17.08.2013 Views

and p - Numericable

and p - Numericable

and p - Numericable

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

On the use of different forms of<br />

Available Energies<br />

or Exergy<br />

in Meteorology<br />

University of Reading,<br />

13th of February, 2012<br />

Pascal MARQUET<br />

Météo-France. Laboratory of Forecasting


Motivity<br />

W. Thomson / Lord<br />

Kelvin (1853)<br />

F( X ) X ln( 1<br />

X ) X<br />

2<br />

/ 2<br />

Available Energies<br />

<strong>and</strong> Exergy?<br />

Edward N. Lorenz (1955)<br />

APE cycle<br />

J. W. Gibbs (1873)<br />

E<br />

tot<br />

<br />

E<br />

Stot tot<br />

tot<br />

1<br />

<br />

T<br />

Stot<br />

0<br />

Available<br />

Energy<br />

S<br />

<br />

W<br />

max<br />

Ther. diagrams<br />

Total Entropy<br />

J. C. Maxwell (1871)<br />

Available<br />

Energy


Contents<br />

1) Introduction: Energetics = quadratic functions!?<br />

2) Margules / Lorenz : Available (kinetic) Potential Energies…<br />

APE (Lorenz) Cycle… Limitations?<br />

3) Exergy functions: (Thermodynamics) Carnot (1823), Thomson-Kelvin<br />

(1853-79), Maxwell (1871), Gibbs (1873), EXERGY Rant (1956) / Bejan<br />

(1987) … (Atmosphere) Norm<strong>and</strong> (1946), Keenan (1956), Dutton (73,76),<br />

Pichler (77), Pearce (78), Blackburn (83), Karlsson (90), Marquet (90,91,93,…),<br />

Sheperd (95), Kucharski (97), Fortack (98), Bannon (2005), Tailleux (09), …<br />

ex: A h versus APE Cycles?<br />

4) Summary / Outlook : Moist Entropy & Enthalpy & 3D-Diagrams<br />

/ CAPE / N.H. / …<br />

3


Contents<br />

1) Introduction: Energetics = quadratic functions!?<br />

2) Margules / Lorenz : Available (kinetic) Potential Energies…<br />

APE (Lorenz) Cycle… Limitations?<br />

3) Exergy functions: (Thermodynamics) Carnot (1823), Thomson-Kelvin<br />

(1853-79), Maxwell (1871), Gibbs (1873), EXERGY Rant (1956) / Bejan<br />

(1987) … (Atmosphere) Norm<strong>and</strong> (1946), Keenan (1956), Dutton (73,76),<br />

Pichler (77), Pearce (78), Blackburn (83), Karlsson (90), Marquet (90,91,93,…),<br />

Sheperd (95), Kucharski (97), Fortack (98), Bannon (2005), Tailleux (09), …<br />

ex: A h versus APE Cycles?<br />

4) Summary / Outlook : Moist Entropy & Enthalpy & 3D-Diagrams<br />

/ CAPE / N.H. / …<br />

4


Energetics: quadratic functions!<br />

Special<br />

2 1 v<br />

E E<br />

1<br />

Relativity : 0 m c<br />

<br />

m<br />

2 2 <br />

<br />

1<br />

v / c 2<br />

Pendulum :<br />

A + ekin constant (if no dissipation)<br />

A E <br />

p<br />

m g R<br />

E p 0<br />

z z <br />

A m g <br />

<br />

m<br />

g<br />

R<br />

0<br />

5<br />

2<br />

1 cos<br />

<br />

2<br />

<br />

/ 2


Energetics: quadratic functions?<br />

Why is it important?<br />

It allows the study of the cascade of energy: mean eddies<br />

ekin emean<br />

eeddies<br />

<br />

m<br />

with<br />

( v)<br />

2<br />

h cp<br />

T cp<br />

( T T<br />

')<br />

h cp<br />

v<br />

2<br />

<br />

m<br />

( v')<br />

<br />

Compressible fluids / Atmosphere / Ocean : enthalpy ?<br />

no eddy term, because<br />

T<br />

( T')<br />

<br />

( v')<br />

2<br />

0<br />

0<br />

2<br />

only linear in T !<br />

6


Contents<br />

1) Introduction: Energetics = quadratic functions!?<br />

2) Margules / Lorenz : Available (kinetic) Potential Energies…<br />

APE (Lorenz) Cycle… Limitations?<br />

3) Exergy functions: (Thermodynamics) Carnot (1823), Thomson-Kelvin<br />

(1853-79), Maxwell (1871), Gibbs (1873), EXERGY Rant (1956) / Bejan<br />

(1987) … (Atmosphere) Norm<strong>and</strong> (1946), Keenan (1956), Dutton (73,76),<br />

Pichler (77), Pearce (78), Blackburn (83), Karlsson (90), Marquet (90,91,93,…),<br />

Sheperd (95), Kucharski (97), Fortack (98), Bannon (2005), Tailleux (09), …<br />

ex: Ah versus APE Cycles?<br />

4) Summary / Outlook : Moist Entropy & Enthalpy & 3D-Diagrams<br />

/ CAPE / N.H. / …<br />

7


Max Margules<br />

(1856–1920)<br />

MARGULES<br />

Available<br />

Kinetic<br />

Energy<br />

Equivalent<br />

Work<br />

LORENZ<br />

Available<br />

Potential<br />

Energy<br />

Edward Norton Lorenz<br />

(1917–2008)<br />

8


Contents<br />

1) Introduction: Energetics = quadratic functions!?<br />

2) Margules / Lorenz : Available (kinetic) Potential Energies…<br />

APE (Lorenz) Cycle… Limitations?<br />

3) Exergy functions: (Thermodynamics) Carnot (1823), Thomson-Kelvin<br />

(1853-79), Maxwell (1871), Gibbs (1873), EXERGY Rant (1956) / Bejan<br />

(1987) … (Atmosphere) Norm<strong>and</strong> (1946), Keenan (1956), Dutton (73,76),<br />

Pichler (77), Pearce (78), Blackburn (83), Karlsson (90), Marquet (90,91,93,…),<br />

Sheperd (95), Kucharski (97), Fortack (98), Bannon (2005), Tailleux (09), …<br />

ex: Ah versus APE Cycles?<br />

4) Summary / Outlook : Moist Entropy & Enthalpy & 3D-Diagrams<br />

/ CAPE / N.H. / …<br />

9


Max MARGULES (1901-1903)<br />

Equivalent Work?<br />

10


X<br />

p <br />

p<br />

0 p0<br />

H(<br />

X )<br />

p0<br />

Max MARGULES (1901-1903)<br />

Differences in pressure<br />

Useful Work?<br />

1 X ln1<br />

X <br />

H( X ) <br />

X <br />

11<br />

X<br />

2<br />

2


Max MARGULES (1901-1903)<br />

Compute the maximum<br />

Available Kinetic Energy<br />

among all possible<br />

reordering of a column?<br />

Differences in temperature <strong>and</strong> pressure <br />

Kinetic Energy (Storms)<br />

12


Max MARGULES (1901-1903)<br />

Available Kinetic Energy?<br />

Air initially at rest, but in disequilibrium…<br />

Air start to move, it tends to its equilibrium position<br />

Equilibrium position: horizontal layers are isobaric,<br />

with entropy (potential temperature) increasing with<br />

height, <strong>and</strong> with a Maximum of kinetic energy<br />

Trajectory toward the equilibrium position: adiabatic<br />

(isentropic) motions, conservation of the mass<br />

E p Ei<br />

E<br />

init p Ei<br />

end<br />

K <br />

<br />

max<br />

13


E<br />

i<br />

psfc<br />

p0 Max MARGULES (1901-1903)<br />

Available Kinetic Energy?<br />

E p Ei<br />

E<br />

init p Ei<br />

end<br />

K <br />

<br />

max<br />

( c T)<br />

dp / g E ( g z)<br />

dp / g<br />

Dry air +<br />

Integration<br />

by parts +<br />

Hydrosstatic<br />

E<br />

p<br />

v<br />

E<br />

p<br />

<br />

c R <br />

v<br />

psfc<br />

Ei<br />

p 0<br />

p<br />

psfc<br />

p0 p p<br />

p0<br />

p0 <br />

sfc sfc<br />

z p ( RT<br />

) dp / g<br />

( c<br />

c<br />

p<br />

p<br />

T)<br />

dp<br />

g<br />

[ z p ] 0?<br />

<br />

H<br />

H: Total heat?<br />

Enthalpy?<br />

H K <br />

max<br />

init<br />

H<br />

end<br />

14


Sir Charles Norm<strong>and</strong> (1946)<br />

1) Account of Margules’s work<br />

2) Promote: Total heat / Enthalpy<br />

15


Contents<br />

1) Introduction: Energetics = quadratic functions!?<br />

2) Margules / Lorenz : Available (kinetic) Potential Energies…<br />

APE (Lorenz) Cycle… Limitations?<br />

3) Exergy functions: (Thermodynamics) Carnot (1823), Thomson-Kelvin<br />

(1853-79), Maxwell (1871), Gibbs (1873), EXERGY Rant (1956) / Bejan<br />

(1987) … (Atmosphere) Norm<strong>and</strong> (1946), Keenan (1956), Dutton (73,76),<br />

Pichler (77), Pearce (78), Blackburn (83), Karlsson (90), Marquet (90,91,93,…),<br />

Sheperd (95), Kucharski (97), Fortack (98), Bannon (2005), Tailleux (09), …<br />

ex: Ah versus APE Cycles?<br />

4) Summary / Outlook : Moist Entropy & Enthalpy & 3D-Diagrams<br />

/ CAPE / N.H. / …<br />

16


Meteorology: APE = « Available Potential Energy »<br />

Margules-Lorenz isentropic redistribution of mass<br />

1<br />

2 <br />

1<br />

2 1<br />

1<br />

The actual state The reference state<br />

APE H H 0 with<br />

ref<br />

1<br />

E APE <br />

k<br />

Edward N. Lorenz<br />

(Tellus, 1955)<br />

C<br />

ste<br />

Is the APE<br />

quadratic?<br />

17


(<br />

p)<br />

<br />

Meteorology: APE = « Available Potential Energy »<br />

g p<br />

R<br />

G C D<br />

APE<br />

APE<br />

R<br />

<br />

<br />

cp<br />

V<br />

( T T<br />

)<br />

2<br />

T ( p)<br />

T<br />

( p)<br />

<br />

<br />

p p<br />

<br />

K<br />

Edward N. Lorenz<br />

(W.M.O., 1967)<br />

Yes APE is quadratic!<br />

2<br />

<br />

dxdy<br />

dp<br />

<br />

g T<br />

R<br />

APE / K :10 5 J m -2<br />

G / C / D : W m -2<br />

OK, APE quadratic: but mean/eddies?<br />

<br />

0<br />

ln(<br />

<br />

)<br />

ln(<br />

p)<br />

<br />

<br />

g T<br />

R c<br />

p <br />

s<br />

ln( p)<br />

18


APE<br />

A = A Z + A E<br />

A Z<br />

A E<br />

V<br />

Meteorology: APE - E.N. LORENZ<br />

APE quadratic: but mean/eddies?<br />

( T T<br />

)<br />

2<br />

2<br />

dxdy<br />

dp<br />

K = K Z + K E<br />

K Z<br />

K E<br />

<br />

0<br />

T T T<br />

'<br />

u u <br />

v v <br />

u'<br />

v'<br />

19


A Z<br />

A E<br />

K Z<br />

K E<br />

Meteorology: APE - E.N. LORENZ<br />

G Z<br />

C A<br />

G E<br />

A Z<br />

A E<br />

APE / K :10 5 J m -2<br />

G / C / D : W m -2<br />

C E<br />

Baroclinic path of energy!<br />

C Z<br />

K Z<br />

K E<br />

D Z<br />

C K<br />

D E<br />

20


Meteorology = problems with the APE?<br />

Pb1: Enthalpy (c p T) different from "c v T + g z" except<br />

(<strong>and</strong> only) for Global applications / What about local ones?<br />

Pb2: the conversion term is<br />

/ What about 0 for local applications?<br />

R T / p R T / p R 'T'<br />

/<br />

Pb3: APE division by or <br />

/ p<br />

/ What about ? (PBL)<br />

Pb4: APE = a dry-air approach / What about a moist version of it?<br />

Pb5: APE = several approximations (TOM) / Impacts?<br />

Question: is there other more exact<br />

<strong>and</strong> local definitions for<br />

Available energy?<br />

0<br />

Answer : YES EXERGY<br />

(1988-1990 research … PhD 1994)<br />

21<br />

p


Contents<br />

1) Introduction: Energetics = quadratic functions!?<br />

2) Margules / Lorenz : Available (kinetic) Potential Energies…<br />

APE (Lorenz) Cycle… Limitations?<br />

3) Exergy functions: (Thermodynamics) Carnot (1823), Thomson-<br />

Kelvin (1853-79), Maxwell (1871), Gibbs (1873), EXERGY Rant (1956) /<br />

Bejan (1987) … (Atmosphere) Norm<strong>and</strong> (1946), Keenan (1956), Dutton<br />

(73,76), Pichler (77), Pearce (78), Blackburn (83), Karlsson (90), Marquet<br />

(90,91,93,…), Sheperd (95), Kucharski (97), Fortack (98), Bannon (2005),<br />

Tailleux (09), … ex: A h versus APE Cycles?<br />

4) Summary / Outlook : Moist Entropy & Enthalpy & 3D-Diagrams<br />

/ CAPE / N.H. / …<br />

22


(1823)<br />

Sadi CARNOT: « puissance motrice<br />

du feu » = Available Energy / 1823<br />

The “Available Energy” is universal.<br />

It is independent of the actual<br />

machine or apparatus which deliver it.<br />

It only depends on the<br />

difference in temperature (<strong>and</strong> p, ….)<br />

23


W. Thomson / Lord Kelvin<br />

W. Thomson (Trans. Roy. Soc. Edinb. - Vol 16 - 1849)<br />

Account of Sadi Carnot’s work<br />

+ corresponding computations<br />

24


W. Thomson / Lord Kelvin : « the work available »<br />

W. Thomson (Phil. Mag., Feb. 1853)<br />

25


W. Thomson / Lord Kelvin : « the work available »<br />

W. Thomson (Phil. Mag., Feb. 1853)<br />

T<br />

T<br />

t<br />

T<br />

26


W. Thomson / Lord Kelvin : « the work available »<br />

Modern notations :<br />

W. Thomson (Phil. Mag., Feb. 1853)<br />

t T 0 T T 0 J 1<br />

W cp<br />

W p<br />

c T0<br />

<br />

( T T<br />

) T<br />

logT<br />

T dV<br />

0 0<br />

0<br />

<br />

FX<br />

dV<br />

( T T T X <br />

2<br />

X X ln( 1<br />

X ) X / 2<br />

F <br />

F(X) quadratic!<br />

0 )<br />

0<br />

T 0<br />

T 0<br />

T<br />

T 0<br />

27


W. Thomson / Lord Kelvin (1879) : « Motivity »<br />

P. G. Tait W. Thomson (Phil. Mag., 1879)<br />

W p<br />

X dV<br />

c T0<br />

F<br />

0 0 ) ( T T T X <br />

<br />

28


Maxwell / Gouy / Stodola<br />

Engl<strong>and</strong>: James Clerk MAXWELL<br />

"Available Energy" (The Heat,1871)<br />

Germany: Aurel Boleslav<br />

STODOLA "Maximal Available<br />

Work" (1898, 1903)<br />

(Enthalpy <strong>and</strong> Entropy)<br />

France: Louis Georges GOUY<br />

"Available Energy" (C.R.A.S. +<br />

J. Ph.,1889)<br />

Wmax <br />

( U U0<br />

) T0<br />

( S S0)<br />

W H T<br />

S<br />

max<br />

0<br />

29


J. W. Gibbs (1873)<br />

USA: Josiah Willard GIBBS "Available Energy" (1873)<br />

30


Etot<br />

( T0<br />

)<br />

Stot<br />

J. W. Gibbs (1873)<br />

<br />

E<br />

Stot tot<br />

tot<br />

1<br />

<br />

T<br />

0<br />

S<br />

<br />

W<br />

max<br />

A W T S<br />

max 0<br />

tot<br />

31


A cp<br />

T<br />

0<br />

( T T T X <br />

0 )<br />

F(<br />

X )<br />

2<br />

X X ln( 1<br />

X ) X / 2<br />

F <br />

T 0<br />

T 0<br />

T<br />

T 0<br />

0<br />

Q<br />

Kelvin / Maxwell / Gibbs ?<br />

Wmax <br />

( U U0<br />

) T0<br />

( S S0)<br />

T 0<br />

They seem different?<br />

Thermostat<br />

(reservoir)<br />

A W T <br />

max 0<br />

In fact: equivalent!<br />

32<br />

Stot<br />

For instance, at constant pressure:<br />

Q cp<br />

dT<br />

U c T X<br />

<br />

U 0 p 0 <br />

S S cp<br />

T ln( 1<br />

X )<br />

0<br />

Stot cp<br />

<br />

0<br />

F(X<br />

)


Contents<br />

1) Introduction: Energetics = quadratic functions!?<br />

2) Margules / Lorenz : Available (kinetic) Potential Energies…<br />

APE (Lorenz) Cycle… Limitations?<br />

3) Exergy functions: (Thermodynamics) Carnot (1823), Thomson-<br />

Kelvin (1853-79), Maxwell (1871), Gibbs (1873), EXERGY Rant (1956) /<br />

Bejan (1987) … (Atmosphere) Norm<strong>and</strong> (1946), Keenan (1956), Dutton<br />

(73,76), Pichler (77), Pearce (78), Blackburn (83), Karlsson (90), Marquet<br />

(90,91,93,…), Sheperd (95), Kucharski (97), Fortack (98), Bannon (2005),<br />

Tailleux (09), … ex: A h versus APE Cycles?<br />

4) Summary / Outlook : Moist Entropy & Enthalpy & 3D-Diagrams<br />

/ CAPE / N.H. / …<br />

33


Zoran RANT (1956)<br />

34


Adrian BEJAN (1987)<br />

But this pressure term?<br />

2<br />

X X ln( 1<br />

X ) X / 2<br />

F <br />

( T T T X <br />

0 )<br />

0<br />

35


Contents<br />

1) Introduction: Energetics = quadratic functions!?<br />

2) Margules / Lorenz : Available (kinetic) Potential Energies…<br />

APE (Lorenz) Cycle… Limitations?<br />

3) Exergy functions: (Thermodynamics) Carnot (1823), Thomson-Kelvin<br />

(1853-79), Maxwell (1871), Gibbs (1873), EXERGY Rant (1956) / Bejan<br />

(1987) … (Atmosphere) Norm<strong>and</strong> (1946), Keenan (1956), Dutton (73,76),<br />

Pichler (77), Pearce (78), Blackburn (83), Karlsson (90), Marquet<br />

(90,91,93,…), Sheperd (95), Kucharski (97), Fortack (98), Bannon (2005),<br />

Tailleux (2009), … ex: A h versus APE Cycles?<br />

4) Summary / Outlook : Moist Entropy & Enthalpy & 3D-Diagrams<br />

/ CAPE / N.H. / …<br />

36


John DUTTON (1973, 1976)<br />

Conservations of<br />

Mass <strong>and</strong> Energy<br />

Gibbs<br />

it is just rearranged <strong>and</strong><br />

divided by T 0<br />

37


Robert P. PEARCE (1978)<br />

d<br />

dt<br />

H H ) T<br />

( S S ) <br />

( 0 0 0<br />

Available Enthalpy<br />

<br />

(Enthalpy)<br />

dH<br />

dt<br />

T<br />

0<br />

dS<br />

dt<br />

38


Let us define locally:<br />

ah ( h hr<br />

) Tr<br />

( s sr<br />

)<br />

ah T p<br />

( T,<br />

p)<br />

a ( T)<br />

a ( p)<br />

aT ( T)<br />

cp<br />

Tr<br />

P. Marquet (CRAS 1990, QJ 1991)<br />

FX<br />

<br />

<br />

( p)<br />

R Tr<br />

p X<br />

p<br />

ap r<br />

H ( ) <br />

Available Enthalpy<br />

T<br />

X ( T T<br />

) Thomson (1853)<br />

r Tr<br />

2<br />

X X ln( 1<br />

X ) X / 2<br />

F <br />

p<br />

X ( p p )<br />

r<br />

r<br />

( T / T 1)<br />

T T <br />

a ( T)<br />

c T log<br />

a ( p)<br />

RT<br />

log<br />

p<br />

r<br />

p<br />

1 X ln1<br />

X <br />

With a “dead state”:<br />

H( X ) <br />

X <br />

r<br />

C T <br />

r<br />

r<br />

p p <br />

r<br />

ste<br />

C p <br />

Margules (1901)<br />

r<br />

X<br />

2<br />

39<br />

ste<br />

2<br />

r


Let us define locally:<br />

ah ( h hr<br />

) Tr<br />

( s sr<br />

)<br />

da r<br />

h R<br />

T T <br />

1<br />

q<br />

dt p T <br />

dek R<br />

T<br />

B()<br />

d<br />

dt p<br />

d<br />

<br />

dt<br />

<br />

B()<br />

t<br />

P. Marquet (CRAS 1990, QJ 1991)<br />

Available Enthalpy<br />

dt<br />

d<br />

dt<br />

h e <br />

q<br />

d<br />

k<br />

With a “dead state”:<br />

C T <br />

A local Bernoulli equation:<br />

d r<br />

h k<br />

<br />

t<br />

<br />

t<br />

T<br />

<br />

T<br />

a e <br />

1 q<br />

d<br />

Carnot’s factor Differential heating<br />

r<br />

ste<br />

C p <br />

r<br />

<br />

<br />

<br />

40<br />

ste


Let us define locally:<br />

ah ( h hr<br />

) Tr<br />

( s sr<br />

)<br />

P. Marquet (CRAS 1990, QJ 1991)<br />

Available Enthalpy<br />

Average values: / 1/<br />

T<br />

leading to:<br />

T r<br />

The “dead state” ?<br />

1 <strong>and</strong> log p r log( p)<br />

T r<br />

<br />

251<br />

K<br />

or possibly: 273 K<br />

Pearce (1978):<br />

T r<br />

/<br />

/<br />

T <br />

p r<br />

p r<br />

r<br />

<br />

C<br />

ste<br />

367<br />

1000<br />

C p <br />

r<br />

hPa<br />

hPa<br />

41<br />

ste


Let us define locally:<br />

ah ( h hr<br />

) Tr<br />

( s sr<br />

)<br />

F X X ln( 1<br />

X<br />

X T / T 1<br />

S<br />

X B<br />

)<br />

r<br />

T<br />

/ T 1<br />

T '/<br />

T<br />

Pearce (1978)<br />

P. Marquet (CRAS 1990, QJ 1991)<br />

Available Enthalpy<br />

T T'(<br />

x,<br />

y,<br />

p)<br />

T<br />

( p)<br />

<br />

Tr<br />

X FX<br />

S X B X S X B <br />

X FX<br />

S FX<br />

B X S X B<br />

X FX<br />

FX<br />

X<br />

F <br />

F <br />

The “dead state” ?<br />

T <br />

constant values…<br />

A lack of generality?<br />

Tr<br />

F S B ; B 0<br />

self-similarity + another one for H X …<br />

r<br />

/<br />

C<br />

ste<br />

C p <br />

r<br />

<br />

42<br />

ste


an Available Enthalpy<br />

“a h” Cycle?<br />

P. Marquet (PhD 1994, QJ 2003ab)<br />

: the “a h” Cycle?<br />

43


P. Marquet (PhD 1994, QJ 2003ab)<br />

the “a h” Cycle: huge amount of computations… but exact!<br />

General properties…<br />

44


P. Marquet (PhD 1994, QJ 2003ab)<br />

the “a h” Cycle: huge amount of computations… but exact!<br />

Start of the computations for “a Z” …<br />

45


P. Marquet (PhD 1994, QJ 2003ab)<br />

the “a h” Cycle: huge amount of computations… but exact!<br />

computations<br />

for “a Z” continue…<br />

46


P. Marquet (PhD 1994, QJ 2003ab)<br />

the “a h” Cycle: huge amount of computations… but exact!<br />

+ other computations<br />

for “a S” “a E”<br />

<strong>and</strong> “k S” “k Z”“k E” …<br />

end of the computations for “a Z” only …<br />

47


P. Marquet (QJ 2003a)<br />

the “a h” cycles for a pressure level<br />

of a limited area domain (with !)<br />

the global “a h” cycles:<br />

48


Global<br />

P. Marquet (QJ 2003b)<br />

Global<br />

Mid-tropo<br />

Thorncroft <strong>and</strong> Hoskins (1990)<br />

with the Arpege model<br />

Strato<br />

PBL<br />

49


P. Marquet (QJ 1995)<br />

Non-canonical Hamiltonian systems<br />

Casimir invariants<br />

T<br />

s ?<br />

ah ( h hr<br />

) Tr<br />

( s sr<br />

)<br />

K r<br />

“Pseudo-activity” Shepherd (1993)<br />

a Link with<br />

Lorenz’ APE…<br />

50


P. Marquet (QJ 1995)<br />

Non-canonical Hamiltonian systems<br />

Casimir invariants<br />

ah ( h hr<br />

) Tr<br />

( s sr<br />

)<br />

K <br />

Tr<br />

Available<br />

Enthalpy<br />

“Pseudo-activity” Shepherd (1993)<br />

s?<br />

X min<br />

0 X<br />

Etot<br />

H0<br />

H<br />

( T0<br />

)<br />

Gibbs (1873)<br />

Stot<br />

51<br />

X<br />

<br />

<br />

K<br />

K0


Contents<br />

1) Introduction: Energetics = quadratic functions!?<br />

2) Margules / Lorenz : Available (kinetic) Potential Energies…<br />

APE (Lorenz) Cycle… Limitations?<br />

3) Exergy functions: (Thermodynamics) Carnot (1823), Thomson-Kelvin<br />

(1853-79), Maxwell (1871), Gibbs (1873), EXERGY Rant (1956) / Bejan<br />

(1987) … (Atmosphere) Norm<strong>and</strong> (1946), Keenan (1956), Dutton (73,76),<br />

Pichler (77), Pearce (78), Blackburn (83), Karlsson (90), Marquet (90,91,93,…),<br />

Sheperd (95), Kucharski (97), Fortack (98), Bannon (2005), Tailleux (09), … <br />

ex: Ah versus APE Cycles?<br />

4) Summary / Outlook: Moist Entropy & Enthalpy & 3D-<br />

Diagrams / CAPE / N.H. / …<br />

52


Summary / Outlook<br />

http://perso.numericable.fr/~pmarquet/<br />

pascal.marquet@meteo.fr<br />

1) APE in Meteorology (Margules-Lorenz) … but also Dutton,<br />

Pearce, … (flowing / non-flow) Exergy in Thermodynamics:<br />

no need to seek for the “best” or the “right” one / different aspects<br />

2) Let us use Enthalpy for itself, with “g z” having is own impact<br />

on (local) atmospheric energetic (do not mix with internal energy).<br />

3) No need to use “adiabatic redistribution of the mass”<br />

4) A possible exact <strong>and</strong> local Available Enthalpy “a h” Cycle.<br />

5) F(X) <strong>and</strong> H(X) + separating properties F(X) = F(X 1 ) + F(X 2 )<br />

6) Other Exergy approaches: Fred Kucharski (U.R. with A. Thorpe)<br />

/ Sten Karlsson (Sweeden) Kullback information i p i ln ( p i / p i0 )<br />

7) Next related studies: Moist Exergy “a m” (1993) / Absolute moist<br />

Entropy (2011) & Enthalpy + CAPE + BVF (2012) + PV ...<br />

53


Motivity<br />

W. Thomson / Lord<br />

Kelvin (1853)<br />

F( X ) X ln( 1<br />

X ) X<br />

2<br />

/ 2<br />

Thanks a lot / Questions?<br />

http://perso.numericable.fr/~pmarquet/<br />

pascal.marquet@meteo.fr<br />

APE cycle<br />

Edward N. Lorenz (1955)<br />

J. W. Gibbs (1873)<br />

E<br />

tot<br />

<br />

E<br />

Stot tot<br />

tot<br />

1<br />

<br />

T<br />

Stot<br />

0<br />

S<br />

<br />

W<br />

Available<br />

Energy<br />

max<br />

Ther. diagrams<br />

Total Entropy<br />

J. C. Maxwell<br />

(1871)<br />

Available<br />

Energy

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!