14.08.2013 Views

Magnetized Accretion onto Inspiraling Binary Black Holes - LUTH

Magnetized Accretion onto Inspiraling Binary Black Holes - LUTH

Magnetized Accretion onto Inspiraling Binary Black Holes - LUTH

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> <strong>Binary</strong> <strong>Black</strong><br />

<strong>Holes</strong><br />

Bruno C. Mundim 1,2<br />

S. Noble 2 , H. Nakano 2 , M. Campanelli 2<br />

Y. Zlochower 2 , J. Krolik 3 , N. Yunes 4<br />

1 Albert Einstein Institute<br />

2 Center for Computational Relativity and Gravitation<br />

Rochester Institute of Technology<br />

3 Johns Hopkins University<br />

4 Montana State University<br />

May 23th 2013<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Astrophysical Motivation<br />

Massive <strong>Binary</strong> <strong>Black</strong>-Hole Mergers:<br />

MBHs are observed at the centers of all galaxies with bulges<br />

(Gueltekin++2009,etc).<br />

Hiererchical build-up of galaxies from smaller structures<br />

(Springel++2005): galaxy merger leads to BBH merger.<br />

Torques from gas, stellar dynamical friction, gravitational slingshot<br />

bring the pair to sub-pc scales.<br />

GW emission drive the binary to the final merger.<br />

Merger/Post-Merger could also be observable in EM spectrum,<br />

provided enough gas is present.<br />

Potential for GW-EM astronomy:<br />

Standard sirens: new distance vs. readshift measurement<br />

Mutual beneficial localization: LISA localization days in advance.<br />

EM localization using high-cadence, all-sky observations.<br />

Understanding of BH dynamics, merger scenarios, highly relativistic<br />

plasma, jet formation, etc.<br />

Need dynamical models to predict source variability accurately and<br />

distinguish them from single AGNs.<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Astrophysical Motivation<br />

Do systematic studies of each stage of the coalescence, bridging gaps<br />

among stages.<br />

Circumbinary Disk Dynamics & Gravity Modeling:<br />

Newtonian regime (a 100M):<br />

tmerger = a/˙a >> tinflow = M(< r)/ ˙M<br />

Post-newtonian regime (10M a 100M):<br />

Strong field regime (a 10M):<br />

tmerger tinflow<br />

tmerger < tinflow<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


BBH Metric Analytic Approximation: Initial Data<br />

Global, analytic approximation for the metric describing the late<br />

quasi-circular inspiral of two comparable black-holes (Yunes et al.<br />

(2006a, 2006b); Johnson-McDaniel et al. (2009)).<br />

Inner Zone (ri > mi and r ≤ λ/2π): (slow-motion/weak field:<br />

ɛi = mi/ri ∼ (vi/c) 2 ) post-Newtonian theory of point-particles in<br />

harmonic coordinates (Blanchet-Faye-Ponsot (1998)). Gravitational<br />

radiation contents are treated perturbatively.<br />

Far Zone (r ≥ λ/2π): post-Minkowskian theory. Harmonic<br />

coordinates. Expansion in terms of radiative multipole moments.<br />

Non-perturbative gravitational radiation treatment.<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


BBH Metric Analytic Approximation: Initial Data<br />

Buffer Zone (O )<br />

34<br />

00000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111111111<br />

3<br />

00000000000000000000000000000000000000000000000000<br />

Inner Zone BH 2 (C )<br />

00000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111<br />

000000000<br />

00000000000000000000000000000000000000000000000000<br />

111111111 2<br />

11111111111111111111111111111111111111111111111111<br />

111111111<br />

13<br />

000000<br />

111111<br />

000000000<br />

11111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000000000<br />

000000000<br />

111111111<br />

000000<br />

11111111111111111111111111111111111111111111111111<br />

111111<br />

111111111<br />

000000<br />

111111<br />

000000000<br />

11111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000000000<br />

000000000<br />

111111111<br />

000000<br />

11111111111111111111111111111111111111111111111111<br />

111111<br />

111111111<br />

000000<br />

111111<br />

000000000<br />

11111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000<br />

Buffer<br />

Zone<br />

(O )<br />

y<br />

Buffer<br />

Zone (O )<br />

Far Zone (C )<br />

4<br />

Inner Zone BH 1 (C )<br />

BH 1<br />

00000000000000000000000000000000000000000000000000<br />

000000000<br />

111111111<br />

000000<br />

11111111111111111111111111111111111111111111111111<br />

111111<br />

111111111<br />

000000000<br />

11111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000000000<br />

000000000<br />

11111111111111111111111111111111111111111111111111<br />

111111111<br />

1<br />

11111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000<br />

BH 2<br />

Near Zone (C )<br />

00000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111111111<br />

23<br />

00000000000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000<br />

00000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111<br />

11111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000<br />

11111111111111111111111111111111111111111111111111<br />

00000000000000000000000000000000000000000000000000<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23<br />

b<br />

x


BBH Metric Analytic Approximation: Zones<br />

Zone rin rout<br />

Inner zone 1 (r1) 0 ≪ r12<br />

Inner zone 2 (r2) 0 ≪ r12<br />

Near zone (rA) ≫ mA ≪ λ<br />

Far zone (r) ≫ r12 ∞<br />

r12: Orbital separation<br />

λ: GW wavelength<br />

Zone Region<br />

IZ-NZ buffer zone mA ≪ rA ≪ r12<br />

NZ-FZ buffer zone r12 ≪ r ≪ λ<br />

BZ(NZ-FZ)<br />

IZ2<br />

y<br />

NZ<br />

BZ(IZ2-NZ)<br />

r12<br />

IZ1<br />

BZ(IZ1-NZ)<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23<br />

FZ<br />

x


BBH Metric Analytic Approximation: Inner Zone<br />

Inner Zone (IZ)<br />

(Non-spinning) BH + tidal<br />

perturbations<br />

gµν = g CS<br />

µν + hµν ,<br />

Horizon penetrating<br />

coordinates:<br />

Cook and Scheel’s<br />

harmonic coordinates<br />

Parametrization:<br />

hµν = qµν(x i )Eµν(t) + kµν(x i )Bµν(t) ,<br />

Tidal fields: Eµν and Bµν are<br />

elect. and mag. multipoles of<br />

the external universe’s Weyl<br />

BZ(NZ-FZ)<br />

IZ2<br />

y<br />

NZ<br />

BZ(IZ2-NZ)<br />

r12<br />

IZ1<br />

BZ(IZ1-NZ)<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23<br />

FZ<br />

x


BBH Metric Analytic Approximation: Near Zone<br />

Near Zone (NZ)<br />

Flat + non-linear perturbation<br />

gµν = ηµν + hµν ,<br />

post-Newtonian approach<br />

(slow motion, weak field)<br />

ηhµν ∝ Tµν(y i A) + τµν(h 2 ) ,<br />

Harmonic coordinates<br />

Parametrization:<br />

htt = 2m1<br />

2 m1 + O ,<br />

r1<br />

m1<br />

v<br />

r1<br />

2 , v 4<br />

<br />

,<br />

r 2 1<br />

BZ(NZ-FZ)<br />

IZ2<br />

y<br />

NZ<br />

BZ(IZ2-NZ)<br />

r12<br />

IZ1<br />

BZ(IZ1-NZ)<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23<br />

FZ<br />

x


BBH Metric Analytic Approximation: Far Zone<br />

Far Zone (FZ)<br />

Flat + multipoles<br />

gµν = ηµν + hµν ,<br />

post-Minkowskian theory<br />

(slow motion, weak field)<br />

Harmonic coordinates<br />

Time retardation u = t − r<br />

based on the flat-spacetime<br />

retarded Green function<br />

Parametrization:<br />

h tt <br />

1<br />

∝ ∂L<br />

r IL(u)<br />

<br />

,<br />

BZ(NZ-FZ)<br />

IZ2<br />

y<br />

NZ<br />

BZ(IZ2-NZ)<br />

r12<br />

IZ1<br />

BZ(IZ1-NZ)<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23<br />

FZ<br />

x


BBH Metric Analytic Approximation: Buffer Zones<br />

Buffer Zone (BZ)<br />

Asymptotic matching and<br />

transition functions<br />

NZ-FZ (Same Coords.)<br />

Only transition functions.<br />

IZ-NZ (Different Coords.)<br />

Tidal fields and Coord. Trans.<br />

set in the matching<br />

BZ(NZ-FZ)<br />

IZ2<br />

y<br />

NZ<br />

BZ(IZ2-NZ)<br />

r12<br />

IZ1<br />

BZ(IZ1-NZ)<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23<br />

FZ<br />

x


BBH Metric Analytic Approximation: Evolution<br />

Asymptotic matching fixes the coordinate transformation<br />

(perturbatively) and the tidal fields in the IZ.<br />

Problem: it assumes both BHs lie on x-axis at t = t0 for some inertial<br />

coordinate system.<br />

How to adapt this metric for evolution?<br />

Solution: rigid rotation of the spatial coordinates back and forth.<br />

The location of each hole in the NZ coordinates:<br />

x k i,NZ = {ri cos φ, ri sin φ, 0}<br />

Transform NZ and FZ metrics to a coordinates where the holes lie on<br />

the x-axis, match them to the IZ, and transform the full metric<br />

(IZ+NZ+FZ) back to the simulation inertial coordinates:<br />

x ′ NZ = xNZ cos φ + yNZ sin φ<br />

y ′ NZ = −xNZ sin φ + yNZ cos φ<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Error Analysis: Ricci Tensor and Ricci Scalar<br />

Christoffel symbols and derivatives:<br />

Γ ρ µν = 1<br />

2 g ρσ [gνσ,µ + gµσ,ν − gµν,σ]<br />

Ricci Tensor:<br />

Γ ρ<br />

µν,λ<br />

= 1<br />

2 g ρσ ,λ [gνσ,µ + gµσ,ν − gµν,σ]<br />

+ 1<br />

2 g ρσ [gνσ,µλ + gµσ,νλ − gµν,σλ]<br />

Rµρ = Γ ν µρ,ν − Γ ν νρ,µ + Γ α µρΓ ν αν − Γ α νρΓ ν αµ<br />

Ricci Scalar: R = R µ µ.<br />

In vacuum, an exact metric solution satisfies:<br />

Rµν = 0 and R = 0<br />

While our aproximate analytic metric has an error associated with it:<br />

Rµν = O(ɛ) and R = O(ɛ)<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Ricci Scalar 2nd Order Convergence<br />

Figure: (Left) L2-norm calculated over a simulation domain ranging from<br />

[−12, −12, −0.75] to [12, 12, 0.75] with a uniform mesh spacing following a 2 : 1<br />

ratio. (Right) Ricci l2-norm over the same volume for the coarsest mesh spacing,<br />

0.05M. Vertical dashed lines from left to right indicate separations of 14M, 12M,<br />

10M and 8M.<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Ricci Scalar 2nd Order Convergence<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Ricci Scalar 2nd Order Convergence<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Ricci Scalar: Evolution<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Ricci Scalar: Evolution<br />

Figure: Ricci scalar as a function of time from a separation of 20M to 8M on left<br />

panel (linear color scale). Absolute value of the Ricci scalar on the right panel<br />

(log color scale). Approximately 10 grid points across the horizon radius<br />

(rBH = 0.4875M).<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Ricci Scalar as a Function of Approximation Order<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Ricci Scalar as a Function of Approximation Order<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Circumbinary Disks<br />

Newtonian Hydrodynamic Simulations:<br />

BBH exerts torque on gas via its time-varying mass quadrupole<br />

moment.<br />

BBH torque restores some of the accreting gas’ angular momentum,<br />

thereby diminishing the mass accretion rate through the gas.<br />

Surface density tends to build-up at r ∼ 2a as matter accretes faster<br />

beyond gap.<br />

Newtonian MHD Simulations:<br />

MHD torques seem to be able to accrete more material through the<br />

gap, but gap still exists.<br />

GRMHD Simulations in the post-Newtonian Regime (our project):<br />

Can MHD torques keep the disk/gap near the binary?<br />

What is the mass distribution in the inner disk? It is crucial for<br />

accurate EM models as emissivity typically scales as ρ n<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Circumbinary <strong>Magnetized</strong> Disks: Simulation Setup<br />

Two simulations with initial binary separation of a0 = 20M:<br />

Secularly evolving run, RunSE: binary evolves at an artificially fixed<br />

separation for ∼ 75000M (or ∼ 140 orbits).<br />

Inspiral run, RunIn, binary starts at a RunSE snapshot, t = 40000M<br />

(or ∼ 100 orbits), to let the disk relax. It inspirals afterwards up to<br />

a 8M.<br />

2.5PN (NZ) metric; Domain: r = [0.75a0, 13a0] = [15M, 260M]<br />

<strong>Binary</strong> separation, a(t), and orbital phase, φ(t), up to 3.5PN.<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Circumbinary <strong>Magnetized</strong> Disks: Disk Initial Data<br />

Radiatively efficient, geometrically thin accretion disk:<br />

Disk extended over r = [3a0, 10a0].<br />

Pressure maximum at rp = 5a0.<br />

Poloidal magnetic field following density c<strong>onto</strong>urs.<br />

Near “equilibrim” disk solution using time averaged spacetime.<br />

Cool to constant entropy such that the disk aspect ratio is constant<br />

and H/r = 0.1<br />

Cooling function can be used as an emissivity in a GR ray-tracing code.<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Surface Density: Evolution<br />

Figure: Surface density time evolution (log 10 color scale) for RunIN (left) and<br />

RunSE (right).<br />

<br />

Σ(r, φ) ≡<br />

dθ √ <br />

−gρ/ gφφ(θ = π/2); (1)<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Surface Density: Streams and Lump<br />

Figure: Color c<strong>onto</strong>urs of surface density in log 10 (left) and linear (right) color<br />

scales, emphasizing the streams from the disk toward the binary members and the<br />

asymmetric density growth in the inner disk, respectively.<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Surface Density: Azimuthally Averaged<br />

Figure: Color c<strong>onto</strong>urs of log 10 Σ(r) as a function of time for RunIN (left) and<br />

RunSE (right). The black dashed curve shows 2a(t).<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Surface Density: Azimuthally Averaged<br />

Figure: Color c<strong>onto</strong>urs of log 10 Σ(r/a(t)) as a function of time for RunIN (left)<br />

and RunSE (right).<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Surface Density: Azimuthally Averaged<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


<strong>Accretion</strong> Rate<br />

Figure: (Left) <strong>Accretion</strong> rate through the inner boundary: RunSE (black) and<br />

RunIN (gray). (Right) Time-averaged accretion rate during four equally spaced<br />

segments from t = 30, 000M (black) till the end of RunSE.<br />

Both RunIN and RunSE accretion rate decrease over time.<br />

Decrease due largely to torques. Decrease of RunIN also due to<br />

binary orbital decoupling.<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Luminosity Variability<br />

Figure: (r, t) spacetime (left) and luminosity integrated over radius (right).<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Luminosity Variability<br />

Figure: (r, t) spacetime (left) and luminosity integrated over radius (right).<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Luminosity Variability<br />

Figure: (r, t) spacetime (left) and luminosity integrated over radius (right).<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Luminosity Variability<br />

Figure: (r, ω) spacetime (left) and FPS of luminosity integrated over radius<br />

(right).<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Luminosity Variability<br />

Figure: (r, ω) spacetime (left) and FPS of luminosity integrated over radius<br />

(right).<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Luminosity Variability: Discussion<br />

Fourier power spectrum shows a strong, sharp peak at frequency<br />

ωpeak = 1.47Ωbin with rpeak 2.3a.<br />

and a weaker peak at the Ωlump = 0.26Ωbin, corresponding to the<br />

orbital frequency at the radius of the surface density maximum<br />

rlump 2.4a.<br />

We can identify ωpeak with the rate at which the lump approaches the<br />

orbital phase of a member of the binary: ωpeak = 2(Ωbin − Ωlump).<br />

When the lump draws close to one of the BHs, a new stream forms,<br />

falls inward, and it is split into two pieces. One of them gains angular<br />

momentum and sweeps back out to the disk, and shocks against the<br />

gas.<br />

It is this process that modulates the light curve.<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Conclusion and Future Work<br />

Demonstrated consistency with prior work in the Newtonian regime.<br />

Investigated the evolution of the disk with separation.<br />

A disk can follow the binary to very small separations, before<br />

decoupling.<br />

Measured the luminosity from a self-consistent cooling rate.<br />

Luminosity characteristic of AGN with excess at edge of gap due to<br />

dissipated binary torque work.<br />

Strong periodic signal found from the binary-lump interaction<br />

We need ray-trace in order to conclude if disk opacity will blur the<br />

signal.<br />

Need to calculate the dynamics in the vicinity of black holes<br />

How does the lump evolve after merger?<br />

Does the lump form with unequal mass or precessing binaries?<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Extra Slides<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Ricci Scalar: Evolution (Zoom Around a <strong>Black</strong>-Hole)<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Ricci Scalar: Evolution (Zoom Around a <strong>Black</strong>-Hole)<br />

Figure: Ricci scalar absolute value on a linear color scale around the “right” BH<br />

at t = 660M. The mesh spacing is 0.0125M (left) and 0.00625M (right)<br />

resulting into 39 and 78 grid points per horizon radius (rBH = 0.4875M).<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Ricci Scalar: Case for Higher Order Approximations.<br />

2nd order FDAs result in large computational effort to calculate the<br />

Ricci scalar to perturbative order accuracy, Rµν = O(ɛ).<br />

4th order approximation leads to faster convergence.<br />

For example, pick a point at the horizon, (0.0, 9.673556531, 0.3, 0.2),<br />

for an initial separation of 20M. The various quantities on the table 2<br />

below start to agree on the first significant figure only when<br />

dt = dx = dy = dz = h = 0.00625M, or 78 grid points per rBH.<br />

Note that a typical equal mass BHB simulation using full GR uses<br />

approximately 20 grid points per rAH on the finest AMR grid.<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Ricci Scalar: Case for Higher Order Approximations.<br />

2nd: 4th:<br />

Rtt = 0.01024587050684905 Rtt = 0.01007850127240062<br />

Rtx = 0.03228380078907006 Rtx = 0.0340889478274195<br />

Rty = −0.02308902839605859 Rty = −0.02298639795941293<br />

Rtz = −0.02006201110556877 Rtz = −0.02032786334618492<br />

Rxx = −0.6774182693609987 Rxx = −0.6650699268486431<br />

Rxy = 0.3413360547161979 Rxy = 0.3261324979719031<br />

Rxz = 0.348427534006535 Rxz = 0.3356062612167152<br />

Ryy = −0.1977530448946112 Ryy = −0.2060409626394311<br />

Ryz = −0.1865524325067573 Ryz = −0.1884958238515893<br />

Rzz = −0.2906179378901275 Rzz = −0.297516599915685<br />

R = −0.2657411795293186 R = −0.2698938651121096<br />

H = 0.01469997464077989 H = 0.0131591785513933<br />

M = 0.01504264551925634 M = 0.0167759321900986<br />

Table: Ricci tensor, scalar and constraints calculated using 2nd (left) and 4th<br />

(right) order FDA operators.<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Ricci Scalar: Case for Higher Order Approximations.<br />

h=0.0125: h=0.025: h=0.05:<br />

Rtt = 0.003196804677 0.01525931246 −0.7872097038<br />

Rtx = 0.06012934193 1.021136533 18.02810729<br />

Rty = −0.07799147144 −1.345320048 −22.01926661<br />

Rtz = 0.002133967513 0.01126266918 0.08158737450<br />

Rxx = 0.04656790023 0.7555766992 11.79503573<br />

Rxy = −0.006635370634 −0.1286574330 −1.910954363<br />

Rxz = 0.05114508275 0.8262931061 12.41963629<br />

Ryy = 0.3721293525 6.343315783 104.1051001<br />

Ryz = 0.07746675602 1.328459405 23.84528796<br />

Rzz = 0.05812650456 0.9723960616 16.50214637<br />

R = 0.08089705926 1.351036267 21.89512132<br />

H = −0.7001806355 −11.94584103 −195.1180949<br />

M = 0.1307027219 2.205683272 26.61166151<br />

Table: Percentile variation with respect to reference resolution, h = 0.00625M for<br />

4th order FDA. 39 (left), 20 (center) and 10 (right) grid points per rBH.<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Transition Function Effects<br />

Transition function used in the buffer zones:<br />

⎧<br />

⎪⎨ 0 , r ≤ r0 ,<br />

f = 1<br />

⎪⎩<br />

2 (1 + tanh{(s/π)[χ − q2 /χ]}) ,<br />

1 ,<br />

r0 < r < r0 + w ,<br />

r ≥ r0 + w ,<br />

where χ = χ(r, r0, w) = tan[π(r − r0)/(2w)] and<br />

f = f (r, r0, w, q, s).<br />

Focus on the NZ-FZ buffer zone, since this region results into a large<br />

“bump” when higher order PN terms are used.<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23<br />

(2)


Transition Function Effects<br />

Figure: Transition function for different values of parameters q and s as in<br />

f (r, r0, w, q, s).<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Transition Function Effects<br />

Figure: (Left) Comparison of the resummed O(v 5 ) Ricci Scalar between the NZ<br />

and FZ metrics. (Right) Resummed O(v 5 ) Ricci Scalar for different values of<br />

transition function parameters q and s as in f (r, r0, w, q, s).<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23


Transition Function Effects<br />

Figure: Resummed O(v 5 ) gxy IZ, NZ and FZ pieces (left) and gxy (right) for<br />

different values of transition function parameters q and s as in f (r, r0, w, q, s).<br />

Bruno C. Mundim <strong>Magnetized</strong> <strong>Accretion</strong> <strong>onto</strong> <strong>Inspiraling</strong> BBH 2013-05-23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!