16.08.2013 Views

3D integrated circuit prototype dedicated to the ... - HAL - IN2P3

3D integrated circuit prototype dedicated to the ... - HAL - IN2P3

3D integrated circuit prototype dedicated to the ... - HAL - IN2P3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chx.x<br />

in_test<br />

(1 bit)<br />

Ctest<br />

Vref<br />

From <strong>the</strong><br />

previous<br />

channel<br />

24 columns, 64 channels/columns -> 1536 channels<br />

14 SC bits/channel -> 21504 SC bits<br />

2 SC bits/selectColumn -> 48 bits<br />

D Q D Q D Q<br />

D Q D Q<br />

clock<br />

probe_pa<br />

(1 bit)<br />

5 bits<br />

4 bits<br />

Valid_mask<br />

(1 bit)<br />

probe_sh<br />

(1 bit)<br />

probe_d<br />

(1 bit)<br />

64 channels<br />

Ch1.64<br />

Ch1.4<br />

Ch1.3<br />

Ch1.2<br />

Ch1.1<br />

To <strong>the</strong> next<br />

channel<br />

Ch2.64<br />

Ch2.4<br />

Ch2.3<br />

Ch2.2<br />

Ch2.1<br />

24 columns<br />

Ch24.64<br />

Ch24.4<br />

Ch24.3<br />

Ch24.2<br />

Ch24.1<br />

sel1 sel2 sel24<br />

• In_test -> 1 bit<br />

• 3 probes: preamplifier, shaper,<br />

discrimina<strong>to</strong>r -> 3 bits<br />

• DAC -> 5 bits<br />

• Shaper: variable gain -> 4 bits<br />

• Discrimina<strong>to</strong>r: mask -> 1 bit<br />

-> 14 SC bits / channel<br />

Figure 8: Slow Control in <strong>the</strong> analogue tier<br />

Three shift register for <strong>the</strong> slow control have been<br />

implemented. One <strong>to</strong> configure each analogue channels: test<br />

capacitance, DAC, variable gain, masked discrimina<strong>to</strong>r<br />

output, three probes. There are 14 bits for each channel and,<br />

with 1536 channels, this shift register has 21504 bits of slow<br />

control.<br />

Ano<strong>the</strong>r shift register has been implemented <strong>to</strong> configure<br />

<strong>the</strong> Select Column block: one bit <strong>to</strong> power or shut off <strong>the</strong><br />

column, ano<strong>the</strong>r bit <strong>to</strong> select <strong>the</strong> column in which <strong>the</strong> channel<br />

with selected probes is. This shift register has 48 bits of slow<br />

control.<br />

6) Simulations<br />

At this time <strong>the</strong> only results are simulations.<br />

Shaper<br />

DAC fixes <strong>the</strong> DC shaper<br />

output voltage and so <strong>the</strong><br />

threshold<br />

Preamplifier<br />

Vmax = Q/C => 60 mV<br />

(<strong>the</strong>oretically 100 mV for<br />

1000 e-)<br />

Transient response<br />

282 mV<br />

DAC: 1000<br />

Vth = 800 mV<br />

59.6 mV<br />

Noise at <strong>the</strong> output of <strong>the</strong> shaper<br />

Due <strong>to</strong> <strong>the</strong> parasitic capacitance<br />

S/N = 8<br />

Noise threshold = 100 e- <strong>to</strong><br />

130 e-<br />

Figure 9: simulation of <strong>the</strong> analogue channel<br />

2 MHz<br />

We can get a very high gain after <strong>the</strong> shaper, up <strong>to</strong> 3 V/fC.<br />

The simulated rms noise gives 16.2 mV, or 46 e-, which<br />

gives: S/N = 21.<br />

The figure below shows <strong>the</strong> linearity of <strong>the</strong> Time Over<br />

Threshold (TOT) for various injected charge.<br />

446<br />

Time Over Threshold (ns)<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Time Over Threshold measurement<br />

From this injected charge<br />

<strong>the</strong> shaper was saturated<br />

1000 2000 3000 4000 5000 6250 9375 12500<br />

Injected charge (e-)<br />

Ano<strong>the</strong>r little pulse has been<br />

observed after <strong>the</strong> main one<br />

TOT, gain = 0010, DAC<br />

= 0, 0000<br />

Shaper output<br />

Figure 10: TOT for different injected charge values<br />

threshold<br />

The TOT linearity is limited because <strong>the</strong> shaper output is<br />

rapidly saturated and oscillations can be observed which leads<br />

<strong>to</strong> introduce defaults in <strong>the</strong> effective time over threshold: <strong>the</strong><br />

shaper has been tuned for a little injection charge threshold,<br />

1000 electrons or 0,16 fC, but <strong>the</strong> typical injection charge will<br />

be significantly different with a sensor of about 200 µm<br />

thickness or about 75 µm.<br />

C. Digital Tier<br />

For <strong>the</strong> digital tier, <strong>the</strong> supply voltage was fixed <strong>to</strong> 1 V.<br />

Three parts divide this tier: a RS FlipFlop, a shift register<br />

of 24 DFlipFlops and a reading structure in<strong>to</strong> each digital<br />

channel placed just above <strong>the</strong> corresponding analogue<br />

channel.<br />

The digital tier has just been designed <strong>to</strong> get out <strong>the</strong> pulse<br />

coming from <strong>the</strong> discrimina<strong>to</strong>r and <strong>to</strong> create digital noise.<br />

One of <strong>the</strong> more important targets will be <strong>to</strong> examine <strong>the</strong><br />

coupling between <strong>the</strong> two tiers; and so, creating activity in<br />

digital tier will allow us <strong>to</strong> observe <strong>the</strong> behaviour of one layer<br />

when <strong>the</strong> neighbouring layer is working.<br />

From <strong>to</strong> <strong>the</strong><br />

analogue tier<br />

64 channels<br />

SR Flipflop<br />

RAZ<br />

SR Flipflop<br />

From <strong>to</strong> <strong>the</strong><br />

analogue tier S Q<br />

RAZ<br />

RN<br />

D Q D Q D Q D Q<br />

CLK (40 MHz)<br />

SR Flipflop<br />

From <strong>to</strong> <strong>the</strong><br />

analogue tier S Q<br />

RAZ<br />

RN<br />

D Q D Q D Q D Q<br />

CLK (40 MHz)<br />

S Q D Q D Q D Q D Q<br />

RN<br />

CLK (40 MHz)<br />

24 DFlipflops<br />

24 DFlipflops<br />

24 columns<br />

24 DFlipflops<br />

D_r<br />

CK_r<br />

D_r<br />

CK_r<br />

D Q<br />

D Q<br />

D_r<br />

CK_r<br />

NAND<br />

NAND<br />

D<br />

Q<br />

Q_r<br />

D_r<br />

Q_r<br />

D_r<br />

out<br />

NAND<br />

Q_r<br />

D_r<br />

1536 channels, 24<br />

columns, 64 ch/col<br />

Figure 11: digital channel schematic<br />

Read bus<br />

on out pad<br />

Go <strong>to</strong> <strong>the</strong> next<br />

channel D_r pin<br />

Only one channel output can be<br />

viewed on <strong>the</strong> same time

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!