14.08.2013 Views

Higgs Phase of Gravity in String Theory - LUTh

Higgs Phase of Gravity in String Theory - LUTh

Higgs Phase of Gravity in String Theory - LUTh

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Higgs</strong> <strong>Phase</strong> <strong>of</strong> <strong>Gravity</strong><br />

Sh<strong>in</strong>ji Mukohyama<br />

(University <strong>of</strong> Tokyo)<br />

December 12, 2006 @ IHP<br />

Arkani-Hamed, Cheng, Luty and Mukohyama, hep-th/0312099<br />

Arkani-Hamed, Crem<strong>in</strong>elli, Mukohyama and Zaldarriaga, hep-th/0312100<br />

Arkani-Hamed, Cheng, Luty and Mukohyama and Wiseman, hep-ph/0507120<br />

Cheng, Luty, Mukohyama and Thaler, hep-th/0603010<br />

Mukohyama, hep-th/0502189, hep-th/0607181, hep-th/0610254


Motivation<br />

• <strong>Gravity</strong> at long distances<br />

Flatten<strong>in</strong>g galaxy rotation curves<br />

Dimm<strong>in</strong>g supernovae<br />

accelerat<strong>in</strong>g universe<br />

• Usual explanation: new forms <strong>of</strong> matter<br />

(DARK MATTER) and energy (DARK<br />

ENERGY).


Historical remark:<br />

Precession <strong>of</strong> perihelion sun<br />

observed <strong>in</strong> 1800’s… mercury<br />

which people tried to<br />

expla<strong>in</strong> with a “dark<br />

planet”, Vulcan,<br />

sun<br />

vulcan<br />

mercury<br />

But the right answer wasn’t “dark planet”, it was “change<br />

gravity” from Newton to GR.


Can we change gravity <strong>in</strong> IR to<br />

address these mysteries?<br />

Change theory?<br />

Macroscopic UV scale…<br />

Change state (phase)?<br />

<strong>Higgs</strong> phase <strong>of</strong> gravity<br />

The simplest: Ghost Condensation<br />

Arkani-Hamed, Cheng, Luty and Mukohyama, hep-th/0312099


Order<br />

Parameter<br />

<strong>Higgs</strong> Mechanism Ghost Condensation<br />

Instability Tachyon Ghost<br />

Condensate V’=0, V’’>0 P’=0, P’’>0<br />

Spontaneous<br />

break<strong>in</strong>g<br />

Gauge symmetry Lorents symmetry<br />

(Time translation)<br />

Modify<strong>in</strong>g Gauge force Gravitational force<br />

New<br />

potential<br />

Φ V(<br />

Φ)<br />

∂ φ<br />

− m<br />

Φ<br />

2<br />

Φ<br />

2<br />

( ) 2<br />

( ∂φ)<br />

Yukawa-type Oscillat<strong>in</strong>g <strong>in</strong> space<br />

Grow<strong>in</strong>g <strong>in</strong> time<br />

μ<br />

P<br />

φ<br />

2 −<br />

φ


For simplicity<br />

L<br />

φ<br />

E.O.M.<br />

= P<br />

( 2 ) ( ∂φ)<br />

<strong>in</strong> FRW background.<br />

[ ]<br />

3<br />

∂ ′ ⋅φ<br />

= a P<br />

t<br />

0<br />

P<br />

′φ → 0 P as a → ∞<br />

′ φ <br />

P<br />

φ = 0 or ( ) 0<br />

2 =<br />

(unstable ghosty<br />

background)<br />

φ


Order<br />

Parameter<br />

<strong>Higgs</strong> Mechanism Ghost Condensation<br />

Instability Tachyon Ghost<br />

Condensate V’=0, V’’>0 P’=0, P’’>0<br />

Spontaneous<br />

break<strong>in</strong>g<br />

Gauge symmetry Lorents symmetry<br />

(Time translation)<br />

Modify<strong>in</strong>g Gauge force Gravitational force<br />

New<br />

potential<br />

Φ V(<br />

Φ)<br />

∂ φ<br />

− m<br />

Φ<br />

2<br />

Φ<br />

2<br />

( ) 2<br />

( ∂φ)<br />

Yukawa-type Oscillat<strong>in</strong>g <strong>in</strong> space<br />

Grow<strong>in</strong>g <strong>in</strong> time<br />

μ<br />

P<br />

φ<br />

2 −<br />

φ


Systematic construction <strong>of</strong> Low-<br />

energy effective theory<br />

Backgrounds characterized by<br />

∂ φ<br />

and timelike<br />

μ<br />

≠<br />

0<br />

Background metric is maximally<br />

symmetric, either M<strong>in</strong>kowski or dS.


Gauge choice: φ(<br />

t , x)<br />

= t.<br />

Residual symmetry:<br />

<br />

x<br />

→<br />

<br />

x′<br />

( t,<br />

x)<br />

(Unitary gauge)<br />

Write down most general action <strong>in</strong>variant under<br />

this residual symmetry.<br />

( Action for π: undo unitary gauge!)<br />

g = +<br />

Start with flat background μν μν<br />

δh = ∂ ξ + ∂<br />

μν<br />

μ<br />

i<br />

Under residual ξ<br />

ν<br />

0 h0i<br />

0<br />

i<br />

ν<br />

ξ<br />

μ<br />

ij<br />

μν η h<br />

δh = , δ = ∂ ξ , δh<br />

= ∂ ξ + ∂ ξ<br />

00<br />

π δφ<br />

≡ =<br />

i<br />

j<br />

0<br />

j<br />

i


Action <strong>in</strong>variant under ξi ( ) 2<br />

h00<br />

( ) 2<br />

OK<br />

1<br />

h0i 2<br />

2, ij<br />

K K K OK<br />

ij<br />

( )<br />

K = ∂ h −∂ h −∂h<br />

ij 0 ij j 0i i 0 j<br />

( ) 2<br />

4⎧α1 2 α2<br />

ij ⎫<br />

Leff = LEH+ M ⎨ h00 − K − K K<br />

2 2 ij + ⎬<br />

⎩ M M ⎭<br />

<br />

Action for π<br />

ξ 0 = π<br />

h00 →h00 −2∂0π K → K +∂ ∂ π<br />

ij ij i j<br />

( ) ( ) 2<br />

4⎧2α 1<br />

2<br />

Leff = LEH+ M ⎨ h00 −2 π − K +∇ π<br />

2<br />

⎩<br />

M<br />

α <br />

2 ( ij i j<br />

K )( K )<br />

⎫<br />

− +∇∇ π 2<br />

ij +∇∇ i jπ<br />

+ ⎬<br />

M<br />


( ) ( ) 2<br />

4⎧2α 1<br />

2<br />

Leff = LEH+ M ⎨ h00 −2 π − K +∇ π<br />

2<br />

⎩<br />

M<br />

α <br />

2 ( ij i j<br />

K )( K )<br />

⎫<br />

− +∇∇ π 2<br />

ij +∇∇ i jπ<br />

+ ⎬<br />

M<br />

⎭<br />

Dispersion relation<br />

2 4<br />

2 k<br />

α<br />

ω =<br />

M<br />

Coupl<strong>in</strong>g to gravity<br />

2<br />

2 α 4 αM<br />

ω = k − k<br />

2 2<br />

M 2MPl Jeans-like Jeans like (IR) <strong>in</strong>stability<br />

ω 2 < 0 for k < k c = M 2 /2M pl<br />

r J ~ M pl /M 2 , t J ~ M pl 2 /M 3<br />

k 2 term is forbidden by symmetry<br />

2<br />

O(M 2 /M Pl 2 ) correction


Order<br />

Parameter<br />

<strong>Higgs</strong> Mechanism Ghost Condensation<br />

Instability Tachyon Ghost<br />

Condensate V’=0, V’’>0 P’=0, P’’>0<br />

Spontaneous<br />

break<strong>in</strong>g<br />

Gauge symmetry Lorents symmetry<br />

(Time translation)<br />

Modify<strong>in</strong>g Gauge force Gravitational force<br />

New<br />

potential<br />

Φ V(<br />

Φ)<br />

∂ φ<br />

− m<br />

Φ<br />

2<br />

Φ<br />

2<br />

( ) 2<br />

( ∂φ)<br />

Yukawa-type Oscillat<strong>in</strong>g <strong>in</strong> space<br />

Grow<strong>in</strong>g <strong>in</strong> time<br />

μ<br />

P<br />

φ<br />

2 −<br />

φ


Bounds on symmetry break<strong>in</strong>g scale M<br />

0<br />

Arkani-Hamed, Cheng, Luty and Mukohyama and Wiseman, hep-ph/0507120<br />

allowed<br />

Jeans Instability<br />

(sun)<br />

Tw<strong>in</strong>kl<strong>in</strong>g from Lens<strong>in</strong>g<br />

(CMB)<br />

Supernova time-delay<br />

100GeV 1TeV<br />

ruled out<br />

ruled out<br />

ruled out<br />

c.f. Gauged ghost condensation allows<br />

much higher M (M < 10 12 GeV)<br />

Cheng, Luty, Mukohyama and Thaler, hep-th/0603010<br />

M


Applications to Cosmology (I)<br />

Ghost Inflation<br />

φ <br />

≠<br />

0!<br />

NOT SLOW ROLL<br />

Scale-<strong>in</strong>variant perturbations<br />

δρ<br />

ρ<br />

Hδπ<br />

φ<br />

⎛ H ⎞<br />

⎜ ⎟<br />

⎝ M ⎠<br />

~ δπ<br />

~<br />

5/<br />

4<br />

Arkani-Hamed, Crem<strong>in</strong>elli, Mukohyama and Zaldarriaga<br />

hep-th/0312100<br />

φ<br />

~ M ⋅(<br />

H / M<br />

scal<strong>in</strong>g dim <strong>of</strong> π<br />

1/<br />

4<br />

)<br />

[compare ]<br />

M<br />

H<br />

Pl<br />

eg. hybrid type<br />

ε<br />

φ ~ 2<br />

M


E<br />

dt<br />

dx<br />

→<br />

→<br />

→<br />

π →<br />

rE<br />

r<br />

r<br />

r<br />

−1<br />

−1/<br />

2<br />

1/<br />

4<br />

dt<br />

π<br />

dx<br />

Make<br />

<strong>in</strong>variant<br />

Scal<strong>in</strong>g dim <strong>of</strong> π is 1/4!<br />

not the same as the mass dim 1!<br />

2 2 ⎤<br />

∫<br />

3 ⎡1<br />

2 α(<br />

∇ π )<br />

dtd x⎢<br />

π − + <br />

2 ⎥<br />

⎣2<br />

M ⎦<br />

− P′<br />

M<br />

cf. This is the reason why higher terms such as<br />

2<br />

∇ are irrelevant at low E.<br />

∫<br />

3<br />

~ 2<br />

) ( π<br />

π<br />

dtd x<br />

M<br />

4 2<br />

( )( ∇π<br />

)


Prediction <strong>of</strong> Large (visible) non-Gauss.<br />

Lead<strong>in</strong>g non-l<strong>in</strong>ear <strong>in</strong>teraction<br />

2<br />

π ( ∇π<br />

)<br />

2<br />

M<br />

non-G <strong>of</strong> ~<br />

1/4<br />

⎛ H ⎞ scal<strong>in</strong>g dim <strong>of</strong> op.<br />

~<br />

⎜ ⎟<br />

⎝M⎠ ⎛δρ ⎞<br />

⎜ ⎟<br />

⎝ ρ ⎠<br />

1/5<br />

[Really “0.1” ~ 10-2 × δρ / ρ . VISIBLE.<br />

( ) 1/5<br />

Compare with usual <strong>in</strong>flation where<br />

δρ/ ρ<br />

( )<br />

non-G ~ ~ 10 -5 too small.]


3-po<strong>in</strong>t function for ghost <strong>in</strong>flation<br />

k3/ k1<br />

k2 / k1<br />

3-po<strong>in</strong>t function for “local” non-G<br />

k3/ k1<br />

k2 / k1<br />

1 2 3<br />

( 1, 2, 3) , 6<br />

1 1 1<br />

k k ⎛ ⎞<br />

Fk k k = F⎜<br />

⎟<br />

k ⎝ k k ⎠<br />

k3/ k1<br />

1<br />

k2 / k1<br />

3<br />

ς = ς − f ⋅ ς − ς<br />

5<br />

( 2 2 )<br />

G NL G G


Cosmological Application (II)<br />

Alternative to DE/DM<br />

• For FRW universe, it behaves like c.c. + CDM. CDM<br />

Ghost condensation<br />

dS<br />

( 2<br />

( ∂ ) )<br />

P φ<br />

Λ=0<br />

Λeff >0 CDM<br />

dS<br />

( Φ)<br />

• Cluster<strong>in</strong>g properties rema<strong>in</strong> unexplored and<br />

may be different from c.c. + CDM.<br />

V<br />

Usual <strong>Higgs</strong> mechanism<br />

Λ < 0 Λ < 0<br />

eff<br />

Λ=0<br />

eff<br />

Φ


Cosmic Uroboros<br />

Str<strong>in</strong>g/M theory?<br />

<strong>Higgs</strong> phase<br />

DE/DM<br />

<strong>of</strong> gravity


Warped Throat<br />

KKLT setup<br />

10D = 4D universe x 6D <strong>in</strong>ternal space<br />

CY<br />

Shape & Volume<br />

stabilized<br />

Anti-D3-branes<br />

Non-SUSY NS5-brane<br />

Kachru, Pearson & Verl<strong>in</strong>de (2002)


Correspondence pr<strong>in</strong>ciple<br />

Str<strong>in</strong>gy<br />

Object<br />

Size > R grav<br />

Non-SUSY<br />

Non SUSY<br />

NS5-brane<br />

NS5 brane<br />

( ) 2<br />

M / N 1<br />

RR 3 ∼<br />

> gN s 3<br />

Mukohyama, hep-th/0610254<br />

Horowitz & Polch<strong>in</strong>ski (1997)<br />

Black-Brane<br />

Black Brane<br />

Size < R grav<br />

Black-Brane<br />

Black Brane<br />

MRR : # <strong>of</strong> R-R flux<br />

N3 : # <strong>of</strong> D3<br />

‘s<br />

gs : str<strong>in</strong>g coupl<strong>in</strong>g


4D<br />

Universe ⊗<br />

Black brane at the tip<br />

Non-extremal<br />

Non extremal<br />

black 3-brane 3 brane


x i<br />

Spontaneous Lorentz break<strong>in</strong>g<br />

• The (3+1)-dim spacetime is spanned by<br />

( t , xi ).<br />

Non-extremal<br />

black 3-brane<br />

t<br />

r = const.<br />

r<br />

x i<br />

t<br />

Projection onto<br />

t = const. surfaces<br />

Projection onto<br />

x i = const. surfaces<br />

Warp factors for the<br />

tt-component and<br />

the ij-components<br />

are different.<br />

Spontaneous<br />

Lorentz break<strong>in</strong>g!<br />

Gauged Ghost<br />

Condensation


GL <strong>in</strong>stability<br />

• Non-extremal Black branes are gravitationally<br />

unstable. [Gregory-Laflamme, PRL70, 2837<br />

(1993); NPB428, 399 (1994)]


• The dispersion relation is similar to that for<br />

the NG boson <strong>in</strong> our setup with g GCC 2 < gc 2 .<br />

2<br />

− ω =<br />

<br />

2<br />

k =<br />

Charged black str<strong>in</strong>g<br />

with r + =2<br />

[Gregory-Laflamme, NPB428, 399 (1994)]


• In our geometrical setup there is a black<br />

brane at the bottom <strong>of</strong> the warped throat.<br />

• The world-volume <strong>of</strong> the black brane is<br />

parallel to our world.<br />

Conjecture Mukohyama, hep-th/0610254<br />

Low-E EFT: Jeans-like <strong>in</strong>stability<br />

DUAL<br />

Geometrical: GL <strong>in</strong>stability


Summary<br />

• Ghost condensation is the simplest <strong>Higgs</strong><br />

phase <strong>of</strong> gravity, <strong>in</strong>clud<strong>in</strong>g only one Nambu-<br />

Goldstone boson. No ghost <strong>in</strong>cluded.<br />

• Can drive <strong>in</strong>flation.<br />

• Can be alternative to DE/DM.<br />

• The KKLT setup <strong>in</strong> the regime <strong>of</strong> parameters<br />

( ) 2<br />

M RR / N 3 > gsN 3 1<br />

∼<br />

is a UV completion (str<strong>in</strong>g theory version) <strong>of</strong><br />

the gauged ghost condensation.


Order<br />

Parameter<br />

<strong>Higgs</strong> Mechanism Ghost Condensation<br />

Instability Tachyon Ghost<br />

Condensate V’=0, V’’>0 P’=0, P’’>0<br />

Spontaneous<br />

break<strong>in</strong>g<br />

Gauge symmetry Lorents symmetry<br />

(Time translation)<br />

Modify<strong>in</strong>g Gauge force Gravitational force<br />

New<br />

potential<br />

Φ V(<br />

Φ)<br />

∂ φ<br />

− m<br />

Φ<br />

2<br />

Φ<br />

2<br />

( ) 2<br />

( ∂φ)<br />

Yukawa-type Oscillat<strong>in</strong>g <strong>in</strong> space<br />

Grow<strong>in</strong>g <strong>in</strong> time<br />

μ<br />

P<br />

φ<br />

2 −<br />

φ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!