scope <strong>of</strong> work <strong>for</strong> this thickness design study.<br />

3.2 Subsurface Investigations – Soil Support <strong>Design</strong> Value<br />

The logs <strong>of</strong> sixty-nine 5-fott (1.5-meter) borings were provided to determine <strong>the</strong> types <strong>of</strong><br />

soils along this project. The soils along this portion <strong>of</strong> I-96 consist <strong>of</strong> varying thickness <strong>of</strong><br />

fill or topsoil over a low plasticity, firm silty clay.<br />

The effective resilient modulus <strong>of</strong> <strong>the</strong> foundation soil is a design parameter required by<br />

<strong>the</strong> 1993 AASHTO <strong>Design</strong> Guide and M-E design procedures. The resilient modulus is<br />

determined from repeated load triaxial tests, and can have a significant impact on <strong>the</strong><br />

flexible pavement layer thickness. Resilient modulus tests were unavailable <strong>for</strong> <strong>the</strong> soils<br />

along this roadway. The Michigan DOT used a design resilient modulus <strong>of</strong> 3,000 psi<br />

(20,684 kPa) in <strong>the</strong> AASHTO design. This design resilient modulus is based on<br />

5


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Michigan’s experience and should be conservative <strong>for</strong> <strong>the</strong> existing foundation soil that<br />

will not be removed during <strong>the</strong> reconstruction <strong>of</strong> this segment along I-96.<br />

Repeated load resilient modulus tests <strong>of</strong> similar soils, however, are available in <strong>the</strong> LTPP<br />

database <strong>for</strong> various sites in Michigan. Figure 5 shows <strong>the</strong> average test results <strong>for</strong> this<br />

type <strong>of</strong> soil, which are similar to those estimated from correlations developed by Von<br />

Quintus, et al. (4) Thus, <strong>the</strong> repeated load resilient modulus test results shown in figure 5<br />

were used to estimate <strong>the</strong> design resilient modulus <strong>for</strong> <strong>the</strong> foundation soil <strong>for</strong> both M-E<br />

design procedures.<br />

Resilient Modulus, ksi<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 5 10<br />

Cyclic Deviator Stress, psi<br />

6<br />

Confinement = 2 psi<br />

Confinement = 4psi<br />

Confinement = 6 psi<br />

Figure 5 Average repeated load resilient modulus test results recovered from<br />

<strong>the</strong> LTPP database <strong>for</strong> silty clay soils, similar to those encountered<br />

along I-96.<br />

The correlations noted above only represent a best-guessed value <strong>for</strong> design. The design<br />

values used in <strong>the</strong> M-E design procedures are greater than <strong>the</strong> value suggested <strong>for</strong> use by<br />

<strong>the</strong> Michigan DOT (3,000 psi or 20,684 kPa) in <strong>the</strong> AASHTO DARWin program. The<br />

difference in <strong>the</strong>se design resilient modulus values will be discussed in greater detail in a<br />

latter section <strong>of</strong> this report.<br />

To confirm <strong>the</strong> design resilient modulus values <strong>for</strong> <strong>the</strong> in place soils, however, it is<br />

suggested that repeated load resilient modulus tests be per<strong>for</strong>med in <strong>the</strong> laboratory on<br />

undisturbed or re-compacted test specimens. If repeated load resilient modulus tests are<br />

not possible, deflection basins can be measured along <strong>the</strong> existing roadway and <strong>the</strong> elastic<br />

modulus back-calculated <strong>for</strong> <strong>the</strong> subgrade soils using <strong>the</strong> procedure used by Von Quintus<br />

et al, <strong>for</strong> LTPP. (5,6) If modulus values are back-calculated from deflection basins along I-


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

96, <strong>the</strong>y should be adjusted using <strong>the</strong> correction factors recommended by Von Quintus, et<br />

al. (6)<br />

Based on <strong>the</strong> boring logs provided, <strong>the</strong> subgrade soils encountered along <strong>the</strong> section <strong>of</strong> I-<br />

96 are believed to have a frost susceptibility classification <strong>of</strong> moderate or medium using<br />

<strong>the</strong> Corps <strong>of</strong> Engineers classification system (refer to figure 6). (7) It is suggested that a<br />

non-frost susceptible material be placed above <strong>the</strong> subgrade to minimize <strong>the</strong> potential <strong>for</strong><br />

frost heave over time. Thus, a minimum <strong>of</strong> 36 inches (914 mm) <strong>of</strong> non-frost susceptible<br />

materials were included in <strong>the</strong> pavement cross-sections analyzed in this study.<br />

Results from <strong>the</strong> subsurface investigations did not indicate ground water at <strong>the</strong> time <strong>of</strong><br />

drilling. Seasonal variation in ground water is expected <strong>for</strong> this area. Thus, subsurface<br />

drains were assumed in <strong>the</strong> design computations <strong>for</strong> determining <strong>the</strong> required layer<br />

thickness. It is understood that subsurface drains and a geotextile fabric-separator are<br />

included in <strong>the</strong> planned reconstruction.<br />

3.3 Non-Frost Susceptible Material<br />

For this climatic area, <strong>the</strong> Michigan DOT requires that 36 inches (914 mm) <strong>of</strong> non-frost<br />

susceptible material be placed above any frost-susceptible soil based on historical data<br />

and experience. The thickness <strong>of</strong> non-frost susceptible material requirement was<br />

assumed <strong>for</strong> this design study and not re-evaluated, as noted above.<br />

Two unbound aggregate materials are available <strong>for</strong> use in <strong>the</strong> reconstruction <strong>of</strong> this<br />

segment along I-96: a class IIA sand subbase and a 21AA-MOD crushed stone aggregate<br />

base. Resilient modulus tests were completed and are available <strong>for</strong> similar materials from<br />

<strong>the</strong> FHWA-LTPP database <strong>for</strong> test sections in Michigan. This laboratory data was used to<br />

estimate <strong>the</strong> resilient modulus <strong>for</strong> each <strong>of</strong> <strong>the</strong>se materials, similar to <strong>the</strong> method used to<br />

develop <strong>Pavement</strong> <strong>Structural</strong> <strong>Design</strong> Study – A Simplified Catalog <strong>of</strong> Solutions. (2) A<br />

geotextile fabric should be used as a separator layer between <strong>the</strong> crushed aggregate base<br />

and sand subbase.<br />

Sand Subbase Material<br />

It is understood that <strong>the</strong> existing sand material encountered in <strong>the</strong> borings along I-96 will<br />

be replaced with Class IIA material <strong>for</strong> <strong>the</strong> flexible pavement design option. Resilient<br />

modulus tests on <strong>the</strong> sand proposed <strong>for</strong> use were unavailable. However, repeated load<br />

resilient modulus tests per<strong>for</strong>med on materials classified as sand subbases were<br />

previously extracted from <strong>the</strong> LTPP database.<br />

Figures 17 to 20 in Appendix B graphically present <strong>the</strong> distribution <strong>of</strong> <strong>the</strong> resilient<br />

modulus measured at specific stress states. It is important to note that <strong>the</strong> distributions<br />

appear to be normal <strong>for</strong> those groups with a sufficient number <strong>of</strong> tests. This normal<br />

distribution <strong>of</strong> resilient modulus values at specific stress states is also applicable to o<strong>the</strong>r<br />

unbound materials that have a sufficient number <strong>of</strong> resilient modulus tests.<br />

7


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Table 2 summarizes <strong>the</strong> median resilient modulus values included in Appendix B <strong>for</strong><br />

sandy soils and sand subbase materials. As tabulated, <strong>the</strong> median resilient modulus <strong>for</strong><br />

<strong>the</strong> sand subbase material is about 18,500 psi (127,553 kPa) <strong>for</strong> all tests, as well as <strong>the</strong><br />

tests <strong>for</strong> samples recovered from only <strong>the</strong> LTPP sites located in Michigan.<br />

Figure 6. Average rate <strong>of</strong> heave versus percentage finer than 0.02 mm <strong>for</strong> natural<br />

soil gradations. (6)<br />

8


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Figure 7 shows <strong>the</strong> average test results <strong>for</strong> a Class IIA sand subbase material in Michigan<br />

that were extracted from <strong>the</strong> LTPP database. These average test results were used to<br />

determine <strong>the</strong> design resilient modulus <strong>for</strong> both M-E design procedures.<br />

Table 2 Median resilient modulus measured on <strong>the</strong> sand subbases and sand<br />

subgrades recovered from all <strong>of</strong> <strong>the</strong> LTPP sites and from those sites<br />

that are located in Michigan.<br />

Material/<br />

Layer<br />

Stress State<br />

Median Resilient Modulus, psi (MPa)<br />

(Refer to figures 17 to 20 in Appendix B)<br />

All LTPP Sites LTPP Sites in Michigan<br />

Sand Confinement = 10 psi 18,400 (126.9) 18,700 (128.9)<br />

Subbase Cyclic Stress = 9 psi (N=62)*<br />

(N=10)<br />

Sand Confinement = 2.0 psi 7,700 (53.1)<br />

8,300 (57.2)<br />

Subgrade Cyclic Stress = 1.8 psi (N=440)<br />

(N=7)<br />

* N = number <strong>of</strong> resilient modulus tests within each group.<br />

Resilient Modulus, ksi<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 50 100 150<br />

Bulk Stress, psi<br />

9<br />

Confinement = 3 psi<br />

Confinement = 5 psi<br />

Confinement = 10 psi<br />

Confinement = 15 psi<br />

Confinement = 20 psi<br />

Figure 7 Average repeated load resilient modulus test results extracted from<br />

<strong>the</strong> LTPP database <strong>for</strong> a sand subbase that is expected to be similar to<br />

<strong>the</strong> material placed along I-96.


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Crushed Stone Aggregate Base Material<br />

The crushed stone aggregate base material planned <strong>for</strong> use along I-96 is a material that<br />

meets <strong>the</strong> Michigan DOT’s specification <strong>for</strong> a 21 AA-MOD material. Table 3 lists <strong>the</strong><br />

gradation <strong>for</strong> this aggregate base material. The resilient modulus tests completed on<br />

unbound aggregate base materials were extracted from <strong>the</strong> LTPP database <strong>for</strong> similar<br />

aggregate base materials. However, no resilient modulus tests have been completed on<br />

aggregate base materials that have a similar gradation to <strong>the</strong> one listed in table 3. Most <strong>of</strong><br />

<strong>the</strong> base material tested within <strong>the</strong> LTPP program represents a more dense material.<br />

Figure 8 shows <strong>the</strong> average test results from repeated load resilient modulus tests <strong>for</strong><br />

aggregate base materials that are as close as possible – but have slightly more material<br />

passing <strong>the</strong> smaller sieve sizes. These average values included in figure 8 were used in<br />

<strong>the</strong> study <strong>for</strong> <strong>the</strong> crushed stone aggregate base material.<br />

Table 3 Gradation requirements <strong>for</strong> <strong>the</strong> 21 AA-MOD crushed aggregate base<br />

planned <strong>for</strong> use along I-96.<br />

Sieve Size 37.5 mm 25.0 mm 12.5 mm 2.36 mm 0.60 mm 0.075 mm<br />

Percent<br />

Passing, %<br />

100 80-100 40-70 15-35 5-20


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

3.4 Hot Mix Asphalt Mixtures<br />

Three hot mix asphalt (HMA) mixtures are planned <strong>for</strong> use along I-96; an HMA wearing<br />

course, an HMA leveling course, and an HMA base course (refer to figure 1). The elastic<br />

modulus <strong>of</strong> <strong>the</strong> HMA is an input parameter <strong>for</strong> both <strong>the</strong> M-E analysis methods used in<br />

this design study. Dynamic modulus tests are unavailable <strong>for</strong> <strong>the</strong> mixtures planned <strong>for</strong><br />

use along I-96, and are not included in <strong>the</strong> LTPP database. Thus, <strong>the</strong> Witczak dynamic<br />

modulus regression equation embedded in <strong>the</strong> new M-E <strong>Pavement</strong> <strong>Design</strong> Guide was<br />

used to calculate <strong>the</strong> modulus <strong>for</strong> each HMA mixture.<br />

Figures 9 to 11 show <strong>the</strong> average modulus at <strong>the</strong> mid-depth <strong>of</strong> each HMA layer. These<br />

monthly values at various depths were used in <strong>the</strong> new M-E <strong>Pavement</strong> <strong>Design</strong> Guide<br />

s<strong>of</strong>tware. However, an equivalent annual modulus <strong>for</strong> each layer was used with <strong>the</strong><br />

simplistic M-E analysis method. These resulting equivalent annual modulus values are<br />

provided in Appendix C.<br />

Dynamic Modulus, ksi<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 5 10 15<br />

Month <strong>of</strong> Year<br />

Figure 9 Monthly average dynamic modulus values calculated at <strong>the</strong> mid-depth<br />

<strong>of</strong> <strong>the</strong> HMA wearing surface and leveling layers.<br />

The HMA mixtures are assumed to have minimum fracture characteristics. Figure 12<br />

graphically illustrates <strong>the</strong> minimum tensile strains at failure as a function <strong>of</strong> <strong>the</strong> resilient<br />

modulus measured using indirect tensile testing methods in accordance with <strong>the</strong><br />

procedure recommended by Von Quintus, et al. (12) The fatigue cracking criteria used in<br />

<strong>the</strong> design study corresponds to <strong>the</strong> relationship in figure 12. The evaluation <strong>of</strong> fatigue<br />

cracking <strong>for</strong> <strong>the</strong> HMA layers was completed in accordance with <strong>the</strong> steps outlined by<br />

Von Quintus, et al., and Von Quintus and Killingsworth. (10,12)<br />

11


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Dynamic Modulus, ksi<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 5 10 15<br />

Month <strong>of</strong> Year<br />

Figure 10 Monthly average dynamic modulus values calculated at <strong>the</strong> mid-depth<br />

<strong>of</strong> <strong>the</strong> upper portion <strong>of</strong> <strong>the</strong> HMA base layer.<br />

Dynamic Modulus, ksi<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 5 10 15<br />

Month <strong>of</strong> Year<br />

Figure 11 Monthly average dynamic modulus values calculated at <strong>the</strong> mid-depth<br />

<strong>of</strong> <strong>the</strong> lower portion <strong>of</strong> <strong>the</strong> HMA base layer.<br />

12


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Tensile Strain at Failure, mils/in.<br />

100<br />

10<br />

1<br />

10 100 1000 10000<br />

Total Resilient Modulus, psi<br />

Figure 12 Relationship between minimum tensile failure strains and indirect<br />

tensile resilient modulus. (12)<br />

3.5 Subsurface Drainage System<br />

A subsurface drainage system was included in <strong>the</strong> proposed design <strong>for</strong> I-96. The<br />

subsurface drainage system ensures that <strong>the</strong> non-frost susceptible sand subbase and soils<br />

will not become saturated <strong>for</strong> extended periods <strong>of</strong> time. This recommendation and design<br />

feature is based on in<strong>for</strong>mation recovered from boring logs and reported by Michigan<br />

DOT <strong>for</strong> <strong>the</strong> supporting soils in adjacent areas along I-96.<br />

4. Mechanistic-Empirical Thickness <strong>Design</strong>-Evaluation Method<br />

Two M-E analysis procedures were used to evaluate <strong>the</strong> design resulting from <strong>the</strong><br />

AASHTO DARWin program (refer to figure 1). One is defined as <strong>the</strong> simplistic M-E<br />

procedure and <strong>the</strong> o<strong>the</strong>r is <strong>the</strong> new M-E <strong>Pavement</strong> <strong>Design</strong> Guide. Appendix C includes<br />

<strong>the</strong> response computations <strong>for</strong> <strong>the</strong> simplistic M-E procedure, while Appendix D provides<br />

<strong>the</strong> results <strong>of</strong> <strong>the</strong> evaualtion using <strong>the</strong> new M-E <strong>Pavement</strong> <strong>Design</strong> Guide s<strong>of</strong>tware. This<br />

section <strong>of</strong> <strong>the</strong> report provides a summary <strong>of</strong> <strong>the</strong> results from <strong>the</strong> simplistic and new M-E<br />

analysis procedures.<br />

The structural deterioration <strong>of</strong> flexible pavements is associated with cracking <strong>of</strong> <strong>the</strong> HMA<br />

surface, and/or development <strong>of</strong> ruts in <strong>the</strong> wheel path. The methodology used in this<br />

13


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

study, applies <strong>the</strong> cumulative damage concept in <strong>the</strong> prediction <strong>of</strong> <strong>the</strong>se two modes <strong>of</strong><br />

distress. Use <strong>of</strong> <strong>the</strong> cumulative damage concept permits accounting, in a rational manner,<br />

<strong>for</strong> damage caused by each load application.<br />

Seasonal and o<strong>the</strong>r variations in material properties and modulus <strong>of</strong> each layer with<br />

different loads can be considered in <strong>the</strong>se predictions <strong>of</strong> damage. Evaluations <strong>of</strong> design<br />

life <strong>for</strong> candidate pavement structures are based on computations <strong>of</strong> damage caused by<br />

each truck type and load (or an 18-kip ESAL) <strong>for</strong> different seasons <strong>of</strong> <strong>the</strong> year, and<br />

summing <strong>the</strong> results to obtain <strong>the</strong> total damage to <strong>the</strong> pavement structure. For this design<br />

study, however, dynamic modulus tests results were unavailable <strong>for</strong> all HMA mixtures<br />

planned <strong>for</strong> use along I-96. As noted above, <strong>the</strong> dynamic modulus <strong>for</strong> <strong>the</strong> HMA mixtures<br />

were calculated using <strong>the</strong> Witczak regression equation included in <strong>the</strong> new M-E<br />

<strong>Pavement</strong> <strong>Design</strong> Guide s<strong>of</strong>tware. An equivalent annual modulus <strong>for</strong> similar HMA<br />

mixtures was used in <strong>the</strong> design study. The equivalent annual modulus values are<br />

included in Appendix C.<br />

4.1 <strong>Pavement</strong> <strong>Structural</strong> Evaluation Assumptions<br />

The pavement layer thickness and material types were based on mechanistic-empirical<br />

techniques, in accordance with <strong>the</strong> following assumptions and design features.<br />

• The pavement structural response model used to calculate pavement responses<br />

<strong>for</strong> <strong>the</strong> simplistic M-E analysis method was based on elastic layer <strong>the</strong>ory -<br />

EVERSTRS.<br />

• The proposed pavement structure was evaluated using <strong>the</strong> design criteria <strong>for</strong><br />

fatigue cracking (limiting <strong>the</strong> tensile strain at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> HMA layers),<br />

HMA rutting (limiting <strong>the</strong> vertical strain at <strong>the</strong> mid-depth <strong>of</strong> each HMA<br />

layer), and subgrade distortion (limiting <strong>the</strong> vertical strain at <strong>the</strong> top <strong>of</strong> <strong>the</strong><br />

foundation soil).<br />

• <strong>Structural</strong> design life = 20 years.<br />

• Tire load = 4,500 lbs. (20 kN) per tire.<br />

• Tire pressure = 120 psi (827 kPa).<br />

• Sand Subbase; Assumed to be non-frost susceptible and determined from<br />

repeated load resilient modulus tests included in <strong>the</strong> LTPP database, figure 7;<br />

Poisson’s ratio = 0.40.<br />

• Aggregate Base (21AA-MOD); Determined from repeated load resilient<br />

modulus tests included in <strong>the</strong> LTPP database, figure 8; Poisson’s ratio = 0.35.<br />

• The combined equivalent annual elastic layer modulus <strong>for</strong> <strong>the</strong> HMA surface,<br />

leveling, and base mixtures = 892,000 psi (127.6 MPa) <strong>for</strong> <strong>the</strong> simplistic M-E<br />

analysis method, refer to Appendix C; Poisson’s ratio = 0.30. For <strong>the</strong> new M-<br />

E <strong>Pavement</strong> <strong>Design</strong> Guide, <strong>the</strong> dynamic modulus default values <strong>for</strong> a<br />

Superpave mix with a PG 70-22 asphalt was used (figures 9-11). The asphalt<br />

grades included as defaults in <strong>the</strong> new M-E <strong>Design</strong> Guide s<strong>of</strong>tware are only<br />

<strong>for</strong> <strong>the</strong> standard grades.<br />

14


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

4.2 Evaluation Criteria<br />

The objective <strong>of</strong> this study was to evaluate <strong>the</strong> flexible pavement structure shown in<br />

figure 1 using M-E criteria over two analysis periods: 20 and 40 years. The failure <strong>of</strong> a<br />

pavement system under <strong>the</strong> cumulative damage concept is assumed to occur when <strong>the</strong><br />

damage index reaches a fixed amount, generally 1.0. It should be understood that a<br />

damage index <strong>of</strong> 1.0 does not necessarily imply a functional failure, but is instead that<br />

level <strong>of</strong> damage selected as sufficient to warrant maintenance and/or rehabilitation.<br />

Failure <strong>of</strong> flexible pavements is defined as alligator cracking over 10 to 20 percent <strong>of</strong> <strong>the</strong><br />

area subjected to wheels or one-half inch (12.7 mm) <strong>of</strong> foundation rutting.<br />

For this study, a damage index <strong>of</strong> 1.0 means <strong>the</strong> pavement has been subjected to a<br />

sufficient number <strong>of</strong> wheel loads (Nf) to cause 10 to 20 percent alligator cracking <strong>of</strong><br />

moderate to high severity or 0.5 inches (12.7 mm) <strong>of</strong> foundation distortion. In addition, a<br />

value <strong>of</strong> 0.40 inches (10 mm) <strong>of</strong> distortion (rutting, ∆HMA) in <strong>the</strong> HMA layers was also<br />

used in <strong>the</strong> evaluation. These values <strong>of</strong> 10 to 20 percent cracking and 0.5 inches (12.7<br />

mm) <strong>of</strong> foundation distortion were selected, because previous studies <strong>of</strong> in-service<br />

pavements have indicated that <strong>the</strong>se levels will usually trigger some type <strong>of</strong> pavement<br />

rehabilitation.<br />

4.3 Simplistic M-E <strong>Analysis</strong> Method<br />

Fatigue Cracking Evaluation<br />

Two fatigue cracking models were used with <strong>the</strong> simplistic M-E analysis method.<br />

Equation 1 and figure 13 were used to determine <strong>the</strong> allowable number <strong>of</strong> load<br />

applications <strong>for</strong> fatigue cracking analysis <strong>of</strong> <strong>the</strong> pavement structure.<br />

Where:<br />

−3.<br />

291 −0.<br />

854<br />

( Fatigue)<br />

= 0.<br />

00432(<br />

C)(<br />

) ( E)<br />

N t<br />

f ε (1)<br />

( ) M<br />

C = 10<br />

(2)<br />

⎛ Vbe<br />

M = 4.<br />

84<br />

⎜<br />

⎝Va<br />

+ Vbe<br />

⎞<br />

− 0.<br />

69<br />

⎟<br />

⎠<br />

(3)<br />

εt = Tensile strain at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> HMA layer, in./in.<br />

E = HMA elastic or dynamic modulus, psi.<br />

C = Correction factor to account <strong>for</strong> volumetric properties<br />

Vbe = Percent effective asphalt content by volume in HMA mixture, %<br />

Va = Percent air voids in <strong>the</strong> HMA mixture, %<br />

Equation 1 is based on 20 percent fatigue cracking, and is <strong>the</strong> equation embedded in <strong>the</strong><br />

new M-E <strong>Pavement</strong> <strong>Design</strong> Guide s<strong>of</strong>tware, but without <strong>the</strong> global calibration factors.<br />

The global calibration factors were not used because <strong>the</strong>y were determined based on <strong>the</strong><br />

cracking predictions using <strong>the</strong> modulus values <strong>of</strong> each layer within specific time intervals<br />

and seasons. The simplistic M-E method uses equivalent annual modulus values <strong>for</strong> each<br />

15


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

layer, which are presented and discussed in Appendix C. Figure 13 presents <strong>the</strong><br />

allowable number <strong>of</strong> load applications <strong>for</strong> 10 percent cracking. Table 4 summarizes <strong>the</strong><br />

allowable or permissible tensile strain at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> HMA layer <strong>for</strong> both <strong>the</strong> 20 and<br />

40-year traffic levels using both fatigue cracking relationships.<br />

The tensile strain at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> HMA layers was computed with EVERSTRS <strong>for</strong><br />

<strong>the</strong> AASHTO design, which is also included in table 4 (refer to Appendix C). As shown,<br />

<strong>the</strong> computed tensile strain is less than <strong>the</strong> permissible HMA tensile strains <strong>for</strong> both<br />

fatigue cracking models. In fact, <strong>the</strong> computed tensile strain <strong>of</strong> 49.7 micro-strains is<br />

below <strong>the</strong> assumed endurance limit <strong>for</strong> HMA. Typical values being used <strong>for</strong> <strong>the</strong><br />

endurance limit are in <strong>the</strong> range <strong>of</strong> 65 to 75 micro-strains. Thus, fatigue cracking should<br />

not be a problem <strong>for</strong> <strong>the</strong> proposed structure.<br />

Asphalt Concrete Tensile Strain, in/in<br />

Figure 13 Relationship between HMA tensile strain and allowable wheel load<br />

applications <strong>for</strong> <strong>the</strong> alligator cracking failure criteria. (8)<br />

Distortion Evaluation – Unbound Layers<br />

Equation 4 and figure 14 were used to determine <strong>the</strong> allowable number <strong>of</strong> load<br />

applications <strong>for</strong> distortion analyses <strong>of</strong> <strong>the</strong> unbound layers in <strong>the</strong> pavement structure.<br />

f<br />

0.0100<br />

0.0010<br />

0.0001<br />

1,000 10,000 100,000 1,000,000 10,000,000<br />

Wheel Load Applications<br />

−11<br />

0.<br />

955<br />

( Distortion)<br />

= 1.<br />

259x10<br />

( M R ) v(<br />

Soil )<br />

16<br />

Asphalt Concrete Modulus<br />

−4.<br />

082 ( )<br />

1,000,000 psi<br />

600,000 psi<br />

300,000 psi<br />

100,000 psi<br />

N ε (4)


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Where:<br />

MR = Resilient modulus <strong>of</strong> <strong>the</strong> foundation soil, psi.<br />

εv(Soil) = Vertical strain at <strong>the</strong> top <strong>of</strong> <strong>the</strong> foundation soil, in./in.<br />

Table 4 summarizes <strong>the</strong> allowable or permissible vertical strain at <strong>the</strong> top <strong>of</strong> <strong>the</strong> sand<br />

subbase and foundation soil <strong>for</strong> both <strong>the</strong> 20 and 40-year traffic levels. The vertical strains<br />

at <strong>the</strong> top <strong>of</strong> <strong>the</strong> sand subbase and foundation soil were computed with EVERSTRS <strong>for</strong><br />

<strong>the</strong> AASHTO design, which are also included in table 4 (refer to Appendix C). As<br />

shown, <strong>the</strong> computed vertical strains are significantly less than <strong>the</strong> permissible vertical<br />

strains <strong>for</strong> both layers. Thus, distortion in <strong>the</strong> unbound layers should not be a problem <strong>for</strong><br />

<strong>the</strong> proposed structure.<br />

Table 4 Limiting criteria that were used to evaluate <strong>the</strong> design layer thickness<br />

(refer to figure 1) <strong>for</strong> a 20 and 40-year analysis periods.<br />

<strong>Design</strong> Criteria<br />

Limiting or Permissible<br />

Values<br />

20-Year 40-Year<br />

<strong>Analysis</strong> <strong>Analysis</strong><br />

17<br />

Computed<br />

Responses<br />

(See Note 1)<br />

<strong>Design</strong> 80-kN (18-kip) ESALs 22,694,400 56,000,000 ---<br />

Equation 1;<br />

Tensile strain at <strong>the</strong><br />

20% Cracking<br />

bottom <strong>of</strong> <strong>the</strong> HMA<br />

Figure 13;<br />

layers, in./in.<br />

10% Cracking<br />

Vertical Strain in <strong>the</strong> HMA layers,<br />

in./in.<br />

Vertical strain at <strong>the</strong> top <strong>of</strong> <strong>the</strong> nonfrost<br />

susceptible sand material, in/in.<br />

Vertical strain at <strong>the</strong> top <strong>of</strong> <strong>the</strong><br />

foundation soil, in./in.<br />

Permissible maximum surface<br />

deflection, in.<br />

Unbound layer modulus ratios<br />

0.000100 0.000075<br />

0.000070 0.000053<br />

0.0000497<br />

0.000091 0.000068 0.00009196*<br />

0.000284 0.000227 0.0000993<br />

0.000235 0.000187 0.0000889<br />

0.0175 0.0158 0.0108<br />

Material and Thickness<br />

Dependent, but


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Subgrade Vertical Compressive Strain, in/in<br />

Figure 14 Relationship between subgrade vertical strain and allowable wheel<br />

load applications <strong>for</strong> <strong>the</strong> foundation de<strong>for</strong>mation failure criteria. (9)<br />

Rutting Evaluation – HMA Layers<br />

Equation 5 was used to calculate <strong>the</strong> expected rutting within <strong>the</strong> HMA layers (∆HMA) <strong>of</strong><br />

<strong>the</strong> pavement structure and <strong>the</strong> permissible vertical strain in <strong>the</strong> HMA so that <strong>the</strong> rut<br />

depth in <strong>the</strong> HMA layers does not exceed 0.40 inches (10 mm).<br />

HMA<br />

0.0100<br />

0.0010<br />

0.0001<br />

1,000 10,000 100,000 1,000,000 10,000,000<br />

W heel Load Applications<br />

2.<br />

5896 1.<br />

0057 0.<br />

5213 0.<br />

4289<br />

( T ) ( Vbe<br />

) ( Va<br />

) ( N ) ( c f ) v(<br />

HMA)<br />

18<br />

Subgrade Modulus<br />

20,000 psi<br />

10,000 psi<br />

6,000 psi<br />

3,000 psi<br />

2,000 psi<br />

( )( t )<br />

−7<br />

∆ = 5.<br />

37x10<br />

ε<br />

(5)<br />

Where:<br />

T = Mid-depth temperature <strong>of</strong> <strong>the</strong> HMA layer thickness increment, in.<br />

εv(HMA) = Vertical strain at <strong>the</strong> mid-depth <strong>of</strong> <strong>the</strong> HMA layer thickness increment,<br />

in./in.<br />

cf = Confinement factor<br />

tHMA = Thickness <strong>of</strong> <strong>the</strong> HMA increment, inches<br />

Table 4 summarizes <strong>the</strong> allowable or permissible vertical strain at <strong>the</strong> mid-depth <strong>of</strong> <strong>the</strong><br />

HMA surface layers <strong>for</strong> both <strong>the</strong> 20 and 40-year traffic levels. The vertical strains at <strong>the</strong><br />

mid-depth <strong>of</strong> <strong>the</strong> HMA surface layers were computed with EVERSTRS <strong>for</strong> <strong>the</strong> AASHTO<br />

design, which are also included in table 4 (refer to Appendix C). As shown, <strong>the</strong><br />

HMA


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

computed vertical strain is greater than <strong>the</strong> permissible vertical strain. The rutting<br />

calculated with equation 5 is 0.48 inches (12 mm) <strong>for</strong> <strong>the</strong> 20-year traffic and 0.70 inches<br />

(18 mm) <strong>for</strong> <strong>the</strong> 40-year traffic. Thus, <strong>the</strong> simplistic M-E method suggests that rutting in<br />

<strong>the</strong> HMA layers is expected to require <strong>the</strong> pavement to be rehabilitated within <strong>the</strong><br />

analysis period.<br />

O<strong>the</strong>r Evaluation Criteria<br />

Two o<strong>the</strong>r criteria were used <strong>for</strong> <strong>the</strong> simplistic M-E thickness design check or evaluation.<br />

One is based on limiting <strong>the</strong> maximum surface deflection and <strong>the</strong> o<strong>the</strong>r is based on<br />

limiting <strong>the</strong> modulus ratio between two adjacent unbound pavement layers (figure 15).<br />

The long-term in place modulus <strong>of</strong> unbound base and subbase layers are dependent on <strong>the</strong><br />

modulus <strong>of</strong> <strong>the</strong> supporting layer because <strong>of</strong> potential de-compaction in <strong>the</strong> lower portion<br />

<strong>of</strong> <strong>the</strong>se layers. The Corp <strong>of</strong> Engineers developed criteria to limit <strong>the</strong> modulus <strong>of</strong><br />

unbound aggregate layers based on <strong>the</strong> thickness <strong>of</strong> that layer and <strong>the</strong> modulus <strong>of</strong> <strong>the</strong><br />

supporting layer. (9) This limiting modulus ratio criteria (figure 15) was used in<br />

determining <strong>the</strong> limiting modulus <strong>of</strong> <strong>the</strong> unbound aggregate base and subbase layers. The<br />

elastic layer modulus used in <strong>the</strong> design computations with EVERSTRS <strong>for</strong> <strong>the</strong> unbound<br />

layers are less than those that would result from using figure 15, because <strong>the</strong> actual stress<br />

sensitivity was used in determining those values.<br />

The permissible surface deflection is listed in table 4 <strong>for</strong> <strong>the</strong> two traffic levels or analysis<br />

periods. This permissible deflection criteria has been used by Von Quintus and<br />

Killingsworth and o<strong>the</strong>rs in analyzing <strong>the</strong> per<strong>for</strong>mance <strong>of</strong> in-service pavements. (10,11)<br />

Table 4 also includes <strong>the</strong> maximum surface deflection computed with EVERSTRS (refer<br />

to Appendix C). As shown, <strong>the</strong> computed value is less than <strong>the</strong> permissible value.<br />

4.4 New M-E <strong>Pavement</strong> <strong>Design</strong> Guide S<strong>of</strong>tware<br />

The new M-E <strong>Pavement</strong> <strong>Design</strong> Guide s<strong>of</strong>tware was used to evaluate <strong>the</strong> proposed<br />

pavement cross section designed using <strong>the</strong> AASHTO DARWin program. The inputs<br />

used in <strong>the</strong> program were <strong>the</strong> best available data and <strong>the</strong> global default values were used<br />

when insufficient data were available. Appendix D includes a summary <strong>of</strong> <strong>the</strong> inputs<br />

used and predicted distresses over time. A 30-year analysis period was used in <strong>the</strong><br />

problem ra<strong>the</strong>r than 40 years, because <strong>the</strong> program became unstable above 30 years.<br />

In summary, <strong>the</strong> proposed flexible pavement and HMA mixtures are not expected to<br />

exhibit significant levels <strong>of</strong> distress, with <strong>the</strong> exception <strong>of</strong> rutting. The new M-E<br />

<strong>Pavement</strong> <strong>Design</strong> Guide s<strong>of</strong>tware predicts greater levels <strong>of</strong> rutting in <strong>the</strong> unbound<br />

materials, especially in <strong>the</strong> foundation soil. One reason <strong>for</strong> this result is that most <strong>of</strong> <strong>the</strong><br />

sites used in <strong>the</strong> calibration process <strong>for</strong> <strong>the</strong> new s<strong>of</strong>tware have resilient modulus values<br />

<strong>for</strong> <strong>the</strong> subgrade and unbound base layers much greater than those used in this designevaluation<br />

study.<br />

19


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Modulus <strong>of</strong> Layer n, 10 psi<br />

3<br />

100<br />

10<br />

1<br />

BASE COURSES<br />

(Meter = Inch x .0254) SUBBASE COURSES<br />

6"<br />

THICKNESS<br />

4"<br />

10"<br />

8"<br />

7"<br />

6"<br />

5"<br />

4"<br />

1 10 100<br />

Modulus <strong>of</strong> Layer n + 1, 10 psi<br />

10 5 psi = 698 MPa<br />

Figure 15 Limiting modulus criteria <strong>of</strong> unbound aggregate base and subbase<br />

layers. (9)<br />

20


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

5. Summary <strong>of</strong> Evaluations<br />

Table 5 provides a summary <strong>of</strong> all distresses predicted with <strong>the</strong> different M-E analysis<br />

methods used in this study. In summary, <strong>the</strong> pavement design cross section proposed <strong>for</strong><br />

<strong>the</strong> reconstruction <strong>of</strong> I-96 is adequate relative to cracking. The one concern is with<br />

rutting and distortion.<br />

The new M-E <strong>Pavement</strong> <strong>Design</strong> Guide s<strong>of</strong>tware predicts most <strong>of</strong> <strong>the</strong> distortion in <strong>the</strong><br />

unbound layers and foundation soil, while <strong>the</strong> simplistic M-E analysis method predicts<br />

that most <strong>of</strong> <strong>the</strong> rutting will occur in <strong>the</strong> HMA layers. As noted in <strong>the</strong> previous section, it<br />

is believed that <strong>the</strong> rutting is being over predicted in <strong>the</strong> foundation soil with 14 inches <strong>of</strong><br />

HMA and 16 inches <strong>of</strong> a crushed aggregate base. In addition, this segment <strong>of</strong> I-96 has a<br />

much higher traffic level than most <strong>of</strong> <strong>the</strong> LTPP sections that were used in <strong>the</strong> calibration<br />

<strong>of</strong> <strong>the</strong> new M-E <strong>Pavement</strong> <strong>Design</strong> Guide have much less traffic. For this reason, it is<br />

believed that most <strong>of</strong> <strong>the</strong> rutting will be in <strong>the</strong> HMA mixtures.<br />

Table 5 Summary <strong>of</strong> distresses predicted <strong>for</strong> <strong>the</strong> two analysis periods using <strong>the</strong><br />

two M-E analysis methods.<br />

Predicted Distress<br />

Simplistic M-E Method<br />

New M-E <strong>Pavement</strong><br />

<strong>Design</strong> Guide S<strong>of</strong>tware<br />

20-Year 40-Year 20-Year 40-Year<br />

Fatigue<br />

Damage<br />

Index<br />

0.324<br />

(0.101)*<br />

0.801<br />

(0.249)*<br />

0.028 0.047<br />

Cracking Area<br />

Cracking, %<br />

2<br />

(0)*<br />

6<br />

(1)*<br />

8.4 11.9<br />

Top-Down Cracking, ft./mi. NA NA 267 274<br />

Thermal Cracking, ft./mi. NA NA 40 211<br />

Total Rutting, PG 70-22 0.48 0.70 0.77 0.86<br />

inches PG 76-22 0.36 0.54 NA NA<br />

Layer Rutting PG 70-22 0.48 0.70 0.21 0.26<br />

or Distortion,<br />

inches<br />

Unbound<br />

Layers<br />

Minimal Minimal 0.56 0.60<br />

IRI, in./mi. NA NA 120 134<br />

*Note 1: The values in () <strong>for</strong> fatigue cracking are <strong>for</strong> <strong>the</strong> predictions using figure 13, while <strong>the</strong><br />

o<strong>the</strong>r fatigue cracking numbers are based on equation 1.<br />

Note 2: The cells that are shaded or highlighted in <strong>the</strong> table exceed <strong>the</strong> allowable or permissible<br />

distress magnitudes at <strong>the</strong> end <strong>of</strong> each analysis period.<br />

An additional structure was analyzed to reduce <strong>the</strong> rutting in <strong>the</strong> HMA layers. The only<br />

difference between <strong>the</strong> proposed AASHTO-designed flexible pavement and o<strong>the</strong>r<br />

structure is that a PG 76-22 was included in <strong>the</strong> top two HMA layers (wearing surface<br />

and leveling course). The comparison <strong>of</strong> <strong>the</strong> predicted rutting <strong>for</strong> <strong>the</strong> two asphalts is<br />

21


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

shown in figure 16 and included in table 5. Using <strong>the</strong> stiffer asphalt will reduce rutting to<br />

an acceptable level, even <strong>for</strong> <strong>the</strong> 40-year analysis period.<br />

Rut Depth, inches<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

PG 76-22 PG 70-22<br />

0 10 20 30 40 50<br />

22<br />

Age, Years<br />

Figure 16 Comparison <strong>of</strong> predicted rutting <strong>for</strong> HMA mixtures with a PG 70-22<br />

and a PG 76-22.<br />

As shown in figure 1, a PG 70-22 asphalt is planned <strong>for</strong> use in <strong>the</strong> top two HMA layers.<br />

Whe<strong>the</strong>r <strong>the</strong> dynamic modulus regression equation will adequately estimate <strong>the</strong> stiffness<br />

values <strong>for</strong> <strong>the</strong> PG 70-22P mixtures is questionable. Whe<strong>the</strong>r a PG 70-22P or PG 76-22 is<br />

used should be defined based on asphalt or mixture modulus testing or some type <strong>of</strong><br />

torture test to ensure that <strong>the</strong> HMA mixtures will be resistant to rutting. Without any<br />

additional mixture testing, it is suggested that a PG 76-22 asphalt be included in <strong>the</strong> top<br />

two mixtures. In addition, it should be confirmed that <strong>the</strong> pavement materials meet or<br />

exceed <strong>the</strong> assumptions used in design. It is also recommended that sufficient testing be<br />

completed during construction to ensure that <strong>the</strong> design assumptions are satisfied prior to<br />

construction.<br />

6. Limitations<br />

All work per<strong>for</strong>med under this study was conducted in accordance with generally<br />

accepted pavement engineering practices using data and project in<strong>for</strong>mation provided by<br />

<strong>the</strong> Mr. Curtis Bleech. No o<strong>the</strong>r warranty, express or implied, is made. The generalized


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

pavement thickness design recommendations presented herein were based upon <strong>the</strong><br />

assumed subsurface and material conditions identified in <strong>the</strong> report. Sufficient testing<br />

should be completed during construction <strong>for</strong> quality control purposes and to confirm <strong>the</strong><br />

design values assumed <strong>for</strong> this design study.<br />

7. References<br />

1. AASHTO, 1993 AASHTO <strong>Design</strong> Guide <strong>for</strong> <strong>Pavement</strong> Structures, American<br />

Association <strong>of</strong> State Highway and Transportation Officials, 1993.<br />

2. Von Quintus, Harold L., <strong>Pavement</strong> <strong>Structural</strong> <strong>Design</strong> Study – A Simplified Catalog <strong>of</strong><br />

Solutions, Report No. 3065, Fugro-BRE, Inc. December 2001.<br />

3. NCHRP 1-37A, Mechanistic-Empirical <strong>Design</strong> Method <strong>for</strong> <strong>the</strong> <strong>Structural</strong> <strong>Design</strong> <strong>of</strong><br />

New and Rehabilitated <strong>Pavement</strong> Structures, Final Report <strong>for</strong> NCHRP 1-37A,<br />

National Cooperative Highway Research Program, Washington, DC, 2004.<br />

4. Von Quintus, Harold and Amber Yau, Evaluation <strong>of</strong> Resilient Modulus Test Data in<br />

LTPP Database, Report No. FHWA/RD-01-158, Federal Highway Administration,<br />

Office <strong>of</strong> Infrastructure Research and Development, Washington, DC, 2001.<br />

5. Von Quintus, Harold and Amy Simpson, Documentation <strong>of</strong> <strong>the</strong> Back-Calculation o f<br />

Layer Parameters <strong>for</strong> LTPP Test Sections, Volume II: Layered Elastic <strong>Analysis</strong> <strong>for</strong><br />

Flexible and Rigid <strong>Pavement</strong>s, Final Report LTPP DATA, Work Order 9, Task 2<br />

Contract No. DTFH61-96-C-00003, Federal Highway Administration, U.S.<br />

Department <strong>of</strong> Transportation, January 1999.<br />

6. Von Quintus, Harold and Brian Killingsworth, <strong>Design</strong> Pamphlet <strong>for</strong> <strong>the</strong><br />

Backcalculation <strong>of</strong> <strong>Pavement</strong> Layer Moduli, Publication No. FHWA-RD-97-076,<br />

Federal Highway Administration, Washington, D.C., June 1997.<br />

7. Soils and Geology – <strong>Pavement</strong> <strong>Design</strong> <strong>for</strong> Frost Conditions, TM5-818-2, Department<br />

<strong>of</strong> <strong>the</strong> Army Technical Manual, Headquarters, Department <strong>of</strong> <strong>the</strong> Army, July 1965.<br />

8. Finn, F.N., K. Nair, C. Monismith, Minimizing Premature Cracking <strong>of</strong> Asphalt<br />

Concrete <strong>Pavement</strong>s, NCHRP Report No. 195, National Cooperative Highway<br />

Research Program, National Research Council, Washington, DC, June 1973.<br />

9. Barker, W. R. and W. N. Brabston, Development <strong>of</strong> a <strong>Structural</strong> <strong>Design</strong> Procedure<br />

<strong>for</strong> Flexible Airport <strong>Pavement</strong>s, FAA Report No. FAA-RD-74-199, U.S. Army<br />

Engineer Waterways Experiment Station, Federal Aviation Administration,<br />

September 1975.<br />

23


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

10. Von Quintus, H. L. and Brian Killingsworth, Analyses Relating to <strong>Pavement</strong> Material<br />

Characterizations and Their Effects on <strong>Pavement</strong> Per<strong>for</strong>mance, Publication No.<br />

FHWA-RD-97-085, Federal Highway Administration, January 1998.<br />

11. Rauhut, J.B. R.L. Lytton, and M.I. Darter, <strong>Pavement</strong> Damage Functions <strong>for</strong> Cost<br />

Allocation, Volume 1: Damage Functions and Load Equivalence Factors, Publication<br />

No. FHWA/RD-84-018, Federal Highway Administration, Washington, DC, 1984.<br />

12. Von Quintus, H.L., J.A. Scherocman, C.S. Hughes and T.W. Kennedy, Asphalt-<br />

Aggregate Mixture <strong>Analysis</strong> System-AAMAS, NCHRP Report No. 338, National<br />

Cooperative Highway Research Program, National Research Council, Washington,<br />

DC, March 1991.<br />

24


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Appendix A<br />

Summary <strong>of</strong> Truck Traffic Equivalent Single Axle Load Applications<br />

Computed <strong>for</strong> <strong>the</strong> Base Year 2005<br />

Appendix A includes a copy <strong>of</strong> <strong>the</strong> spreadsheet used to compute <strong>the</strong> number <strong>of</strong> 80-kN<br />

(18-kip) equivalent single axle loads <strong>for</strong> <strong>the</strong> base year using <strong>the</strong> default distributions that<br />

are included in <strong>the</strong> new M-E <strong>Pavement</strong> <strong>Design</strong> Guide <strong>for</strong> an urban freeway similar to I-<br />

96.<br />

As shown on <strong>the</strong> attached spreadsheet, <strong>the</strong> total number <strong>of</strong> annual ESALs <strong>for</strong> 2005 is<br />

4,411,425 <strong>for</strong> both directions. Using a directional distribution factor <strong>of</strong> 0.56 and a lane<br />

distribution factor <strong>of</strong> 0.70, <strong>the</strong> total number <strong>of</strong> annual ESALs in <strong>the</strong> design lane is<br />

1,729,279. The average truck equivalency factor <strong>for</strong> this truck traffic stream is 1.259<br />

ESAL per truck application.<br />

25


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

26


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

27


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

28


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

29


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

30


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

31


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Appendix B<br />

Summary <strong>of</strong> Repeated Load Resilient Modulus Tests Extracted from<br />

<strong>the</strong> LTPP Database <strong>for</strong> <strong>the</strong> Michigan Sites.<br />

Distribution <strong>of</strong> Average resilient Modulus <strong>for</strong> GSGB (Sand).<br />

RES_MOD_AVG<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Quantiles<br />

maximum<br />

quartile<br />

median<br />

quartile<br />

minimum<br />

Moments<br />

Mean<br />

Std Dev<br />

Std Error Mean<br />

Upper 95% Mean<br />

Lower 95% Mean<br />

N<br />

Sum Weights<br />

100.0%<br />

99.5%<br />

97.5%<br />

90.0%<br />

75.0%<br />

50.0%<br />

25.0%<br />

10.0%<br />

2.5%<br />

0.5%<br />

0.0%<br />

226.00<br />

226.00<br />

200.12<br />

151.70<br />

138.00<br />

127.00<br />

112.00<br />

103.30<br />

73.72<br />

72.00<br />

72.00<br />

126.7581<br />

24.4612<br />

3.1066<br />

132.9700<br />

120.5461<br />

62.0000<br />

62.0000<br />

Figure 17 Resilient modulus (in MPa) measured on sand base and subbase<br />

materials recovered from all sites in <strong>the</strong> LTPP program <strong>for</strong> a<br />

confining pressure <strong>of</strong> 10 psi (69 kPa) and a cyclic stress <strong>of</strong> 9 psi<br />

(62kPa). The resilient modulus values given above are in MPa.<br />

32


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Distribution <strong>of</strong> Average resilient Modulus <strong>for</strong> GSGB (Sand) <strong>for</strong> Michigan sites.<br />

RES_MOD_AVG<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

Quantiles<br />

maximum<br />

quartile<br />

median<br />

quartile<br />

minimum<br />

Moments<br />

Mean<br />

Std Dev<br />

Std Error Mean<br />

Upper 95% Mean<br />

Lower 95% Mean<br />

N<br />

Sum Weights<br />

100.0%<br />

99.5%<br />

97.5%<br />

90.0%<br />

75.0%<br />

50.0%<br />

25.0%<br />

10.0%<br />

2.5%<br />

0.5%<br />

0.0%<br />

181.00<br />

181.00<br />

181.00<br />

178.10<br />

143.75<br />

129.00<br />

115.75<br />

114.10<br />

114.00<br />

114.00<br />

114.00<br />

133.2000<br />

21.1019<br />

6.6730<br />

148.2955<br />

118.1045<br />

10.0000<br />

10.0000<br />

Figure 18 Resilient modulus (in MPa) measured on sand base and subbase<br />

materials recovered from all Michigan sites included in <strong>the</strong> LTPP<br />

program <strong>for</strong> a confining pressure <strong>of</strong> 10 psi (69 kPa) and a cyclic stress<br />

<strong>of</strong> 9 psi (62 kPa). The resilient modulus values given above are in<br />

MPa.<br />

33


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Distribution <strong>of</strong> Average resilient Modulus Subgrade Sand.<br />

RES_MOD_AVG<br />

200<br />

100<br />

Quantiles<br />

maximum<br />

quartile<br />

median<br />

quartile<br />

minimum<br />

Moments<br />

Mean<br />

Std Dev<br />

Std Error Mean<br />

Upper 95% Mean<br />

Lower 95% Mean<br />

N<br />

Sum Weights<br />

100.0%<br />

99.5%<br />

97.5%<br />

90.0%<br />

75.0%<br />

50.0%<br />

25.0%<br />

10.0%<br />

2.5%<br />

0.5%<br />

0.0%<br />

191.00<br />

147.36<br />

111.87<br />

84.00<br />

67.00<br />

53.00<br />

43.00<br />

36.00<br />

28.00<br />

23.00<br />

18.00<br />

57.6341<br />

21.3246<br />

1.0166<br />

59.6321<br />

55.6360<br />

440.0000<br />

440.0000<br />

Figure 19 Resilient modulus (in MPa) measured on sand recovered from <strong>the</strong><br />

subgrade at all sites in <strong>the</strong> LTPP program <strong>for</strong> a confining pressure <strong>of</strong><br />

2.0 psi (13.8 kPa) and a cyclic stress <strong>of</strong> 1.8 psi (12.4 kPa). The resilient<br />

modulus values given above are in MPa.<br />

34


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Distribution <strong>of</strong> Average resilient Modulus <strong>for</strong> Sugrade Sand <strong>for</strong> Michigan sites.<br />

RES_MOD_AVG<br />

200<br />

150<br />

100<br />

50<br />

Quantiles<br />

maximum<br />

quartile<br />

median<br />

quartile<br />

minimum<br />

Moments<br />

Mean<br />

Std Dev<br />

Std Error Mean<br />

Upper 95% Mean<br />

Lower 95% Mean<br />

N<br />

Sum Weights<br />

100.0%<br />

99.5%<br />

97.5%<br />

90.0%<br />

75.0%<br />

50.0%<br />

25.0%<br />

10.0%<br />

2.5%<br />

0.5%<br />

0.0%<br />

191.00<br />

191.00<br />

191.00<br />

191.00<br />

63.00<br />

57.00<br />

50.00<br />

42.00<br />

42.00<br />

42.00<br />

42.00<br />

73.4286<br />

52.3477<br />

19.7856<br />

121.8422<br />

25.0150<br />

7.0000<br />

7.0000<br />

Figure 20 Resilient modulus (in MPa) measured on sand recovered from <strong>the</strong><br />

subgrade at all Michigan sites included in <strong>the</strong> LTPP program <strong>for</strong> a<br />

confining pressure <strong>of</strong> 2.0 psi (13.8 kPa) and a cyclic stress <strong>of</strong> 1.8 psi<br />

(12.4 kPa). The resilient modulus values given above are in MPa.<br />

35


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Appendix C<br />

Layer Properties and <strong>Pavement</strong> Responses Computed <strong>for</strong> <strong>the</strong> I-96<br />

<strong>Design</strong> Cross Section<br />

Appendix C includes a summary <strong>of</strong> <strong>the</strong> methods used to determine <strong>the</strong> elastic modulus<br />

values <strong>for</strong> each layer and a copy <strong>of</strong> <strong>the</strong> pavement responses that were used to evaluate <strong>the</strong><br />

pavement structure. These responses were calculated with EVERSTRS <strong>for</strong> <strong>the</strong> standard<br />

design axle load – 18-kip single axle load.<br />

C.1 HMA Modulus Determination<br />

As noted in <strong>the</strong> report, <strong>the</strong> dynamic modulus regression equation was used to estimate <strong>the</strong><br />

average modulus <strong>of</strong> each HMA mixture <strong>for</strong> each month <strong>of</strong> an average year. The first part<br />

<strong>of</strong> Appendix C includes <strong>the</strong> spreadsheet used to determine <strong>the</strong> monthly modulus values<br />

and <strong>the</strong> equivalent annual layer modulus <strong>for</strong> <strong>the</strong> HMA mixtures used in <strong>the</strong> fatigue<br />

cracking analysis. For <strong>the</strong> rutting analysis and predictions made with <strong>the</strong> simplistic M-E<br />

method, <strong>the</strong> elastic modulus <strong>for</strong> <strong>the</strong> three summer months was used.<br />

36


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

37


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

C.2 Unbound Layer Modulus Determination<br />

The second part <strong>of</strong> Appendix C includes a summary <strong>of</strong> <strong>the</strong> procedure and responses used<br />

to determine <strong>the</strong> resilient modulus <strong>for</strong> each unbound layer. In o<strong>the</strong>r words, select an<br />

elastic modulus <strong>for</strong> <strong>the</strong> unbound materials and soils to ensure that <strong>the</strong> <strong>the</strong>ory<br />

(EVERSTRS) and laboratory provide consistent values at <strong>the</strong> same stress state <strong>for</strong> use in<br />

<strong>the</strong> fatigue analysis.<br />

One <strong>of</strong> <strong>the</strong> important steps in this process is to include <strong>the</strong> at-rest stresses with those<br />

computed from EVERSTRS. Table 6 provides a summary <strong>of</strong> <strong>the</strong> in<strong>for</strong>mation and data<br />

that were used to compute <strong>the</strong> overburden pressures and at-rest stresses in each unbound<br />

layer.<br />

Table 6 Data used to calculate <strong>the</strong> overburden pressure and at-rest stresses in<br />

each unbound layer <strong>of</strong> <strong>the</strong> design cross section (refer to figure 1).<br />

Layer/Material Type<br />

Dry Density,<br />

pcf<br />

38<br />

Moisture<br />

Content, %<br />

At-Rest Earth Pressure<br />

Coefficient, ko<br />

HMA; average <strong>of</strong> all three<br />

layers<br />

150 --- ---<br />

21 AA-MOD Crushed<br />

Aggregate Base<br />

130 7.0 0.9<br />

Class II-A Sand Subbase 136 7.0 0.9<br />

Low Plasticity, Firm Silty<br />

Clay<br />

116 13.0 0.5<br />

Table 7 summarizes <strong>the</strong> EVERSTRS computations from two iterations <strong>of</strong> using trial<br />

elastic modulus values <strong>for</strong> each unbound layer. The two iterations demonstrate <strong>the</strong> need<br />

to check <strong>the</strong> values used in <strong>the</strong> elastic layer program to ensure that <strong>the</strong> <strong>the</strong>ory and<br />

laboratory values provide consistent results. As summarized in table 7, <strong>the</strong> first iteration<br />

used <strong>the</strong> design resilient modulus suggested <strong>for</strong> use by <strong>the</strong> Michigan DOT and <strong>the</strong><br />

maximum layer modulus ratio to estimate <strong>the</strong> elastic modulus <strong>of</strong> all o<strong>the</strong>r unbound layers<br />

(refer to figure 15). The trial or “guessed” resilient modulus values are not consistent<br />

with <strong>the</strong> values that would be measured in <strong>the</strong> laboratory from repeated load tests (figures<br />

5,7, and8). However, <strong>the</strong> modulus values used in <strong>the</strong> second iteration are, <strong>for</strong> all practical<br />

purposes <strong>the</strong> same values that would be measured in <strong>the</strong> laboratory at <strong>the</strong> same stress<br />

states. The values from <strong>the</strong> second iteration were used in <strong>the</strong> fatigue cracking analysis.


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Table 7 Comparison <strong>of</strong> <strong>the</strong> trial elastic layer modulus used in EVERSTRS with those measured from repeated load<br />

resilient modulus tests in <strong>the</strong> laboratory at <strong>the</strong> same stress state.<br />

1<br />

2<br />

Iteration No. &<br />

Unbound Layer<br />

Trial E-<br />

Value, ksi<br />

At-Rest Stress @ ¼<br />

Layer Depth, psi<br />

XX &<br />

ZZ<br />

YY<br />

Stresses Computed w/EVERSTRS @<br />

¼ Layer Depth, psi<br />

ZZ XX YY<br />

39<br />

Confining<br />

Stress<br />

Total Stress State, psi<br />

Deviator<br />

Stress<br />

Bulk<br />

Stress<br />

Lab E-<br />

Value, ksi<br />

Silty Clay* 3 -4.55 -2.28 -0.30 -0.04 -0.04 2.32 2.53 --- 5.1<br />

Sand Subbase 9 -2.68 -2.41 -0.50 0.37 0.39 2.02 --- 7.24 6.8<br />

Aggregate Base 20 -1.54 -1.39 -1.21 0.42 0.51 0.88 --- 4.60 6.5<br />

Silty Clay* 5.2 -4.55 -2.28 -0.41 -0.07 -0.07 2.69 2.61 --- 5.2<br />

Sand Subbase 7.0 -2.68 -2.41 -0.64 0.02 0.04 2.37 --- 8.08 7.2<br />

Aggregate Base 7.5 -1.54 -1.39 -0.97 -0.11 -0.07 1.46 --- 5.47 7.5<br />

*NOTE: The stress state was determined at <strong>the</strong> ¼ depth within each unbound layer, with <strong>the</strong> exception <strong>for</strong> <strong>the</strong> foundation or subgrade soils. The stress state was<br />

determined 18-inches into <strong>the</strong> subgrade. These depths are consistent with <strong>the</strong> values recommended <strong>for</strong> use by Von Quintus, et al. (10) The at-rest stresses were<br />

computed using <strong>the</strong> in<strong>for</strong>mation and data included in table 6.


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

C.3 EVERSTRS Output <strong>for</strong> Fatigue Cracking Analyses<br />

The following is a summary <strong>of</strong> <strong>the</strong> output from <strong>the</strong> EVERSTRS program <strong>for</strong> <strong>the</strong> design<br />

cross section using <strong>the</strong> layer modulus values determined in <strong>the</strong> previous section <strong>of</strong><br />

Appendix C. The o<strong>the</strong>r pavement responses are also included in this ouput <strong>for</strong><br />

determining <strong>the</strong> damage index <strong>for</strong> fatigue cracking and foundation distortion, and<br />

whe<strong>the</strong>r <strong>the</strong> design cross section will be provide adequate per<strong>for</strong>mance over <strong>the</strong> two<br />

analysis periods. These responses are based on equivalent annual modulus values.<br />

CLayered Elastic <strong>Analysis</strong> by EverStress <strong>for</strong> Windows<br />

Title: Michigan I-96 Reconstruction<br />

No <strong>of</strong> Layers:<br />

5 No <strong>of</strong> Loads: 2 No <strong>of</strong> X-Y Evaluation Points: 2<br />

Layer Poisson's Thickness Moduli(1)<br />

* Ratio (in) (ksi)<br />

1 0.3 14 892<br />

2 0.35 16 7.5<br />

3 0.35 8 7<br />

4 0.45 240 5.2<br />

5 0.4 * 50<br />

Load No X-Position Y-Position Load Pressure Radius<br />

* (in) (in) (lbf) (psi) (in)<br />

1 0 0 4500 120 3.455<br />

2 13 0 4500 120 3.455<br />

Location No:<br />

1 X-Position (in): .000 Y-Position (in): .000<br />

cNormal Stresses<br />

Z-Position Layer Sxx Syy Szz Syz Sxz Sxy<br />

(in) * (psi) (psi) (psi) (psi) (psi) (psi)<br />

13.999 1 49.55 56.79 -1.15 0 0.13 0<br />

18 2 -0.11 -0.07 -0.97 0 0.1 0<br />

32 3 0.02 0.04 -0.64 0 0.05 0<br />

38.1 4 -0.12 -0.11 -0.56 0 0.03 0<br />

56 4 -0.07 -0.07 -0.41 0 0.02 0<br />

cNormal Strains and Deflections<br />

Z-Position Layer Exx Eyy Ezz Ux Uy Uz<br />

(in) * (10^-6) (10^-6) (10^-6) (mils) (mils) (mils)<br />

13.999 1 36.83 47.39 -37.06 -0.246 0 10.163<br />

18 2 34.26 40.87 -121.13 -0.235 0 9.642<br />

32 3 33.55 35.68 -94 -0.224 0 8.197<br />

38.1 4 35.04 36.79 -87.08 -0.233 0 7.643<br />

56 4 28.26 29.03 -67.77 -0.186 0 6.268<br />

cPrincipal Stresses and Strains<br />

Z-Position Layer S1 S2 S3 E1 E2 E3<br />

(in) * (psi) (psi) (psi) (10^-6) (10^-6) (10^-6)<br />

13.999 1 -1.15 49.55 56.79 -37.06 36.83 47.39<br />

18 2 -0.98 -0.1 -0.07 -123.34 36.47 40.87<br />

32 3 -0.64 0.03 0.04 -94.71 34.26 35.68<br />

38.1 4 -0.56 -0.12 -0.11 -87.81 35.77 36.79<br />

56 4 -0.41 -0.07 -0.07 -68.11 28.6 29.03<br />

40


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Location No: X-Position (in):<br />

2<br />

6.500 Y-Position (in): .000<br />

cNormal Stresses<br />

Z-Position Layer Sxx Syy Szz Syz Sxz Sxy<br />

(in) * (psi) (psi) (psi) (psi) (psi) (psi)<br />

13.999 1 51.24 59.38 -1.19 0 0 0<br />

18 2 -0.1 -0.07 -1.01 0 0 0<br />

32 3 0.03 0.04 -0.65 0 0 0<br />

38.1 4 -0.12 -0.11 -0.57 0 0 0<br />

56<br />

cNormal Strains and Deflections<br />

4 -0.07 -0.07 -0.42 0 0 0<br />

Z-Position Layer Exx Eyy Ezz Ux Uy Uz<br />

(in) * (10^-6) (10^-6) (10^-6) (mils) (mils) (mils)<br />

13.999 1 37.87 49.74 -38.54 0 0 10.299<br />

18 2 36.9 42.51 -126.58 0 0 9.756<br />

32 3 34.99 36.22 -96.23 0 0 8.26<br />

38.1 4 36.26 37.23 -88.89 0 0 7.695<br />

56<br />

cPrincipal Stresses and Strains<br />

4 28.82 29.22 -68.58 0 0 6.299<br />

Z-Position Layer S1 S2 S3 E1 E2 E3<br />

(in) * (psi) (psi) (psi) (10^-6) (10^-6) (10^-6)<br />

13.999 1 -1.19 51.24 59.38 -38.54 37.87 49.74<br />

18 2 -1.01 -0.1 -0.07 -126.58 36.9 42.51<br />

32 3 -0.65 0.03 0.04 -96.23 34.99 36.22<br />

38.1 4 -0.57 -0.12 -0.11 -88.89 36.26 37.23<br />

56 4 -0.42 -0.07 -0.07 -68.58 28.82 29.22<br />

41


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

C.4 EVERSTRS Output <strong>for</strong> HMA Rutting Analyses<br />

The output from <strong>the</strong> EVERSTRS program summarized below was used to calculate <strong>the</strong><br />

expected rutting in <strong>the</strong> HMA layers using <strong>the</strong> average summer modulus values.<br />

CLayered Elastic <strong>Analysis</strong> by EverStress <strong>for</strong> Windows<br />

Title: Michigan I-96 Reconstruction<br />

No <strong>of</strong> Layers:<br />

5 No <strong>of</strong> Loads: 2 No <strong>of</strong> X-Y Evaluation Points: 2<br />

Layer Poisson's Thickness Moduli(1)<br />

* Ratio (in) (ksi)<br />

1 0.3 4 700<br />

2 0.35 10 615<br />

3 0.35 24 7.5<br />

4 0.45 240 5.2<br />

5 0.4 *<br />

Y-<br />

50<br />

Load No X-Position<br />

Position Load Pressure Radius<br />

* (in) (in) (lbf) (psi) (in)<br />

1 0 0 4500 120 3.455<br />

2 13 0 4500 120 3.455<br />

Location No: X-Position (in):<br />

1<br />

.000 Y-Position (in): .000<br />

cNormal Stresses<br />

Z-Position Layer Sxx Syy Szz Syz Sxz Sxy<br />

(in) * (psi) (psi) (psi) (psi) (psi) (psi)<br />

1 1 -85.01 -89.89 -116.84 0 1.14 0<br />

3 1 -28.04 -28.95 -82.96 0 3.21 0<br />

5.2 2 -11.11 -9.67 -46.35 0 4.85 0<br />

7.7 2 4.15 6.63 -22.69 0 5.49 0<br />

11.5<br />

cNormal Strains and Deflections<br />

2 27.58 31.48 -5.29 0 3.59 0<br />

Z-Position Layer Exx Eyy Ezz Ux Uy Uz<br />

(in) * (10^-6) (10^-6) (10^-6) (mils) (mils) (mils)<br />

1 1 -32.84 -41.9 -91.96 0.235 0 12.081<br />

3 1 7.9 6.21 -94.09 0.134 0 11.881<br />

5.2 2 13.82 16.98 -63.54 0.041 0 11.708<br />

7.7 2 15.89 21.33 -43.02 -0.052 0 11.579<br />

11.5<br />

cPrincipal Stresses and Strains<br />

2 29.94 38.5 -42.21 -0.196 0 11.426<br />

Z-Position Layer S1 S2 S3 E1 E2 E3<br />

(in) * (psi) (psi) (psi) (10^-6) (10^-6) (10^-6)<br />

1 1 -116.88 -89.89 -84.97 -92.03 -41.9 -32.77<br />

3 1 -83.15 -28.95 -27.86 -94.44 6.21 8.25<br />

5.2 2 -47.01 -10.45 -9.67 -64.98 15.26 16.98<br />

7.7 2 -23.77 5.23 6.63 -45.4 18.26 21.33<br />

11.5 2 -5.68 27.97 31.48 -43.06 30.79 38.5<br />

42


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Appendix D<br />

<strong>Analysis</strong> <strong>of</strong> <strong>the</strong> Proposed <strong>Pavement</strong> <strong>Design</strong> Cross Section <strong>for</strong> I-96 Using<br />

<strong>the</strong> New M-E <strong>Pavement</strong> <strong>Design</strong> Guide S<strong>of</strong>tware<br />

Appendix D includes a listing <strong>of</strong> <strong>the</strong> inputs used in <strong>the</strong> new M-E <strong>Pavement</strong> <strong>Design</strong> Guide<br />

s<strong>of</strong>tware. In addition, graphical summarizes <strong>of</strong> all predicted distresses follow <strong>the</strong> inputs.<br />

43


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Project: I-96, Wayne County, Michigan<br />

General In<strong>for</strong>mation<br />

<strong>Design</strong> Life 30 years<br />

Base/Subgrade construction: September, 2003<br />

<strong>Pavement</strong> construction: September, 2003<br />

Traffic open: October, 2003<br />

Type <strong>of</strong> design Flexible<br />

<strong>Analysis</strong> Parameters<br />

<strong>Analysis</strong> type Probabilistic<br />

Per<strong>for</strong>mance Criteria<br />

Initial IRI (in/mi)<br />

Terminal IRI (in/mi)<br />

AC Surface Down Cracking (Long. Cracking) (ft/500):<br />

AC Bottom Up Cracking (Alligator Cracking) (%):<br />

AC Thermal Fracture (Transverse Cracking) (ft/mi):<br />

Permanent De<strong>for</strong>mation (AC Only) (in):<br />

Permanent De<strong>for</strong>mation (Total <strong>Pavement</strong>) (in):<br />

Description:<br />

This is an analysis <strong>of</strong> a flexible pavement design that<br />

was completed using <strong>the</strong> 1993 AASHTO DARWin<br />

procedure.<br />

44<br />

9600<br />

2<br />

56<br />

70<br />

45<br />

Limit Reliability<br />

65<br />

170 90<br />

2500 90<br />

10 90<br />

1000 90<br />

0.35 90<br />

0.6 90<br />

Location: I-96; Wayne County, Michigan<br />

Project ID: CS 82122<br />

Section ID: M-39 to Schaefer Road<br />

Principal Arterials - Interstate and Defense Routes<br />

Date: 8/26/2004<br />

Station/milepost <strong>for</strong>mat: Miles: 0.000<br />

Station/milepost begin: 11.72<br />

Station/milepost end: 12.05<br />

Traffic direction: East bound<br />

Default Input Level<br />

Default input level Level 3, Default and historical agency values.<br />

Traffic<br />

Initial two-way aadtt:<br />

Number <strong>of</strong> lanes in design direction:<br />

Percent <strong>of</strong> trucks in design direction (%):<br />

Percent <strong>of</strong> trucks in design lane (%):<br />

Operational speed (mph):<br />

Traffic -- Volume Adjustment Factors<br />

Monthly Adjustment Factors (Level 3, Default MAF)<br />

Month<br />

January<br />

February<br />

March<br />

April<br />

May<br />

June<br />

July<br />

August<br />

September<br />

October<br />

November<br />

December<br />

Vehicle Class<br />

Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<br />

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Vehicle Class Distribution Hourly truck traffic distribution<br />

(Level 3, Default Distribution) by period beginning:<br />

AADTT distribution by vehicle class<br />

Midnight 1.2% Noon 3.5%<br />

Class 4 0.9% 1:00 am 0.6% 1:00 pm 4.2%<br />

Class 5 11.6% 2:00 am 0.5% 2:00 pm 6.1%<br />

Class 6 3.6% 3:00 am 0.5% 3:00 pm 7.3%<br />

Class 7 0.2% 4:00 am 0.6% 4:00 pm 7.1%<br />

Class 8 6.7% 5:00 am 2.3% 5:00 pm 9.8%<br />

Class 9 62.0% 6:00 am 8.0% 6:00 pm 6.4%<br />

Class 10 4.8% 7:00 am 7.9% 7:00 pm 4.0%<br />

Class 11 2.6% 8:00 am 7.4% 8:00 pm 3.0%<br />

Class 12 1.4% 9:00 am 4.5% 9:00 pm 2.8%<br />

Class 13 6.2% 10:00 am 3.9% 10:00 pm 2.3%<br />

11:00 am 4.1% 11:00 pm 2.0%<br />

Traffic Growth Factor<br />

Vehicle Growth Growth<br />

Class Rate Function<br />

Class 4 2.0% Compound<br />

Class 5 2.0% Compound<br />

Class 6 2.0% Compound<br />

Class 7 2.0% Compound<br />

Class 8 2.0% Compound<br />

Class 9 2.0% Compound<br />

Class 10 2.0% Compound<br />

Class 11 2.0% Compound<br />

Class 12 2.0% Compound<br />

Class 13 2.0% Compound<br />

Traffic -- Axle Load Distribution Factors<br />

Level 3: Default<br />

Traffic -- General Traffic Inputs<br />

Mean wheel location (inches from <strong>the</strong> lane<br />

marking):<br />

Traffic wander standard deviation (in):<br />

<strong>Design</strong> lane width (ft):<br />

Number <strong>of</strong> Axles per Truck<br />

Vehicle<br />

Class<br />

Class 4<br />

Class 5<br />

Class 6<br />

Class 7<br />

Class 8<br />

Class 9<br />

Class 10<br />

Class 11<br />

Class 12<br />

Class 13<br />

18<br />

10<br />

12<br />

Single Tandem Tridem Quad<br />

Axle Axle Axle Axle<br />

1.62 0.39 0.00 0.00<br />

2.00 0.00 0.00 0.00<br />

1.02 0.99 0.00 0.00<br />

1.00 0.26 0.83 0.00<br />

2.38 0.67 0.00 0.00<br />

1.13 1.93 0.00 0.00<br />

1.19 1.09 0.89 0.00<br />

4.29 0.26 0.06 0.00<br />

3.52 1.14 0.06 0.00<br />

2.15 2.13 0.35 0.00<br />

Axle Configuration<br />

Average axle width (edge-to-edge) outside<br />

dimensions,ft):<br />

Dual tire spacing (in):<br />

Axle Configuration<br />

Single Tire (psi):<br />

Dual Tire (psi):<br />

Average Axle Spacing<br />

Tandem axle(psi):<br />

Tridem axle(psi):<br />

Quad axle(psi):<br />

8.5<br />

12<br />

120<br />

120<br />

51.6<br />

49.2<br />

49.2<br />

45


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Climate<br />

icm file:<br />

Latitude (degrees.minutes)<br />

Longitude (degrees.minutes)<br />

Elevation (ft)<br />

Depth <strong>of</strong> water table (ft)<br />

Structure--<strong>Design</strong> Features<br />

Detroit-Michigan<br />

42.13<br />

-83.21<br />

628<br />

10<br />

Structure--Layers<br />

Layer 1 -- Asphalt concrete<br />

Material type: Asphalt concrete<br />

Layer thickness (in): 1.5<br />

General Properties<br />

General<br />

Reference temperature (F°): 70<br />

Volumetric Properties as Built<br />

Effective binder content (%): 10.5<br />

Air voids (%): 7.5<br />

Total unit weight (pcf): 148<br />

Poisson's ratio: 0.35 (predicted)<br />

Parameter a: -1.63<br />

Parameter b: 0.00000384<br />

Thermal Properties<br />

Thermal conductivity asphalt (BTU/hr-ft-F°): 0.67<br />

Heat capacity asphalt (BTU/lb-F°): 0.23<br />

Asphalt Mix<br />

Cumulative % Retained 3/4 inch sieve: 0<br />

Cumulative % Retained 3/8 inch sieve: 20<br />

Cumulative % Retained #4 sieve: 35<br />

% Passing #200 sieve: 6.5<br />

Asphalt Binder<br />

Option: Superpave binder grading<br />

A 10.2990 (correlated)<br />

VTS: -3.4260 (correlated)<br />

High temp.<br />

°C<br />

46<br />

52<br />

58<br />

64<br />

70<br />

76<br />

82<br />

Low temperature, °C<br />

-10 -16 -22 -28 -34 -40 -46<br />

46


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Layer 2 -- Asphalt concrete<br />

Material type: Asphalt concrete<br />

Layer thickness (in): 2.5<br />

General Properties<br />

General<br />

Reference temperature (F°): 70<br />

Volumetric Properties as Built<br />

Effective binder content (%): 10.5<br />

Air voids (%): 7.5<br />

Total unit weight (pcf): 148<br />

Poisson's ratio: 0.35 (predicted)<br />

Parameter a: -1.63<br />

Parameter b: 0.00000384<br />

Thermal Properties<br />

Thermal conductivity asphalt (BTU/hr-ft-F°): 0.67<br />

Heat capacity asphalt (BTU/lb-F°): 0.23<br />

Asphalt Mix<br />

Cumulative % Retained 3/4 inch sieve: 0<br />

Cumulative % Retained 3/8 inch sieve: 30<br />

Cumulative % Retained #4 sieve: 40<br />

% Passing #200 sieve: 6<br />

Asphalt Binder<br />

Option: Superpave binder grading<br />

A 10.2990 (correlated)<br />

VTS: -3.4260 (correlated)<br />

High temp.<br />

°C<br />

46<br />

52<br />

58<br />

64<br />

70<br />

76<br />

82<br />

Low temperature, °C<br />

-10 -16 -22 -28 -34 -40 -46<br />

47


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Layer 3 -- Asphalt concrete<br />

Material type: Asphalt concrete<br />

Layer thickness (in): 10<br />

General Properties<br />

General<br />

Reference temperature (F°): 70<br />

Volumetric Properties as Built<br />

Effective binder content (%): 9.5<br />

Air voids (%): 7.5<br />

Total unit weight (pcf): 148<br />

Poisson's ratio: 0.35 (predicted)<br />

Parameter a: -1.63<br />

Parameter b: 0.00000384<br />

Thermal Properties<br />

Thermal conductivity asphalt (BTU/hr-ft-F°): 0.67<br />

Heat capacity asphalt (BTU/lb-F°): 0.23<br />

Asphalt Mix<br />

Cumulative % Retained 3/4 inch sieve: 10<br />

Cumulative % Retained 3/8 inch sieve: 40<br />

Cumulative % Retained #4 sieve: 50<br />

% Passing #200 sieve: 5.5<br />

Asphalt Binder<br />

Option: Superpave binder grading<br />

A 10.2990 (correlated)<br />

VTS: -3.4260 (correlated)<br />

High temp.<br />

°C<br />

46<br />

52<br />

58<br />

64<br />

70<br />

76<br />

82<br />

Low temperature, °C<br />

-10 -16 -22 -28 -34 -40 -46<br />

48


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Layer 4 -- Crushed gravel<br />

Unbound Material: Crushed gravel<br />

Thickness(in): 16<br />

Strength Properties<br />

Input Level: Level 3<br />

<strong>Analysis</strong> Type: ICM inputs (ICM Calculated Modulus)<br />

Poisson's ratio: 0.35<br />

Coefficient <strong>of</strong> lateral pressure,Ko: 0.5<br />

Modulus (input) (psi): 7500<br />

ICM Inputs<br />

Gradation and Plasticity Index<br />

Plasticity Index, PI: 0<br />

Passing #200 sieve (%): 7<br />

Passing #4 sieve (%): 30<br />

D60 (mm): 10<br />

Calculated/Derived Parameters<br />

Maximum dry unit weight (pcf): 130 (user input)<br />

Specific gravity <strong>of</strong> solids, Gs: 2.65 (derived)<br />

Saturated hydraulic conductivity (ft/hr): 302 (derived)<br />

Optimum gravimetric water content (%): 7 (user input)<br />

Calculated degree <strong>of</strong> saturation (%): 78 (calculated)<br />

Soil water characteristic curve parameters: Default values<br />

Parameters<br />

a<br />

b<br />

c<br />

Hr.<br />

Value<br />

0.153<br />

7.5<br />

1.18<br />

0.015<br />

Layer 5 -- A-2-4<br />

Unbound Material: A-2-4<br />

Thickness(in): 8<br />

Strength Properties<br />

Input Level: Level 3<br />

<strong>Analysis</strong> Type: ICM inputs (ICM Calculated Modulus)<br />

Poisson's ratio: 0.35<br />

Coefficient <strong>of</strong> lateral pressure,Ko: 0.5<br />

Modulus (input) (psi): 7000<br />

ICM Inputs<br />

Gradation and Plasticity Index<br />

Plasticity Index, PI: 0<br />

Passing #200 sieve (%): 10<br />

Passing #4 sieve (%): 72<br />

D60 (mm): 0.1<br />

Calculated/Derived Parameters<br />

Maximum dry unit weight (pcf): 135 (user input)<br />

Specific gravity <strong>of</strong> solids, Gs: 2.65 (derived)<br />

Saturated hydraulic conductivity (ft/hr): 0.000866 (derived)<br />

Optimum gravimetric water content (%): 7 (user input)<br />

Calculated degree <strong>of</strong> saturation (%): 78 (calculated)<br />

Soil water characteristic curve parameters: Default values<br />

Parameters<br />

a<br />

b<br />

c<br />

Hr.<br />

Value<br />

4.86<br />

7.5<br />

0.365<br />

17.5<br />

49


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Layer 6 -- CL<br />

Unbound Material: CL<br />

Thickness(in): 12<br />

Strength Properties<br />

Input Level: Level 3<br />

<strong>Analysis</strong> Type: ICM inputs (ICM Calculated Modulus)<br />

Poisson's ratio: 0.45<br />

Coefficient <strong>of</strong> lateral pressure,Ko: 0.5<br />

Modulus (input) (psi): 5200<br />

ICM Inputs<br />

Gradation and Plasticity Index<br />

Plasticity Index, PI: 15<br />

Passing #200 sieve (%): 65<br />

Passing #4 sieve (%): 93<br />

D60 (mm): 0.1<br />

Calculated/Derived Parameters<br />

Maximum dry unit weight (pcf): 116 (user input)<br />

Specific gravity <strong>of</strong> solids, Gs: 2.73 (derived)<br />

Saturated hydraulic conductivity (ft/hr): 3.25e-005 (derived)<br />

Optimum gravimetric water content (%): 13 (user input)<br />

Calculated degree <strong>of</strong> saturation (%): 87.4 (calculated)<br />

Soil water characteristic curve parameters: Default values<br />

Parameters<br />

a<br />

b<br />

c<br />

Hr.<br />

Value<br />

57.5<br />

1.18<br />

0.648<br />

2240<br />

Layer 7 -- CL<br />

Unbound Material: CL<br />

Thickness(in): Semi-infinite<br />

Strength Properties<br />

Input Level: Level 3<br />

<strong>Analysis</strong> Type: ICM inputs (ICM Calculated Modulus)<br />

Poisson's ratio: 0.45<br />

Coefficient <strong>of</strong> lateral pressure,Ko: 0.5<br />

Modulus (input) (psi): 5200<br />

ICM Inputs<br />

Gradation and Plasticity Index<br />

Plasticity Index, PI: 15<br />

Passing #200 sieve (%): 65<br />

Passing #4 sieve (%): 93<br />

D60 (mm): 0.1<br />

Calculated/Derived Parameters<br />

Maximum dry unit weight (pcf): 116 (user input)<br />

Specific gravity <strong>of</strong> solids, Gs: 2.73 (derived)<br />

Saturated hydraulic conductivity (ft/hr): 3.25e-005 (derived)<br />

Optimum gravimetric water content (%): 13 (user input)<br />

Calculated degree <strong>of</strong> saturation (%): 87.4 (calculated)<br />

Soil water characteristic curve parameters: Default values<br />

Parameters<br />

a<br />

b<br />

c<br />

Hr.<br />

Value<br />

57.5<br />

1.18<br />

0.648<br />

2240<br />

50


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Distress Model Calibration Settings - Flexible<br />

AC Fatigue Level 3 (Nationally calibrated values)<br />

k1<br />

0.00432<br />

k2<br />

3.9492<br />

k3<br />

1.281<br />

AC Rutting Level 3 (Nationally calibrated values)<br />

k1<br />

k2<br />

k3<br />

Standard Deviation Total<br />

Rutting (RUT):<br />

-3.4488<br />

1.5606<br />

0.4791<br />

Thermal Fracture Level 3 (Nationally calibrated values)<br />

k1<br />

5<br />

1<br />

1<br />

7<br />

3.5<br />

0<br />

1000<br />

1<br />

1<br />

0<br />

6000<br />

1<br />

1<br />

0<br />

1000<br />

IRI<br />

IRI Flexible <strong>Pavement</strong>s with GB<br />

C1 (GB)<br />

0.0463<br />

C2 (GB)<br />

0.00119<br />

C3 (GB)<br />

0.1834<br />

C4 (GB)<br />

0.00384<br />

C5 (GB)<br />

0.00736<br />

C6 (GB)<br />

0.00115<br />

Std. Dev (GB)<br />

0.387<br />

0.1587*POWER(RUT,0.4579)+0.001<br />

Std. Dev. (THERMAL): 0.2474 * THERMAL + 10.619<br />

CSM Fatigue Level 3 (Nationally calibrated values)<br />

k1<br />

k2<br />

Subgrade Rutting Level 3 (Nationally calibrated values)<br />

Granular:<br />

k1<br />

1.673<br />

Fine-grain:<br />

k1<br />

1.35<br />

AC Cracking<br />

AC Top Down Cracking<br />

C1 (top)<br />

C2 (top)<br />

C3 (top)<br />

C4 (top)<br />

Standard Deviation (TOP) 200 + 2300/(1+exp(1.072-2.1654*log(TOP+0.0001)))<br />

AC Bottom Up Cracking<br />

C1 (bottom)<br />

C2 (bottom)<br />

C3 (bottom)<br />

C4 (bottom)<br />

Standard Deviation (TOP) 32.7 + 995.1 /(1+exp(2-2*log(BOTTOM+0.0001)))<br />

CSM Cracking<br />

C1 (CSM)<br />

C2 (CSM)<br />

C3 (CSM)<br />

C4 (CSM)<br />

Standard Deviation (CSM) CTB*1<br />

IRI Flexible <strong>Pavement</strong>s with ATB<br />

C1 (ATB)<br />

C2 (ATB)<br />

C3 (ATB)<br />

C4 (ATB)<br />

0.009995<br />

0.000518<br />

0.00235<br />

18.36<br />

51


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

The following graphs represent <strong>the</strong> distress predictions with <strong>the</strong> new M-E <strong>Pavement</strong> <strong>Design</strong> Guide s<strong>of</strong>tware.<br />

Longitudinal Cracking (ft/mi)<br />

Alligator Cracking (%)<br />

3000<br />

2700<br />

2400<br />

2100<br />

1800<br />

1500<br />

1200<br />

900<br />

600<br />

300<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Surface Down Cracking - Longitudinal<br />

0<br />

0 36 72 108 144 180 216 252 288 324 360 396<br />

<strong>Pavement</strong> Age (month)<br />

Bottom Up Cracking - Alligator<br />

0 36 72 108 144 180 216 252 288 324 360 396<br />

<strong>Pavement</strong> Age (month)<br />

52<br />

Surface<br />

Depth = 0.5"<br />

Surface at Reliability<br />

<strong>Design</strong> Limit<br />

Maximum Cracking<br />

Bottom Up Reliability<br />

Maximum Cracking Limit


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

Total Length (ft/mi)<br />

Rutting Depth (in)<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

Thermal Cracking: Total Length Vs Time<br />

0<br />

0 36 72 108 144 180 216 252 288 324 360 396<br />

AC Rutting <strong>Design</strong> Value = 0.35<br />

Total Rutting <strong>Design</strong> Limit = 0.6<br />

<strong>Pavement</strong> Age (month)<br />

Permanant De<strong>for</strong>mation: Rutting<br />

0 36 72 108 144 180 216 252 288 324 360 396<br />

<strong>Pavement</strong> Age (month)<br />

53<br />

Thermal Crack Length<br />

Crack Length at Reliability<br />

<strong>Design</strong> Limit<br />

SubTotalAC<br />

SubTotalBase<br />

SubTotalSG<br />

Total Rutting<br />

TotalRutReliability<br />

Total Rutting <strong>Design</strong> Limit


<strong>Pavement</strong> <strong>Structural</strong> <strong>Analysis</strong> August 2004<br />

Report No. 15953-2/1 ARA-ERES Consultants<br />

IRI (in/mi)<br />

200<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 36 72 108 144 180 216 252 288 324 360 396<br />

IRI<br />

<strong>Pavement</strong> Age (month)<br />

54<br />

IRI<br />

IRI at Reliability<br />

<strong>Design</strong> Limit

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!