15.08.2013 Views

Thermal metamorphism in the lesser Himalaya of Nepal determined ...

Thermal metamorphism in the lesser Himalaya of Nepal determined ...

Thermal metamorphism in the lesser Himalaya of Nepal determined ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Thermal</strong> <strong>metamorphism</strong> <strong>in</strong> <strong>the</strong> <strong>lesser</strong> <strong>Himalaya</strong> <strong>of</strong> <strong>Nepal</strong><br />

determ<strong>in</strong>ed from Raman spectroscopy <strong>of</strong> carbonaceous material<br />

Abstract<br />

Olivier Beyssac*, Laurent Boll<strong>in</strong>ger 1 , Jean-Philippe Avouac 1 , Bruno G<strong>of</strong>fé<br />

Laboratoire de Géologie, Ecole Normale Supérieure, CNRS-UMR 8538, 24 rue Lhomond, F-75005, Paris Cedex 5, France<br />

Received 18 December 2003; received <strong>in</strong> revised form 6 May 2004; accepted 20 May 2004<br />

Available onl<strong>in</strong>e<br />

The determ<strong>in</strong>ation <strong>of</strong> metamorphic conditions is critical to <strong>the</strong> understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> formation <strong>of</strong> mounta<strong>in</strong> belts.<br />

However, all collisional mounta<strong>in</strong> belts conta<strong>in</strong> large volumes <strong>of</strong> accreted sediments generally lack<strong>in</strong>g metamorphic <strong>in</strong>dex<br />

m<strong>in</strong>erals and are <strong>the</strong>refore not amenable to conventional petrologic <strong>in</strong>vestigations. By contrast, <strong>the</strong>se units are <strong>of</strong>ten rich <strong>in</strong><br />

carbonaceous material, mak<strong>in</strong>g it possible to determ<strong>in</strong>e <strong>the</strong>rmal <strong>metamorphism</strong> through Raman spectroscopy <strong>of</strong> carbonaceous<br />

material (RSCM method), a technique that has been recently calibrated [Beyssac et al., J. Metamorph. Geol. 20 (2002) 859–<br />

871]. The Lesser <strong>Himalaya</strong> (LH) is one <strong>of</strong> <strong>the</strong>se problematic cases with a very poor m<strong>in</strong>eralogy, but a key structural position<br />

with<strong>in</strong> <strong>the</strong> <strong>Himalaya</strong>n system that makes LH considered as diagnostic <strong>of</strong> <strong>the</strong> overall <strong>the</strong>rmal behaviour <strong>of</strong> <strong>the</strong> orogen. This<br />

work demonstrates <strong>the</strong> performance <strong>of</strong> <strong>the</strong> RSCM technique and shows that this technique might thus be used to detect <strong>in</strong>tersample<br />

variations as small as f 10–15 jC, but absolute temperatures can only be determ<strong>in</strong>ed to F 50 jC due to <strong>the</strong><br />

uncerta<strong>in</strong>ty on <strong>the</strong> calibration. This study reveals that <strong>the</strong> LH has undergone a large-scale <strong>the</strong>rmal <strong>metamorphism</strong>, with<br />

temperature decreas<strong>in</strong>g progressively from about 540 jC at <strong>the</strong> top to less than 330 jC with<strong>in</strong> <strong>the</strong> deepest exhumed structural<br />

levels.<br />

D 2004 Elsevier B.V. All rights reserved.<br />

Keywords: <strong>Himalaya</strong>; graphitization; Raman spectroscopy; geo<strong>the</strong>rmometry; <strong>metamorphism</strong><br />

1. Introduction<br />

Earth and Planetary Science Letters 225 (2004) 233–241<br />

The Lesser <strong>Himalaya</strong> (LH) consists ma<strong>in</strong>ly <strong>of</strong><br />

Gondwanian sediments (quartzites, marbles and black<br />

schists) <strong>of</strong> probably Proterozoic ages, that have been<br />

* Correspond<strong>in</strong>g author. Tel.: +33-1-44-32-22-75; fax: +33-1-<br />

44-32-20-00.<br />

E-mail address: Olivier.Beyssac@ens.fr (O. Beyssac).<br />

1 Now at: Geological and Planetary Sciences Division,<br />

California Institute <strong>of</strong> Technology, MC 100-23, Pasadena, CA<br />

91125, USA.<br />

0012-821X/$ - see front matter D 2004 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.epsl.2004.05.023<br />

www.elsevier.com/locate/epsl<br />

accreted onto <strong>the</strong> <strong>Himalaya</strong> over <strong>the</strong> Cenozoic (e.g.,<br />

[2,3]). They have undergone pervasive thrust shear<strong>in</strong>g<br />

and, supposedly, low grade <strong>metamorphism</strong> [4,5].<br />

These units must <strong>the</strong>refore conta<strong>in</strong> key <strong>in</strong>formation<br />

about <strong>the</strong> tectonic and <strong>the</strong>rmal evolution <strong>of</strong> <strong>the</strong> <strong>Himalaya</strong>n<br />

orogenic wedge.<br />

At <strong>the</strong> top <strong>of</strong> <strong>the</strong> LH, <strong>the</strong> Ma<strong>in</strong> Central Thrust<br />

fault zone (MCT) separates <strong>the</strong> LH from <strong>the</strong> overly<strong>in</strong>g<br />

High-<strong>Himalaya</strong>n Crystall<strong>in</strong>e (HHC) units. A<br />

number <strong>of</strong> petrological studies have focused on this<br />

zone where a characteristic <strong>in</strong>verted <strong>the</strong>rmal gradient<br />

has long been identified (e.g., [6]). Due to <strong>the</strong>


234<br />

O. Beyssac et al. / Earth and Planetary Science Letters 225 (2004) 233–241<br />

poverty <strong>of</strong> <strong>the</strong> mostly pelitic LH units <strong>in</strong> <strong>in</strong>dex<br />

m<strong>in</strong>eral assemblages, <strong>metamorphism</strong> <strong>in</strong> <strong>the</strong> LH has<br />

been only qualitatively described <strong>in</strong> terms <strong>of</strong> garnet<br />

and biotite ‘‘isograds’’ [5] and from illite crystall<strong>in</strong>ity<br />

[7]. Because LH units are rich <strong>in</strong> Carbonaceaous<br />

Material (CM), <strong>metamorphism</strong> might alternatively<br />

been quantified from <strong>the</strong> Raman spectroscopy <strong>of</strong><br />

CM (RSCM method). This technique has been<br />

shown to provide a reliable estimate <strong>of</strong> <strong>the</strong> peak<br />

metamorphic temperature, as recently calibrated by<br />

[1]. In this paper, we present RSCM results obta<strong>in</strong>ed<br />

from 83 samples collected <strong>in</strong> <strong>the</strong> LH <strong>of</strong> central and<br />

far-western <strong>Nepal</strong>, <strong>in</strong>clud<strong>in</strong>g data from near <strong>the</strong> MCT<br />

zone, where a comparison with conventional petrological<br />

approaches is possible.<br />

The aim <strong>of</strong> this paper is <strong>the</strong>refore to provide new<br />

constra<strong>in</strong>ts on <strong>the</strong> <strong>the</strong>rmal evolution <strong>of</strong> <strong>the</strong> <strong>Himalaya</strong><br />

<strong>in</strong> <strong>Nepal</strong> us<strong>in</strong>g <strong>the</strong> RSCM method. This emblematic<br />

geological sett<strong>in</strong>g allows some comparison <strong>of</strong> RSCM<br />

with o<strong>the</strong>r techniques, <strong>of</strong>fer<strong>in</strong>g some opportunity to<br />

demonstrate its applicability and reliability.<br />

2. Geological sett<strong>in</strong>g<br />

The dataset consists <strong>of</strong> 83 samples that were<br />

collected <strong>in</strong> central <strong>Nepal</strong> (Fig. 1) and <strong>in</strong> far-western<br />

<strong>Nepal</strong> (Fig. 2). A detailed description <strong>of</strong> <strong>the</strong> structural<br />

and stratigraphic location <strong>of</strong> <strong>the</strong> samples from Central<br />

<strong>Nepal</strong> can be found elsewhere [8], and is beyond <strong>the</strong><br />

scope <strong>of</strong> this paper. Here, we just give a brief outl<strong>in</strong>e.<br />

The Lesser <strong>Himalaya</strong> <strong>in</strong> central <strong>Nepal</strong> forms a broad<br />

anticl<strong>in</strong>orium [5] at front <strong>of</strong> <strong>the</strong> high-range thought to<br />

be associated with some duplex structure at midcrustal<br />

depth [3]. South <strong>of</strong> this anticl<strong>in</strong>orium, remnants<br />

<strong>of</strong> crystall<strong>in</strong>e thrust sheets, such as <strong>the</strong> Katmandu<br />

and Jajarkot klippes, overly <strong>the</strong> LH [9]. The<br />

structure <strong>in</strong> far-western <strong>Nepal</strong> is similar, although<br />

more complex with several alternates <strong>of</strong> LH w<strong>in</strong>dows<br />

and overly<strong>in</strong>g klippes [2], such as <strong>the</strong> Dadeldhura<br />

klippe (Fig. 2). Although this is debated [9], <strong>the</strong> thrust<br />

faults at <strong>the</strong> base <strong>of</strong> <strong>the</strong> klippes are considered to be<br />

equivalent to <strong>the</strong> MCT. Hereafter, we will dist<strong>in</strong>guish<br />

<strong>the</strong> data collected from <strong>the</strong> MCT zone along <strong>the</strong> front<br />

Fig. 1. Geological map <strong>of</strong> central <strong>Nepal</strong>. This map shows <strong>the</strong> major tectonostratigraphic zones and tectonic contacts. For each sample: label and<br />

mean RSCM temperature are given. The lower-right <strong>in</strong>set shows location <strong>of</strong> studied area at <strong>the</strong> scale <strong>of</strong> <strong>Nepal</strong>. (LH: Lesser <strong>Himalaya</strong>, HHC:<br />

High-<strong>Himalaya</strong>n Crystall<strong>in</strong>e, TG: Tansen group, MCT: ma<strong>in</strong> central thrust, MBT: ma<strong>in</strong> boundary thrust, MFT: ma<strong>in</strong> frontal thrust). Lower-left<br />

<strong>in</strong>set: zoom on <strong>the</strong> temperature data from <strong>the</strong> Damauli area. The Damauli Klippe is considered as an equivalent <strong>of</strong> <strong>the</strong> Katmandu klippe, at least<br />

for its <strong>the</strong>rmal evolution.


O. Beyssac et al. / Earth and Planetary Science Letters 225 (2004) 233–241 235<br />

Fig. 2. Geological map <strong>of</strong> far-western <strong>Nepal</strong>. This map shows <strong>the</strong> major tectonostratigraphic zones and tectonic contacts. For each sample: label<br />

and mean RSCM temperature are given. The upper right <strong>in</strong>set shows location <strong>of</strong> <strong>the</strong> studied area at <strong>the</strong> scale <strong>of</strong> <strong>Nepal</strong>. The samples for which a<br />

Raman spectrum is depicted on Fig. 3 are <strong>in</strong>dicated with a yellow label (LH: Lesser <strong>Himalaya</strong>). Lower <strong>in</strong>set shows a simplified NE–SW crosssection<br />

AAV with temperature and ma<strong>in</strong> thrusts (MCT: ma<strong>in</strong> central thrust, MBT: ma<strong>in</strong> boundary thrust, MFT: ma<strong>in</strong> frontal thrust).<br />

<strong>of</strong> <strong>the</strong> high range, from those collected far<strong>the</strong>r south <strong>in</strong><br />

<strong>the</strong> shear zones below <strong>the</strong> klippes.<br />

Metamorphism near <strong>the</strong> MCT zone has been widely<br />

studied from conventional petrology (e.g., [10] and<br />

references <strong>the</strong>re<strong>in</strong>). In <strong>the</strong>se rocks, ma<strong>in</strong>ly because <strong>of</strong><br />

<strong>the</strong> high-temperature <strong>metamorphism</strong> (T>500 jC) <strong>the</strong>re<br />

is a various, even spectacular m<strong>in</strong>eralogy. The m<strong>in</strong>eral<br />

isograds (biotite, garnet, kyanite, and sillimanite,<br />

respectively) are progressively <strong>in</strong>tersected along a<br />

S–N section go<strong>in</strong>g upward <strong>in</strong> <strong>the</strong> structure through<br />

<strong>the</strong> MCT zone def<strong>in</strong><strong>in</strong>g <strong>the</strong> well-known <strong>in</strong>verted<br />

metamorphic gradient (e.g., [5]).<br />

There is a large debate about <strong>the</strong> respective positions<br />

<strong>of</strong> metamorphic isograds and structural position<br />

<strong>of</strong> <strong>the</strong> MCT [11,12]. To avoid any misunderstand<strong>in</strong>g,<br />

we just precise here that all our samples come from<br />

<strong>the</strong> upper and lower LH and are all located below <strong>the</strong><br />

kyanite isograd.


236<br />

3. Estimat<strong>in</strong>g temperature from Raman<br />

spectroscopy <strong>of</strong> carbonaceous material (RSCM)<br />

O. Beyssac et al. / Earth and Planetary Science Letters 225 (2004) 233–241<br />

Dur<strong>in</strong>g diagenesis and <strong>metamorphism</strong>, CM present<br />

<strong>in</strong> <strong>the</strong> <strong>in</strong>itial sedimentary rock progressively<br />

transforms <strong>in</strong>to graphite (graphitization). The<br />

correspond<strong>in</strong>g progressive evolution <strong>of</strong> degree <strong>of</strong><br />

organization <strong>of</strong> <strong>the</strong> CM is considered to be a reliable<br />

<strong>in</strong>dicator <strong>of</strong> metamorphic grade, especially <strong>of</strong> temperature<br />

[13,14]. Because <strong>of</strong> <strong>the</strong> irreversible character<br />

<strong>of</strong> graphitization (CM is tend<strong>in</strong>g toward <strong>the</strong><br />

<strong>the</strong>rmodynamic stable phase which is graphite),<br />

CM structure is not sensitive to retrograde <strong>metamorphism</strong><br />

and <strong>the</strong>refore primarily depends on <strong>the</strong> maximum<br />

temperature reached dur<strong>in</strong>g <strong>metamorphism</strong>,<br />

whatever <strong>the</strong> retrograde history <strong>of</strong> <strong>the</strong> sample.<br />

The first-order Raman spectrum <strong>of</strong> disordered CM<br />

exhibit a graphite G band at 1580 cm 1 ,E2g2 mode<br />

correspond<strong>in</strong>g to <strong>in</strong>-plane vibration <strong>of</strong> aromatic carbons,<br />

and several defect bands D1, D2 and D3,<br />

correspond<strong>in</strong>g to ‘‘physico-chemical defects’’ (see<br />

[15] and references <strong>the</strong>re<strong>in</strong>). The structural organization<br />

<strong>of</strong> CM can be quantified through <strong>the</strong> R2<br />

parameter def<strong>in</strong>ed as <strong>the</strong> relative area <strong>of</strong> <strong>the</strong> ma<strong>in</strong><br />

defect band D1 (R2 = D1/(G + D1 + D2) peak area<br />

ratio). A l<strong>in</strong>ear correlation between this R2 parameter<br />

and metamorphic temperature was calibrated us<strong>in</strong>g<br />

samples from different regional metamorphic belts<br />

with well-known P–T conditions (RSCM method,<br />

see [1]). RSCM applies for metasediments <strong>of</strong> pelitic<br />

lithology <strong>in</strong> which CM precursor is ma<strong>in</strong>ly a kerogen<br />

mixed with m<strong>in</strong>or hydrocarbons trapped dur<strong>in</strong>g diagenesis<br />

[1,16]. R2 parameter variations are significant<br />

from 0.0 for prist<strong>in</strong>e graphite to f 0.7 for<br />

poorly organized CM limit<strong>in</strong>g <strong>the</strong> applicability <strong>of</strong><br />

<strong>the</strong> RSCM method to <strong>the</strong> range 330–650 jC [1].<br />

When R2 is higher than 0.7, <strong>the</strong> correspond<strong>in</strong>g<br />

spectrum usually exhibit a very large D1 band, a<br />

broad G band at f 1600 cm 1 <strong>in</strong>clud<strong>in</strong>g both G<br />

and D2 bands and a D3 band. The accuracy <strong>in</strong> <strong>the</strong><br />

determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> temperature from this calibration<br />

is estimated to be F 50 jC for temperatures <strong>in</strong><br />

<strong>the</strong> range 330–650 jC [1]. This relatively loose<br />

calibration ma<strong>in</strong>ly results from <strong>the</strong> large uncerta<strong>in</strong>ties<br />

on <strong>the</strong> conventional petrologic data <strong>the</strong>mselves. For<br />

maximum reliability, <strong>the</strong> measurements must be<br />

made (1) on th<strong>in</strong>-sections cut perpendicular to <strong>the</strong><br />

foliation, <strong>the</strong>refore parallel to <strong>the</strong> mean c axis <strong>of</strong><br />

CM, and (2) below transparent m<strong>in</strong>erals, quartz for<br />

<strong>in</strong>stance, to avoid any effect <strong>of</strong> polish<strong>in</strong>g on <strong>the</strong><br />

structure <strong>of</strong> <strong>the</strong> CM [15]. For only one sample<br />

(FW0028) with a very high content <strong>of</strong> CM but too<br />

fragile to make a polished th<strong>in</strong> section, <strong>the</strong> measurements<br />

were directly performed on <strong>the</strong> rock itself.<br />

Raman microspectroscopy was performed by us<strong>in</strong>g<br />

a DILOR XY double subtractive spectrograph with<br />

premonochromator, equipped with confocal optics<br />

before <strong>the</strong> spectrometer entrance, and a nitrogencooled<br />

SPECTRUM1 CCD detector. A microscope<br />

is used to focus <strong>the</strong> excitation laser beam (514.5 nm<br />

excit<strong>in</strong>g l<strong>in</strong>e <strong>of</strong> a Spectra Physics Ar+ laser) on <strong>the</strong><br />

sample and to collect <strong>the</strong> Raman signal <strong>in</strong> <strong>the</strong> backscattered<br />

direction. The presence <strong>of</strong> <strong>the</strong> confocal<br />

p<strong>in</strong>hole before <strong>the</strong> spectrometer entrance ensures a<br />

sampl<strong>in</strong>g <strong>of</strong> a 1–3 Am diameter area us<strong>in</strong>g <strong>the</strong><br />

50 objective, with a f<strong>in</strong>al laser power <strong>of</strong> about 1–<br />

4 mW at <strong>the</strong> sample surface. Band position, band<br />

<strong>in</strong>tensity (i.e. band height), band area (i.e. <strong>in</strong>tegrated<br />

area) and band width (i.e. full width at half maximum,<br />

FWHM) were determ<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong> computer program<br />

PeakFit 3.0 (Jandel Scientific) follow<strong>in</strong>g <strong>the</strong><br />

fitt<strong>in</strong>g procedure described by [15].<br />

4. Results<br />

For each samples, 6–17 spectra were recorded <strong>in</strong><br />

order to smooth out <strong>the</strong> with<strong>in</strong>-sample structural<br />

heterogeneity. All results are reported toge<strong>the</strong>r with<br />

sample locations <strong>in</strong> Table 1. In a few samples,<br />

detrital prist<strong>in</strong>e graphite (no defect bands) with a<br />

crystall<strong>in</strong>e morphology was easily identified under<br />

<strong>the</strong> microscope and separated from <strong>the</strong> CM diffuse<br />

texture. The structural heterogeneity was found to be<br />

generally small, with a maximum standard deviation<br />

<strong>of</strong> R2 values <strong>of</strong> 0.13, contribut<strong>in</strong>g to an uncerta<strong>in</strong>ty<br />

<strong>of</strong> about 15 jC <strong>in</strong> temperature (at <strong>the</strong> 1 r confidence<br />

level, sample K4, 14 spectra). Here, to get<br />

some estimate <strong>of</strong> <strong>the</strong> uncerta<strong>in</strong>ty associated with <strong>the</strong><br />

fitt<strong>in</strong>g procedure we have processed ten times each<br />

spectrum represented on Fig. 3, because <strong>the</strong>y span<br />

<strong>the</strong> whole range <strong>of</strong> CM structural organization analyzed<br />

<strong>in</strong> this study. For samples FW6, FW24, FW29<br />

and FW35, <strong>the</strong> standard deviation from <strong>the</strong> mean<br />

value <strong>of</strong> <strong>the</strong> ten R2 values for a given spectrum is<br />

systematically lower than 0.01. For sample FW31 <strong>in</strong>


O. Beyssac et al. / Earth and Planetary Science Letters 225 (2004) 233–241 237<br />

Table 1<br />

Samples with longitude (Long.) and latitude (Lat.) <strong>in</strong> decimal<br />

degrees (WGS84), number <strong>of</strong> Raman spectra (Sp.), R2 ratio (mean<br />

and standard deviation) and RSCM temperature (mean and 1<br />

uncerta<strong>in</strong>ty)<br />

r<br />

Sample Long. Lat. Sp. R2 T (jC)<br />

Mean SD Mean 1r<br />

Central <strong>Nepal</strong>-MCT zone<br />

G10 83.7875 28.4092 15 0.225 0.06 540.8 7<br />

G7 83.7128 28.3958 11 0.236 0.03 536.1 4<br />

G9 83.7500 28.3937 9 0.287 0.03 513.4 5<br />

Gum2 85.8914 27.9008 12 0.245 0.08 531.8 10<br />

Gum6 85.8935 27.9063 13 0.169 0.03 565.8 4<br />

K10 85.9569 27.9445 14 0.181 0.11 560.7 12<br />

K4 85.9344 27.9233 14 0.287 0.13 513.5 15<br />

K5 85.9373 27.9261 13 0.237 0.09 535.4 11<br />

K9 85.9470 27.9430 17 0.237 0.12 535.5 13<br />

MB01 84.3646 28.2908 13 0.199 0.04 552.4 5<br />

MB10 84.3326 28.2928 14 0.207 0.07 549.0 8<br />

MB13 84.3296 28.2898 12 0.232 0.07 537.7 8<br />

MB15 84.3272 28.2894 10 0.198 0.07 553.1 10<br />

MB17 84.3192 28.2895 13 0.248 0.03 530.7 4<br />

MB19 84.3135 28.2875 15 0.250 0.06 529.5 6<br />

MB02 84.3779 28.2958 10 0.239 0.08 534.9 11<br />

MB23 84.3099 28.2791 12 0.249 0.05 530.3 7<br />

MB25 84.3128 28.2837 11 0.221 0.05 542.7 6<br />

MB27 84.3191 28.2879 9 0.216 0.04 545.0 7<br />

MB29 84.3337 28.2919 13 0.272 0.07 520.0 8<br />

M9913 83.8185 28.3469 7 0.284 0.04 514.7 7<br />

N0006 83.9583 28.3456 9 0.216 0.06 545.1 9<br />

N0025 83.9639 28.3656 11 0.248 0.06 530.8 8<br />

P1 85.9366 27.9304 13 0.155 0.06 571.9 8<br />

P4 85.9366 27.9304 12 0.163 0.06 568.6 8<br />

MA78 84.3336 28.3047 9 0.202 0.08 550.9 12<br />

MA79 84.3340 28.3162 7 0.191 0.04 555.8 6<br />

MA80 84.3347 28.3271 9 0.220 0.06 543.3 8<br />

MA81 84.3347 28.3298 9 0.163 0.11 568.5 16<br />

Central <strong>Nepal</strong>-Lesser <strong>Himalaya</strong> anticl<strong>in</strong>orium<br />

CW05 83.7669 27.9860 10 0.686 0.03 335.6 4<br />

CW07 83.7068 27.9521 9 0.702 0.02 < 330<br />

CW08 83.6687 27.9374 6 0.681 0.03 338.0 6<br />

CW09 83.6518 27.9178 7 0.710 0.03 < 330<br />

CW10 83.6428 27.8888 10 0.750 0.03 < 330<br />

D04 84.2743 27.9433 6 0.589 0.03 379.0 5<br />

D06 84.2800 27.9204 8 0.429 0.07 450.3 12<br />

D07 84.2744 27.9140 7 0.260 0.05 525.1 9<br />

D11 84.2714 27.8991 10 0.323 0.11 497.5 15<br />

D14 84.2680 27.9013 9 0.465 0.03 433.9 5<br />

D17 84.2569 27.9026 6 0.285 0.06 514.0 11<br />

D24 84.2465 27.9167 7 0.326 0.05 496.0 8<br />

D25 84.2491 27.9225 10 0.339 0.09 490.3 13<br />

D28 84.2531 27.9246 10 0.277 0.03 517.6 4<br />

D32 84.2639 27.9420 12 0.449 0.04 441.2 5<br />

D33 84.2661 27.9477 9 0.374 0.09 474.7 13<br />

D34 84.2656 27.9530 9 0.469 0.06 432.1 9<br />

Table 1 (cont<strong>in</strong>ued)<br />

Sample Long. Lat. Sp. R2 T (jC)<br />

Mean<br />

Central <strong>Nepal</strong>-Lesser <strong>Himalaya</strong> anticl<strong>in</strong>orium<br />

SD Mean 1r<br />

D40 84.2789 27.9879 9 0.619 0.01 365.5 2<br />

MB36 84.5399 27.8903 13 0.676 0.03 340.0 4<br />

MB37 84.5379 27.8786 6 0.351 0.05 484.6 9<br />

MB38 84.5566 27.8560 11 0.696 0.02 331.3 3<br />

MB41 84.7285 27.7959 11 0.529 0.05 405.8 7<br />

MB42 84.7744 27.8080 11 0.508 0.06 414.9 8<br />

MB50 84.7077 27.8013 14 0.572 0.03 386.3 3<br />

MOI1 84.5565 27.8359 10 0.671 0.02 342.3 2<br />

MOI2 84.6779 27.8144 9 0.651 0.03 351.4 4<br />

MOI3 84.7506 27.8030 8 0.462 0.04 435.3 7<br />

N0001 84.7075 27.8053 14 0.563 0.03 390.5 4<br />

N0035 84.7333 27.7939 9 0.387 0.05 468.9 8<br />

Far-western <strong>Nepal</strong><br />

FW0003 80.4886 29.6217 17 0.606 0.03 371.2 3<br />

FW0006 80.3894 29.7528 11 0.324 0.03 496.6 5<br />

FW0008 80.5525 29.8506 9 0.578 0.02 384.0 2<br />

FW0024 80.7155 29.9860 13 0.225 0.06 540.7 8<br />

FW0028 80.6697 29.8744 6 0.367 0.04 477.6 8<br />

FW0029 80.6783 29.8269 8 0.498 0.04 419.3 7<br />

FW0031 80.6581 29.7683 12 0.669 0.03 343.5 4<br />

FW0035 80.6086 29.7019 15 0.467 0.03 433.1 3<br />

FW0038 80.5778 29.4544 3 >0.7 < 330<br />

FW0105 80.6276 29.4101 8 0.562 0.03 391.1 5<br />

FW0115 80.8489 29.5042 9 0.540 0.02 400.8 3<br />

FW0116 80.8708 29.5027 6 0.571 0.04 386.8 7<br />

FW0117 81.1731 29.5695 9 0.670 0.02 342.8 4<br />

FW0120 81.1643 29.5850 6 0.700 0.06 < 330<br />

FW0123 81.1618 29.5987 10 0.543 0.04 399.4 5<br />

FW0124 81.1626 29.5926 14 0.660 0.04 347.2 5<br />

FW0135 81.1201 29.5050 10 0.690 0.02 334.0 3<br />

FW0138 81.0511 29.4868 8 0.638 0.04 357.0 6<br />

FW0142 80.9001 29.4607 10 0.636 0.03 357.9 4<br />

FW0144 80.8727 29.5046 6 0.603 0.06 372.6 11<br />

FW0148 80.8157 29.5337 8 0.500 0.03 418.6 4<br />

FW0150 80.8005 29.5384 10 0.422 0.05 453.2 7<br />

FW0152 80.7723 29.5389 9 0.362 0.05 479.8 7<br />

FW0158 80.6195 29.3975 6 0.212 0.04 546.5 7<br />

FW0162 80.6057 29.1733 8 0.217 0.10 544.5 16<br />

which RSCM is not applicable (0.7 < R2), <strong>the</strong> standard<br />

deviation is only f 0.02.<br />

The Raman spectra obta<strong>in</strong>ed from <strong>the</strong> LH samples<br />

show a large variety <strong>of</strong> structural organization, spann<strong>in</strong>g<br />

<strong>the</strong> whole range from poorly organized CM to<br />

crystall<strong>in</strong>e graphite. There is a clear spatial pattern <strong>of</strong><br />

CM structure with respect to sample location. For<br />

illustration, a subset <strong>of</strong> representative spectra along a<br />

N–S cross-section <strong>of</strong> <strong>the</strong> far-western region <strong>of</strong> <strong>Nepal</strong> is


238<br />

O. Beyssac et al. / Earth and Planetary Science Letters 225 (2004) 233–241<br />

Fig. 3. Examples <strong>of</strong> Raman spectra obta<strong>in</strong>ed from samples collected<br />

<strong>in</strong> far-western <strong>Nepal</strong>. Locations are <strong>in</strong>dicated with yellow labels <strong>in</strong><br />

Fig. 2. An example <strong>of</strong> spectral decomposition by <strong>the</strong> fitt<strong>in</strong>g<br />

procedure [15] is given for <strong>the</strong> less organized sample (FW31).<br />

Position <strong>of</strong> <strong>the</strong> graphite G band and D1, D2, D3 defects bands are<br />

<strong>in</strong>dicated. For each spectrum, <strong>the</strong> value <strong>of</strong> <strong>the</strong> mean R2 ratio<br />

(R2 = D1/[G + D1 + D2] peak area ratio) obta<strong>in</strong>ed after 10 decompositions<br />

is given (see text).<br />

shown <strong>in</strong> Fig. 3. As we get closer to <strong>the</strong> MCT, toward<br />

higher LH structural levels, <strong>the</strong> peak correspond<strong>in</strong>g to<br />

<strong>the</strong> graphite G band gets gradually narrower and shifts<br />

towards crystall<strong>in</strong>e graphite ( f 1580 cm 1 ). Simultaneously,<br />

<strong>the</strong> peaks correspond<strong>in</strong>g to D1 and D2<br />

defect bands vanish gradually. This trend corresponds<br />

to a gradual decrease <strong>of</strong> <strong>the</strong> R2 parameter from 0.747<br />

(poorly organized CM) down to 0.198 (microcrystall<strong>in</strong>e<br />

graphite).<br />

The results from <strong>the</strong> samples collected <strong>in</strong> <strong>the</strong><br />

MCT zone, at a structural distance less than 3 km,<br />

systematically <strong>in</strong>dicate nearly microcrystall<strong>in</strong>e graphite<br />

(0.1 < R2 < 0.3) and yielded remarkably clustered<br />

temperatures around a mean value <strong>of</strong> 541 jC (Fig.<br />

4). The standard deviation <strong>of</strong> this data set is only<br />

f 16 jC. One particular sample, MA79, which had<br />

yielded f 520 jC from <strong>the</strong> garnet–biotite Fe/Mg<br />

exchange <strong>the</strong>rmometer [10] yielded a RSCM temperature<br />

<strong>of</strong> f 556 F 6 jC. More generally, <strong>the</strong><br />

temperatures estimated by <strong>the</strong> RSCM method <strong>in</strong><br />

central <strong>Nepal</strong> are fairly consistent with <strong>the</strong> temperatures<br />

estimated from conventional petrology but are<br />

much less dispersed (Fig. 4). The cluster<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

RSCM temperatures from <strong>the</strong> MCT zone contrasts<br />

with <strong>the</strong> systematic and gradual decrease <strong>of</strong> RSCM<br />

temperature as we considered samples far<strong>the</strong>r away<br />

from <strong>the</strong> MCT zone.<br />

In central <strong>Nepal</strong>, below <strong>the</strong> Katmandu klippe,<br />

peak temperature is around 470 jC and also progressively<br />

decreases with distance to <strong>the</strong> klippe base.<br />

This trend is best illustrated for <strong>the</strong> monocl<strong>in</strong>al units<br />

below <strong>the</strong> Damauli klippe (lower <strong>in</strong>set <strong>in</strong> Fig. 1).<br />

The Damauli klippe is constituted by high-temperature<br />

schists (garnet–biotite parageneses) and can be<br />

considered as analogous to <strong>the</strong> larger Katmandu<br />

klippe [8,17].<br />

5. Discussion<br />

5.1. A reliable geo<strong>the</strong>rmometer<br />

Different sources <strong>of</strong> uncerta<strong>in</strong>ty affect <strong>the</strong> estimation<br />

<strong>of</strong> temperature by <strong>the</strong> RSCM method. An<br />

important source is due to <strong>the</strong> structural heterogeneity<br />

<strong>of</strong> <strong>the</strong> CM at <strong>the</strong> scale <strong>of</strong> <strong>the</strong> th<strong>in</strong>-section. This<br />

term was estimated from repeated measurements on<br />

each th<strong>in</strong> section. The standard deviation for R2 <strong>of</strong><br />

<strong>in</strong>dividual measurements with<strong>in</strong> one th<strong>in</strong>-section is<br />

typically around 0.05. The structural heterogeneity<br />

contributes to an uncerta<strong>in</strong>ty on <strong>the</strong> mean value <strong>of</strong><br />

at most 10–15 jC (at <strong>the</strong> 1 r confidence level),<br />

for typically f 10 measurements on <strong>the</strong> same th<strong>in</strong>section<br />

(Table 1). This heterogeneity can be generated<br />

by <strong>the</strong> technique (see method), or can be<br />

<strong>in</strong>herited from <strong>the</strong> CM precursor itself [16] or<br />

created by a nonhomogeneous graphitization<br />

through CM [18]. The possible mechanical effect<br />

<strong>of</strong> shear on <strong>the</strong> CM organization could be an<br />

additional source <strong>of</strong> uncerta<strong>in</strong>ty. This term should<br />

be particularly evident when various samples from a


O. Beyssac et al. / Earth and Planetary Science Letters 225 (2004) 233–241 239<br />

Fig. 4. Summary <strong>of</strong> peak metamorphic temperatures <strong>in</strong> <strong>the</strong> MCT zone. Temperature estimates by RSCM method (this study) and by<br />

conventional petrology [10,11,19,20] are compared <strong>in</strong> central and far-western <strong>Nepal</strong>. We dist<strong>in</strong>guish samples collected (1) from <strong>the</strong> High-<br />

<strong>Himalaya</strong>n crystall<strong>in</strong>e, (2) from <strong>the</strong> MCT zone (at a structural distance less than 3 km) at front <strong>of</strong> <strong>the</strong> High-<strong>Himalaya</strong>n Crystall<strong>in</strong>e, (3)<br />

immediately below <strong>the</strong> klippes overlay<strong>in</strong>g Lesser <strong>Himalaya</strong> and (4) <strong>in</strong> <strong>the</strong> core <strong>of</strong> <strong>the</strong> Lesser <strong>Himalaya</strong> anticl<strong>in</strong>orium. The dashed l<strong>in</strong>e <strong>in</strong>dicates<br />

<strong>the</strong> temperature 540 jC.<br />

heterogeneously deformed zone are compared. The<br />

data from <strong>the</strong> MCT zone are strongly clustered<br />

however, and are found to follow closely a normal<br />

distribution with a standard deviation <strong>of</strong> only about<br />

16 jC. This shows that <strong>the</strong> effect <strong>of</strong> mechanical<br />

shear<strong>in</strong>g, as well as o<strong>the</strong>r possible sources <strong>of</strong> <strong>in</strong>tersamples<br />

heterogeneities is small and might contribute<br />

to an uncerta<strong>in</strong>ty <strong>of</strong> at most 6 jC (at <strong>the</strong> 1 r<br />

confidence level). Actually, when <strong>the</strong> data from<br />

particular areas are considered closely, some systematic<br />

spatial patterns generally emerge suggest<strong>in</strong>g<br />

that gradients <strong>of</strong> peak metamorphic temperatures<br />

with<strong>in</strong> <strong>the</strong> MCT zone are probably <strong>the</strong> ma<strong>in</strong> reason<br />

for <strong>the</strong> slight dispersion <strong>of</strong> <strong>the</strong> RSCM data <strong>in</strong> Fig.<br />

4. We <strong>the</strong>refore contend that <strong>the</strong> various factors,<br />

o<strong>the</strong>r than <strong>the</strong>rmal <strong>metamorphism</strong>, affect<strong>in</strong>g <strong>the</strong><br />

structural organization <strong>of</strong> <strong>the</strong> CM, do not contribute<br />

to more than a few jC uncerta<strong>in</strong>ty on <strong>the</strong> estimated<br />

peak metamorphic temperature. The RSCM technique<br />

might thus be used to detect <strong>in</strong>ter-sample<br />

variations as small as 10–15 jC or so, but absolute<br />

temperatures can only be determ<strong>in</strong>ed to F 50 jC<br />

due to <strong>the</strong> uncerta<strong>in</strong>ty on <strong>the</strong> calibration.<br />

5.2. Remarkably uniform temperatures <strong>in</strong> <strong>the</strong> MCT<br />

zone<br />

The remarkable cluster<strong>in</strong>g <strong>of</strong> <strong>the</strong> R2 values <strong>in</strong> <strong>the</strong><br />

MCT zone, and hence <strong>of</strong> <strong>the</strong> peak metamorphic<br />

temperatures, implies that <strong>the</strong> temperature atta<strong>in</strong>ed <strong>in</strong><br />

<strong>the</strong> MCT zone was fairly uniform, around 540 jC,<br />

without any significant variations along E–W strike<br />

<strong>in</strong> central and far-western <strong>Nepal</strong>.<br />

When data from <strong>the</strong> shear zones below <strong>the</strong> klippes <strong>in</strong><br />

both central and far-western <strong>Nepal</strong> are considered, <strong>the</strong>y<br />

yield temperatures <strong>in</strong> <strong>the</strong> range 470–525 jC slightly<br />

lower than those from <strong>the</strong> MCT zone. This suggests<br />

that <strong>the</strong> different thrusts separat<strong>in</strong>g those klippes from<br />

<strong>the</strong> upper part <strong>of</strong> LH should be considered as equivalent<br />

to <strong>the</strong> MCT, at least for <strong>the</strong>ir <strong>the</strong>rmal evolution.<br />

5.3. Evidence for an <strong>in</strong>verted <strong>the</strong>rmal gradient<br />

throughout <strong>the</strong> <strong>lesser</strong> <strong>Himalaya</strong><br />

The whole data set reveals a large scale <strong>the</strong>rmal<br />

<strong>metamorphism</strong> throughout <strong>the</strong> LH with temperatures<br />

decreas<strong>in</strong>g gradually from about 540 jC at <strong>the</strong> top <strong>of</strong>


240<br />

<strong>the</strong> LH, to less than 330 jC <strong>in</strong> <strong>the</strong> core <strong>of</strong> <strong>the</strong> LH<br />

anticl<strong>in</strong>orium. The <strong>in</strong>verted metamorphic gradient,<br />

first evidenced near <strong>the</strong> MCT zone, can thus be traced<br />

down throughout <strong>the</strong> whole Lesser <strong>Himalaya</strong>.<br />

6. Conclusions<br />

The almost ubiquitous presence <strong>of</strong> CM with<strong>in</strong> <strong>the</strong><br />

pelitic metasediments from <strong>the</strong> LH made it possible to<br />

map peak metamorphic temperatures throughout <strong>the</strong><br />

Lesser <strong>Himalaya</strong> <strong>in</strong> <strong>Nepal</strong>. These data provide quantitative<br />

constra<strong>in</strong>ts with a relative uncerta<strong>in</strong>ty <strong>of</strong> less<br />

than 10–15 jC (at <strong>the</strong> 1 r confidence level) on <strong>the</strong><br />

<strong>the</strong>rmal structure and tectonic evolution <strong>of</strong> <strong>the</strong> LH.<br />

They are used <strong>in</strong> a complementary study that<br />

describes <strong>the</strong> process <strong>of</strong> accretion over <strong>the</strong> Cenozoic<br />

based on complementary <strong>the</strong>rmochronological and<br />

structural data <strong>in</strong> central <strong>Nepal</strong> [8]. Our case study<br />

shows that RSCM <strong>the</strong>rmometry is a powerful and<br />

reliable technique to explore <strong>the</strong> <strong>the</strong>rmal structure <strong>of</strong><br />

orogenic prisms <strong>in</strong> general. Indeed, most collision<br />

belts conta<strong>in</strong> large amounts <strong>of</strong> deep mar<strong>in</strong>e sediments<br />

that were metamorphosed and accreted to <strong>the</strong> orogenic<br />

prism, but exhibit a m<strong>in</strong>eralogy not sufficient for<br />

conventional petrology.<br />

Acknowledgements<br />

Field work was organized with <strong>the</strong> friendly<br />

assistance <strong>of</strong> our colleagues at <strong>the</strong> Department <strong>of</strong><br />

M<strong>in</strong>es and Geology <strong>in</strong> Katmandu. Raman spectroscopy<br />

measurements were performed at ENS Lyon<br />

(INSU national <strong>in</strong>strument). Maps were produced<br />

with GMT s<strong>of</strong>tware. Constructive and sensitive comments<br />

by Michael Tice and Brigitte Wopenka as well<br />

as editorial handl<strong>in</strong>g by Ken Farley are gratefully<br />

acknowledged. [KF]<br />

References<br />

O. Beyssac et al. / Earth and Planetary Science Letters 225 (2004) 233–241<br />

[1] O. Beyssac, B. G<strong>of</strong>fé, C. Chop<strong>in</strong>, J.N. Rouzaud, Raman spectra<br />

<strong>of</strong> carbonaceous material <strong>in</strong> metasediments: a new geo<strong>the</strong>rmometer,<br />

Journal <strong>of</strong> Metamorphic Geology 20 (2002)<br />

859–871.<br />

[2] P.G. DeCelles, D.M. Rob<strong>in</strong>son, J. Quade, T.P. Ojha, C.N.<br />

Garzione, P. Copeland, B.N. Upreti, Stratigraphy, structure,<br />

and tectonic evolution <strong>of</strong> <strong>the</strong> <strong>Himalaya</strong>n fold-thrust belt <strong>in</strong><br />

western <strong>Nepal</strong>, Tectonics 20 (2001) 487–509.<br />

[3] D.M. Rob<strong>in</strong>son, P.G. DeCelles, C.N. Garzione, O.N. Pearson,<br />

T.M. Harrison, E.J. Catlos, K<strong>in</strong>ematic model for <strong>the</strong> ma<strong>in</strong><br />

central thrust <strong>in</strong> <strong>Nepal</strong>, Geology 31 (2003) 359–362.<br />

[4] M. Brunel, Ductile thrust<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>Himalaya</strong>s: shear sense<br />

criteria and stretch<strong>in</strong>g l<strong>in</strong>eations, Tectonics 5 (1986) 247–265.<br />

[5] A. Pêcher, The <strong>metamorphism</strong> <strong>in</strong> Central <strong>Himalaya</strong>, Journal <strong>of</strong><br />

Metamorphic Geology 7 (1989) 31–41.<br />

[6] P. Le Fort, <strong>Himalaya</strong>s: <strong>the</strong> collided range: present knowledge<br />

<strong>of</strong> <strong>the</strong> cont<strong>in</strong>ental arc, American Journal <strong>of</strong> Science 275A<br />

(1975) 1–44.<br />

[7] L.P. Paudel, K. Arita, Tectonic and polymetamorphic history<br />

<strong>of</strong> <strong>the</strong> Lesser <strong>Himalaya</strong> <strong>in</strong> central <strong>Nepal</strong>, Journal <strong>of</strong> Asian<br />

Earth Sciences 18 (2000) 561–584.<br />

[8] L. Boll<strong>in</strong>ger, J.P. Avouac, O. Beyssac, E.J. Catlos, T.M. Harrison,<br />

M. Grove, B. G<strong>of</strong>fé, S. Sapkota, <strong>Thermal</strong> structure and<br />

exhumation history <strong>of</strong> <strong>the</strong> <strong>lesser</strong> <strong>Himalaya</strong> <strong>in</strong> central <strong>Nepal</strong>,<br />

Tectonics (<strong>in</strong> press).<br />

[9] B.N. Upreti, P. Le Fort, Lesser himalayan crystall<strong>in</strong>e nappes <strong>of</strong><br />

<strong>Nepal</strong>: problems <strong>of</strong> <strong>the</strong>ir orig<strong>in</strong>, Special Paper-Geological Society<br />

<strong>of</strong> America Bullet<strong>in</strong> 328 (1999) 225–238.<br />

[10] E.J. Catlos, T.M. Harrison, M.J. Kohn, M. Grove, F.J.<br />

Ryerson, C.E. Mann<strong>in</strong>g, B.N. Upreti, Geochronologic and<br />

<strong>the</strong>rmobarometric constra<strong>in</strong>ts on <strong>the</strong> evolution <strong>of</strong> <strong>the</strong> ma<strong>in</strong> central<br />

thrust, central <strong>Nepal</strong> <strong>Himalaya</strong>, Journal <strong>of</strong> Geophysical<br />

Research B106 (2001) 16177–16204.<br />

[11] M.J. Kohn, E.J. Catlos, F.J. Ryerson, T.M. Harrison, Pressure<br />

–temperature–time path discont<strong>in</strong>uity <strong>in</strong> <strong>the</strong> ma<strong>in</strong> central<br />

thrust zone, central <strong>Nepal</strong>, Geology 29 (2001) 571–574.<br />

[12] M.P. Searle, D.J. Waters, B.J. Stephenson, Pressure–temperature–time<br />

path discont<strong>in</strong>uity <strong>in</strong> <strong>the</strong> ma<strong>in</strong> central thrust<br />

zone, central <strong>Nepal</strong>: comment and reply, Geology 30<br />

(2002) 479–480.<br />

[13] F.J.M. Rietmeijer, I.D.R. Mack<strong>in</strong>non, Poorly graphitized carbon<br />

as a new cosmo<strong>the</strong>rmometer for primitive extraterrestrial<br />

materials, Nature 316 (1985) 733–736.<br />

[14] B. Wopenka, J.D. Pasteris, Structural characterization <strong>of</strong> kerogens<br />

to granulite facies graphite: applicability <strong>of</strong> Raman microprobe<br />

spectroscopy, American M<strong>in</strong>eralogist 78 (1993)<br />

533–577.<br />

[15] O. Beyssac, B. G<strong>of</strong>fe, J.P. Petitet, E. Froigneux, M. Moreau,<br />

J.N. Rouzaud, On <strong>the</strong> characterization <strong>of</strong> disordered and<br />

heterogeneous carbonaceous materials us<strong>in</strong>g Raman spectroscopy,<br />

Spectrochimica Acta. Part A 59 (2003) 2267–2276.<br />

[16] O. Beyssac, J.N. Rouzaud, B. G<strong>of</strong>fé, F. Brunet, C. Chop<strong>in</strong>,<br />

Graphitization <strong>in</strong> a high-pressure, low-temperature metamorphic<br />

gradient: a Raman microspectroscopy and HRTEM<br />

study, Contributions to M<strong>in</strong>eralogy and Petrology 143<br />

(2002) 19–31.<br />

[17] B.N. Upreti, An overview <strong>of</strong> <strong>the</strong> stratigraphy and tectonics <strong>of</strong><br />

<strong>the</strong> <strong>Nepal</strong> <strong>Himalaya</strong>, Journal <strong>of</strong> Asian Earth Sciences 17<br />

(1999) 577–606.<br />

[18] O. Beyssac, F. Brunet, J.P. Petitet, B. G<strong>of</strong>fe, J.N. Rouzaud,<br />

Experimental study <strong>of</strong> <strong>the</strong> microtextural and structural transformations<br />

<strong>of</strong> carbonaceous material under and temperature,<br />

European Journal <strong>of</strong> M<strong>in</strong>eralogy 15 (2003) 937–951.


O. Beyssac et al. / Earth and Planetary Science Letters 225 (2004) 233–241 241<br />

[19] Y. Kaneko, <strong>Thermal</strong> structure <strong>in</strong> <strong>the</strong> Annapurna region, central<br />

<strong>Nepal</strong> <strong>Himalaya</strong>: implication for <strong>the</strong> <strong>in</strong>verted <strong>metamorphism</strong>,<br />

Journal <strong>of</strong> M<strong>in</strong>eralogy, Petrology and Economic Geology (Japan)<br />

Ganko 90 (1995) 143–154.<br />

[20] F. Rolfo, C. D’anna, L. Mangiapane, B. Lombardo, A section<br />

through <strong>the</strong> MCT zone, Bhote Kosi valley, <strong>Nepal</strong> <strong>Himalaya</strong>,<br />

16th <strong>Himalaya</strong>-Karakorum-Tibet Workshop 19-3A, Journal <strong>of</strong><br />

Asian Earth Sciences 19 (3) suppl. 1 (2001) 54–55.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!