17.08.2013 Views

π ω = π θ π θ ω π θ π θ ω - 物理學系- 東海大學

π ω = π θ π θ ω π θ π θ ω - 物理學系- 東海大學

π ω = π θ π θ ω π θ π θ ω - 物理學系- 東海大學

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Fundamentals of Physics<br />

Halliday & Resnic<br />

【CH10】Rotational Motion I<br />

Homework of Chapter 10:<br />

3, 5, 7, 9, 13, 17, 21, 25, 27, 31, 33, 35, 37, 39, 43, 47, 49, 51, 55, 59, 63, 66<br />

<strong>東海大學</strong>物理系<br />

【Problem 10-3】<br />

A diver makes 2.5 revolutions on the way from a 10m high platform to the water. Assuming zero<br />

initial vertical velocity, find the average angular velocity during the dive.<br />

一個人從 10m 高的跳水台跳到水裡,過程中轉了 2.5 圈。假設初始垂直速度為零,問跳水<br />

過程中平均角速度為何?<br />

1<br />

Δ y = v t+ gt<br />

2<br />

: 0 y<br />

= 0<br />

⇒<br />

2<br />

2Δy2(10) t = = = 1.4s<br />

g 9.8<br />

(2.5 rev)(2 <strong>π</strong> rad / rev)<br />

<strong>ω</strong> avg = = 11 rad / s<br />

1.4s<br />

【Problem 10-5】<br />

When a slice of buttered toast is accidentally pushed over the edge of a counter, it rotates as it falls.<br />

If the distance to the floor is 76 cm and for rotation less than 1 rev, what are the (a) smallest and (b)<br />

largest angular speeds that cause the toast to hit and then topple to be butter-side down?<br />

一片烤奶油麵包,意外的被推向櫃臺邊緣,當它掉下來時,同時旋轉。如果距離地面 76cm,<br />

轉速小於 1rev(意思是土司旋轉不會超過 1 圈),問撞到奶油端時(土司另一端撞到地面),<br />

何為(a)最小和(b)的最大的角速度?<br />

1<br />

: h= gt<br />

2<br />

2<br />

2h2(0.76 m)<br />

Δ t = = = 0.394 s.<br />

2<br />

g 9.8 m/s<br />

(a) 土司旋轉然後掉到地面時的最小角度為<br />

<strong>π</strong><br />

Δ <strong>θ</strong>min<br />

= 0.25 rev = rad<br />

2<br />

<br />

Fundamentals of Physics<br />

Halliday & Resnic<br />

(掉到地面土司旋轉不超過一圈,且 A 端掉下,旋轉後 B 端撞到地面)<br />

<strong>π</strong><br />

rad<br />

Δ<strong>θ</strong>min<br />

<strong>ω</strong><br />

2<br />

min = = = 4.0 rad/s<br />

Δt<br />

0.394 s<br />

3<strong>π</strong><br />

Δ <strong>θ</strong> = 0.75 rev = rad<br />

2<br />

(b) max<br />

(掉到地面土司旋轉不超過一圈,且 A 端掉下,旋轉後 D 端撞到地面)<br />

3<strong>π</strong> rad<br />

Δ<strong>θ</strong>max<br />

<strong>ω</strong><br />

2<br />

max = = = 12.0 rad/s<br />

Δt<br />

0.394 s<br />

<strong>東海大學</strong>物理系<br />

【Problem 10-7】<br />

The wheel in Fig. 10-30 has eight equally spaced spokes and a radius of 30 cm. It is mounted on a<br />

fixed axle and is spinning at 2.5 rev/s. You want to shoot a 20cm long arrow parallel to this axle and<br />

through the wheel without hitting any of the spokes. Assume that the arrow and the spokes are very<br />

thin. (a) What minimum speed must the arrow have? (b) Does it matter where between the axle and<br />

rim of the wheel you aim? If so, what is the best location?<br />

(圖 10-30)<br />

圖 10-30,一車輪有 8 個等距離的輪輻,其半徑 30cm。它是安裝在固定的軸上旋轉,2.5 轉<br />

/秒。你想射出一個 20cm 長的箭,使其通過這種車輪而沒有擊中任何的輪輻。假設箭頭和<br />

輪輻都非常薄。(a)箭的最低速度為多少?(b)你的目標是否是在哪一處車軸間的輪輻?<br />

如果有的話,何為最好的位置?<br />

1<br />

rev<br />

:(a) 為了避免箭碰到車輪的輪輻,箭經過車輪的時間必須不超過 Δ t = 8 = 0.05s<br />

2.5 rev / s<br />

20cm<br />

所以,箭的最小速度為 vmin = = 400 cm/ s= 4 m/ s<br />

0.05s


Fundamentals of Physics<br />

Halliday & Resnic<br />

(b) No—there is no dependence on radial position in the above computation.<br />

<strong>東海大學</strong>物理系<br />

【Problem 10-9】<br />

A disk, initially rotating at 120 rad / s , is slowed down with a constant angular acceleration of<br />

2<br />

magnitude 4 rad / s . (a) How much time does the disk take to stop? (b) Through what angle does<br />

the disk rotate during that time?<br />

2<br />

一圓盤,一開始轉動速率120 rad / s ,緩慢地以角加速度 4 rad / s 減少轉速。(a)圓盤停止<br />

時花了多少時間?(b)在那段時間,圓盤轉了多少角度?<br />

:(a) <strong>ω</strong> = <strong>ω</strong>0+ αt<br />

<strong>ω</strong> −<strong>ω</strong>0 0−120 ⇒ t = = = 30s<br />

α ( −4)<br />

1 1<br />

3<br />

(b) <strong>θ</strong> = ( <strong>ω</strong>+ <strong>ω</strong>0)<br />

t = (120 + 0)(30) = 1.8× 10 rad<br />

2 2<br />

【Problem 10-13】<br />

2<br />

A wheel has a constant angular acceleration of 3 rad / s . During a certain 4.0 s interval, it turns<br />

through an angle of 120 rad. Assuming that the wheel started from rest, how long has it been in<br />

motion at the start of this 4.0 s interval?<br />

2<br />

一輪子具有固定角加速度 3 rad / s 。在某一個 4秒期間,它轉了 120rad。假設輪子一開始<br />

是靜止狀態,問在這個 4秒期間之前,它運動了多久?<br />

1<br />

: <strong>θ</strong> = <strong>ω</strong>0t+ αt<br />

2<br />

2<br />

1 2 1 2<br />

<strong>θ</strong> − αt120<br />

− (3)(4 )<br />

<strong>ω</strong> 2 2<br />

0 = = = 24 rad / s …在 4 秒期間,一開始時的轉速。<br />

t<br />

4<br />

<strong>ω</strong> = <strong>ω</strong>0+ αt<br />

<strong>ω</strong> −<strong>ω</strong>0 24 − 0<br />

t = = = 8s,輪子一開始靜止,8<br />

秒後,轉速增加為 24 rad / s 。<br />

α 3<br />

【Problem 10-17】<br />

A flywheel turns through 40 rev as it slows from an angular speed of 1.5 rad/s to a stop. (a)<br />

Assuming a constant angular acceleration, find the time for it to come to rest. (b) What is its angular<br />

acceleration? (c) How much time is required for it to complete the first 20 of the 40 revolutions?<br />

一飛輪,當它從角速度 1.5rad/ s 減速到停止,共旋轉了 40rev。(a)假設角加速度為定值,<br />

問它到停止時共花了多少時間。(b)角加速度為何?(c)40 個週期的的前 20 週期,需要<br />

花多少時間?<br />

<br />

Fundamentals of Physics<br />

Halliday & Resnic<br />

1.5<br />

:假設 t = 0 , <strong>ω</strong>0<br />

= 1.5 rad / s = rev / s = 0.239 rev / s<br />

2<strong>π</strong><br />

t = t1,轉了<br />

<strong>θ</strong> 1 = 20rev<br />

t = t2,轉了<br />

<strong>θ</strong> 2 = 40rev , <strong>ω</strong> 2 = 0<br />

<strong>東海大學</strong>物理系<br />

1<br />

(a) <strong>θ</strong>2 = ( <strong>ω</strong>0 + <strong>ω</strong>2)<br />

t2<br />

2<br />

2<strong>θ</strong> 2 2(40)<br />

⇒ t2= = = 335s<br />

<strong>ω</strong>0 + <strong>ω</strong>2<br />

0+ 0.239<br />

1 2<br />

(b) <strong>θ</strong>2 = <strong>ω</strong>2t2 − αt2<br />

2<br />

2( <strong>ω</strong>2t2 −<strong>θ</strong> 2)<br />

2(0 − 40)<br />

−4<br />

2<br />

−2<br />

2<br />

⇒ α = = =− 7.13× 10 rev / s =− 4.48× 10 rad / s<br />

2 2<br />

t2<br />

335<br />

1 2<br />

(c) <strong>θ</strong>1 = <strong>ω</strong>0t1+ αt1<br />

2<br />

2<br />

2 −4<br />

− <strong>ω</strong>0 ± <strong>ω</strong>0 + 2<strong>θ</strong>α<br />

1 − (0.239) ± (0.239) −2(20)( − 7.13× 10 )<br />

t1<br />

=<br />

=<br />

= 98 或 572<br />

−4<br />

α<br />

− 7.13× 10<br />

∵ t1 < t2<br />

t = 98s<br />

∴ 1<br />

【Problem 10-21】<br />

A flywheel with a diameter of 1.2 m is rotating at an angular speed of 200 rev/min. (a) What is the<br />

angular speed of the flywheel in radians per second? (b) What is the linear speed of a point on the<br />

rim of the flywheel? (c) What constant angular acceleration (in revolutions per minute-squared) will<br />

increase the wheel’s angular speed to 1000 rev/min in 60s? (d) How many revolutions does the<br />

wheel make during that 60s?<br />

飛輪直徑 1.2 米,旋轉角速度為 200 轉 /分。(a)寫出飛輪角速度以弧度每秒?(b)飛輪<br />

邊緣上一個點的直線速度?(c)固定角加速度為何(轉/分 2 ),60 秒內將飛輪角速度增加<br />

到到 1000 轉 /分?(d)在該 60 秒內,轉了多少轉?<br />

200rev 2<strong>π</strong><br />

rad<br />

( )( )<br />

:(a) <strong>ω</strong> = min rev = 20.9 rad / s<br />

60s<br />

( )<br />

min<br />

1.2<br />

(b) r = = 0.6m<br />

2<br />

v= r<strong>ω</strong>= (0.6)(20.9) = 12.5 m/ s<br />

(c) t = 60s= 1min , 1000 rev / min<br />

<strong>ω</strong> = , <strong>ω</strong> 0 =<br />

200 rev / min


Fundamentals of Physics<br />

Halliday & Resnic<br />

<strong>ω</strong> −<strong>ω</strong>0 1000 − 200<br />

2<br />

α = = = 800 rev / min<br />

t 1<br />

1 1<br />

<strong>θ</strong> = ( <strong>ω</strong> + <strong>ω</strong>)<br />

t = (200 + 1000)(1) = 600rev<br />

2 2<br />

(d) 0<br />

【Problem 10-25】<br />

<strong>東海大學</strong>物理系<br />

A disk, with a radius of 0.25 m, is to be rotated like a merry-go-round through 800 rad, starting<br />

from rest, gaining angular speed at the constant rate α 1 through the first 400 rad and then losing<br />

angular speed at the constant rate − α1<br />

until it is again at rest. The magnitude of the centripetal<br />

2<br />

acceleration of any portion of the disk is not to exceed 400 m/ s . (a) What is the least time<br />

required for the rotation? (b) What is the corresponding value of α 1 ?<br />

一張盤子,半徑 0.25 m,從靜止開始被轉動像旋轉木馬一樣的轉了 800 rad,以角加速度 α 1 轉<br />

了前 400rad。然後以角加速度為 − α1<br />

減速到停止。盤子任何部分的向心加速度不得超過<br />

2<br />

400 m/ s 。(a)轉動需要多少時間?(b) α 1 為何?<br />

: r = 0.25m<br />

2<br />

v 2<br />

ar= = r<strong>ω</strong><br />

r<br />

ar<br />

400<br />

⇒ <strong>ω</strong> = = = 40 rad / s<br />

r 0.25<br />

1<br />

(a) <strong>θ</strong> − <strong>θ</strong>0 = ( <strong>ω</strong>0 + <strong>ω</strong>)<br />

t<br />

2<br />

2( <strong>θ</strong> −<strong>θ</strong> 0)<br />

2(400 − 0)<br />

t = = = 20s……這是一半的時間<br />

<strong>ω</strong>0+ <strong>ω</strong> 0+ 40<br />

所以花的總時間為 40 秒。<br />

(b) <strong>ω</strong> = <strong>ω</strong>0+ αt<br />

<strong>ω</strong> −<strong>ω</strong>0 40 − 0<br />

α = = = 2 rad / s<br />

t 20<br />

2<br />

【Problem 10-27】<br />

An early method of measuring the speed of light makes use of a rotating slotted wheel. A beam of<br />

light passes through one of the slots at the outside edge of the wheel, as in Fig. 10-31, travels to a<br />

distant mirror, and returns to the wheel just in time to pass through the next slot in the wheel. One<br />

such slotted wheel has a radius of 5 cm and 500 slots around its edge. Measurements taken when<br />

5<br />

the mirror is L= 500m<br />

from the wheel indicate a speed of light of 3× 10 km / s . (a) What is the<br />

(constant) angular speed of the wheel? (b) What is the linear speed of a point on the edge of the<br />

wheel?<br />

早期測量光速的方法是利用旋轉的槽輪。一道光束穿過車輪邊緣的凹槽,如圖 10-31,射到<br />

<br />

Fundamentals of Physics<br />

Halliday & Resnic<br />

<strong>東海大學</strong>物理系<br />

一段距離的鏡子,並返回到車輪正好穿過車輪的下一個凹槽。像這樣的一個有凹槽的輪子<br />

5<br />

半徑為 5cm 左右且外圍有 500 個 凹槽。鏡子 距離輪 子 L= 500m,量到的光速為<br />

3× 10 km / s(a)<br />

車輪的角速度(常數)為何?(b)車輪邊緣的一個點,它的線速度為何?<br />

2<strong>π</strong><br />

−2<br />

:(a) <strong>θ</strong> = = 1.26× 10 rad<br />

500<br />

2L 2(500 m)<br />

−6<br />

t = = = 3.33× 10 s<br />

8<br />

c 3× 10 m/ s<br />

−2<br />

<strong>θ</strong> 1.26× 10 rad<br />

<strong>ω</strong> = =<br />

−6<br />

t 3.33× 10 s<br />

= ×<br />

3<br />

3.8 10 /<br />

rad s<br />

3<br />

(b) v= <strong>ω</strong> r = ( 3.8× 10 rad/s) ( 0.050 m)<br />

2<br />

= 1.9× 10 m/s.<br />

(圖 10-31)<br />

【Problem 10-31】<br />

A record turntable is rotating at 3313 rev/min. A watermelon seed is on the turntable 6.0 cm from<br />

the axis of rotation. (a) Calculate the acceleration of the seed, assuming that it does not slip. (b)<br />

What is the minimum value of the coefficient of static friction between the seed and the turntable if<br />

the seed is not to slip? (c) Suppose that the turntable achieves its angular speed by starting from rest<br />

and undergoing a constant angular acceleration for 0.25 s. Calculate the minimum coefficient of<br />

static friction required for the seed not to slip during the acceleration period.<br />

一個記錄轉盤旋轉 3313 轉/分鐘,一顆西瓜種子在轉盤上,離轉軸 6cm。(a)如果種子不滑<br />

動,求出種子的加速度(b)如果種子不滑動,求出種子與轉盤的最小靜摩擦係數(c)假設<br />

轉盤從靜止,花了 0.25s 等速加速到一個固定角速度,加速過程中,種子不滑動,求出最小<br />

靜摩擦係數。<br />

:(a) The angular speed in rad/s is


Fundamentals of Physics<br />

Halliday & Resnic<br />

<strong>ω</strong> = F H G<br />

33 1<br />

rev / min<br />

3<br />

I K J F H G<br />

I<br />

2<strong>π</strong><br />

rad / rev<br />

= 349 . rad / s.<br />

60 s/minKJ<br />

Consequently, the radial (centripetal) acceleration is (using Eq. 10-23)<br />

b g<br />

−<br />

a = <strong>ω</strong> r = × =<br />

2 2 2<br />

349 . rad / s ( 60 . 10 m) 0.73 m / s .<br />

2<br />

<strong>東海大學</strong>物理系<br />

(b) Using Ch. 6 methods, we have ma = fs ≤ fs,max = μs mg, which is used to obtain the<br />

(minimum allowable) coefficient of friction:<br />

a 073 .<br />

μ s,min<br />

= = = 0075 . .<br />

g 98 .<br />

(c) The radial acceleration of the object is ar = <strong>ω</strong> 2 r, while the tangential acceleration is at =<br />

αr. Thus,<br />

2 2 2 2 2 4 2<br />

| a| = a + a = ( <strong>ω</strong> r) + ( αr) = r <strong>ω</strong> + α .<br />

r t<br />

If the object is not to slip at any time, we require<br />

4 2<br />

f = μ mg = ma = mr <strong>ω</strong> + α<br />

s,max s<br />

max max .<br />

Thus, since α = <strong>ω</strong>/t (from Eq. 10-12), we find<br />

μ<br />

s,min<br />

4 2 4 2 4 2<br />

r <strong>ω</strong>max + α r <strong>ω</strong>max + ( <strong>ω</strong>max<br />

/ t)<br />

(0.060) 3.49 + (3.4/0.25)<br />

= = = = 0.11.<br />

g g<br />

9.8<br />

【Problem 10-33】<br />

Calculate the rotational inertia of a wheel that has a kinetic energy of 24 400 J when rotating at 602<br />

rev/min.<br />

車輪具有動能 24,400J,轉速 602 轉/分,計算車輪的轉動慣量。<br />

1 2<br />

: K = I<strong>ω</strong><br />

2<br />

2K 2(24,400 J )<br />

I = = = 12.3kg<br />

⋅ m<br />

2<br />

<strong>ω</strong> (602 rev / min)(2 <strong>π</strong> rad / rev)<br />

60 s / min<br />

【Problem 10-35】<br />

Calculate the rotational inertia of a meter stick, with mass 0.56 kg, about an axis perpendicular to<br />

the stick and located at the 20 cm mark. (Treat the stick as a thin rod.)<br />

計算一米棒子的轉動慣量,其質量 0.56kg,有一軸垂直於棒子,固定在 20cm 位置。(把棒<br />

子視如一隻細竿子。)<br />

2<br />

<br />

Fundamentals of Physics<br />

Halliday & Resnic<br />

:依據平行軸定理: I = I + Mh<br />

h= 0.5 − 0.2 = 0.3m<br />

CM<br />

2<br />

1 1<br />

I = ICM + Mh = ML + Mh<br />

= (0.56)( 1) + (0.56)(0.3)<br />

= 9.7× 10 kg<br />

⋅ m<br />

12 12<br />

2 2 2<br />

2<br />

2<br />

−2<br />

2<br />

<strong>東海大學</strong>物理系<br />

【Problem 10-37】<br />

Two uniform solid cylinders, each rotating about its central (longitudinal) axis at 235 rad/s, have the<br />

same mass of 1.25 kg but differ in radius. What is the rotational kinetic energy of (a) the smaller<br />

cylinder, of radius 0.25 m, and (b) the larger cylinder, of radius 0.75 m?<br />

二個一樣的堅實圓筒,互相對縱向中間軸轉動,轉速 235 rad/s,有相同質量 1.25 kg,但是<br />

不同的半徑。(a)小圓筒半徑 0.25 m 和(b)大圓筒半徑半徑 0.75 m,問兩者的轉動動能?<br />

1 2<br />

: I = MR<br />

2<br />

1 2 1 2 2<br />

K = I<strong>ω</strong>= MR <strong>ω</strong><br />

2 4<br />

1 2 2 1 2 2 3<br />

(a) K = MR <strong>ω</strong> = (1.25)(0.25) (235) = 1.1× 10 J<br />

4 2<br />

1 2 2 1 2 2 3<br />

(b) K = MR <strong>ω</strong> = (1.25)(0.75) (235) = 9.7 × 10 J<br />

4 2<br />

【Problem 10-39】<br />

In Fig. 10-36, two particles, each with mass m= 0.85kg<br />

, are fastened to each other, and to a<br />

rotation axis at O, by two thin rods, each with length d = 5.6cm<br />

and mass M = 1.2kg<br />

. The<br />

combination rotates around the rotation axis with angular speed <strong>ω</strong> = 0.3 rad / s . Measured about O,<br />

what are the combination’s (a) rotation inertia and (b) kinetic energy?<br />

圖 10-36,兩個粒子,質量都是 m= 0.85kg<br />

,被綁在一起。由兩個細棒對 O 點旋轉,細棒每<br />

個長度 d = 5.6cm和質量<br />

M = 1.2kg<br />

。組合的旋轉軸角速度 <strong>ω</strong> = 0.3 rad / s 。問組合的:(a)轉<br />

動慣量和(b)動能?


Fundamentals of Physics<br />

Halliday & Resnic<br />

(圖 10-36)<br />

: d = 5.6cm= 0.056m<br />

(a) I = I1+ I2 + I3 + I4<br />

⎛ 1 1 ⎞ 2 ⎛ 1 2 3 2⎞<br />

= ⎜ Md + M( d) ⎟+ md + ⎜ Md + M( d)<br />

⎟+<br />

m( 2 d)<br />

⎝12<br />

2 ⎠ ⎝12 2 ⎠<br />

(b)<br />

2 2 2<br />

8 2 2 8 2 2<br />

= Md + 5md = (1.2)(0.056) + 5(0.85)(0.056)<br />

3<br />

3<br />

1 2<br />

−3<br />

K = I<strong>ω</strong><br />

= 1.04× 10 J<br />

2<br />

1 2<br />

= (0.023)(0.3)<br />

2<br />

2<br />

= 0.023kg ⋅ m<br />

<strong>東海大學</strong>物理系<br />

【Problem 10-43】<br />

Trucks can be run on energy stored in a rotating flywheel, with an electric motor getting the<br />

flywheel up to its top speed of 200rad/s. One such flywheel is a solid, uniform cylinder with a mass<br />

of 500 kg and a radius of 1.0 m. (a) What is the kinetic energy of the flywheel after charging? (b) If<br />

the truck uses an average power of 8.0 kW, for how many minutes can it operate between<br />

chargings?<br />

能量儲存在一個旋轉的飛輪使得卡車可以運行。電動馬達使飛輪速度升到最大 200rad / s。<br />

這樣的飛輪是堅固的,制式汽缸質量 500kg,半徑 1m。(a)輪子轉動後的動能為何?(b)<br />

假如卡車平均功耗為 8 千瓦,要花多少分鐘才能運轉?<br />

:(a) Using Table 10-2(c) and Eq. 10-34, the rotational kinetic energy is<br />

1 2 1⎛1 2⎞ 2 1 2 2 7<br />

K = I<strong>ω</strong> = ⎜ MR ⎟<strong>ω</strong><br />

= (500kg)(200 <strong>π</strong> rad/s) (1.0m) = 4.9× 10 J.<br />

2 2⎝2 ⎠ 4<br />

(b) We solve P = K/t (where P is the average power) for the operating time t.<br />

t K<br />

7<br />

49 . × 10 J<br />

3<br />

= =<br />

= 62 . × 10 s<br />

3<br />

P 8.0 × 10 W<br />

which we rewrite as t ≈ 1.0 ×10 2 min.<br />

【Problem 10-47】<br />

The body in Fig. 10-39 is pivoted at O, and two forces act on it as shown. If 1 1.3 r m = , r2= 2.15m,<br />

0<br />

0<br />

F = 4.2N<br />

, F2 = 4.9N<br />

, <strong>θ</strong> = 75 , and <strong>θ</strong> = 60 , what is the net torque about the pivot?<br />

1<br />

1<br />

2<br />

一物體如圖 10-39,以 O 點為軸(固定在 O 點),有兩個力量作用在上面,如果, r1= 1.3m,<br />

0<br />

0<br />

r = 2.15m,<br />

F1 = 4.2N<br />

, F2 = 4.9N<br />

, <strong>θ</strong> = 75 和 <strong>θ</strong> = 60 ,對 O 點的淨力矩為何?<br />

2<br />

1<br />

2<br />

(圖 10-39)<br />

<br />

Fundamentals of Physics<br />

Halliday & Resnic<br />

: τ = rF 1 1sin<strong>θ</strong>1− rF 2 2sin<strong>θ</strong>2 0 0<br />

= (1.3)(4.2)sin 75 − (2.15)(4.9)sin 60<br />

= −3.85N⋅ m<br />

<strong>東海大學</strong>物理系<br />

【Problem 10-49】<br />

During the launch from a board, a diver’s angular speed about her center of mass changes from zero<br />

2<br />

to 6.20 rad/s in 220 ms. Her rotational inertia about her center of mass is 12kg ⋅ m . During the<br />

launch, what are the magnitudes of (a) her average angular acceleration and (b) the average external<br />

torque on her from the board?<br />

從地板跳水的過程中,一位跳水者質量中心的角速度,在 220ms 內,從零變到 6.20 弧度/ s。<br />

2<br />

質量中心的轉動慣量為 12kg ⋅ m 。在跳水過程中,(a)她的平均角加速度為何?(b)從地<br />

板,平均力矩為何?<br />

:(a) <strong>ω</strong> = <strong>ω</strong>0+ αt<br />

<strong>ω</strong> −<strong>ω</strong>0 6.2 − 0<br />

⇒ α = = = 28.2 rad / s<br />

−3<br />

t 220× 10<br />

2<br />

(b) τ = Iα = (12)(28.2) = 3.38× 10 N⋅ m<br />

【Problem 10-51】<br />

Figure 10-41 shows a uniform disk that can rotate around its center like a merry-go-round. The disk<br />

has a radius of 2 cm and a mass of 20grams and is initially at rest. Starting at time t = 0 , two forces<br />

are to be applied tangentially to the rim as indicated, so that at time t = 1.25s<br />

the disk has an<br />

angular velocity of 250 rad / s counterclockwise. Force F1 has a magnitude of 0.1 N. What is<br />

magnitude 2 F ?<br />

圖 10-41 顯示了一個標準盤子,可以繞著它的中心轉動,就像旋轉木馬。盤子半徑為 2cm,<br />

質量 20g,一開始是靜止的。時間 t = 0 開始轉動,兩個力作用在外圍切線面上,在 t = 1.25s<br />

時,盤子角速度為逆時針 250 rad / s 。 F1 力大小為 0.1N。問 F2 力大小為何?<br />

: τ net = Iα<br />

RF2 − RF1 = Iα<br />

<strong>ω</strong> = <strong>ω</strong> + αt⇒<br />

0<br />

= 0<br />

<strong>ω</strong><br />

α =<br />

t<br />

2<br />

(圖 10-41)


Fundamentals of Physics<br />

Halliday & Resnic<br />

1 2<br />

I = MR<br />

2<br />

Iα<br />

1 2 <strong>ω</strong> 1 MR<strong>ω</strong><br />

(0.02)(0.02)(250)<br />

F2 = F1+ = F1+ ( MR )( )( ) = F1 + = 0.1+ = 0.14N<br />

R 2 t R 2t2(1.25) <strong>東海大學</strong>物理系<br />

【Problem 10-55】<br />

In Fig. 10-45, block 1 has mass m1= 460g,<br />

block 2 has mass m2= 500g,<br />

and the pulley, which is<br />

mounted on a horizontal axle with negligible friction, has radius R = 5cm<br />

. When released from rest,<br />

block 2 falls 75.0 cm in 5.00 s without the cord slipping on the pulley. (a) What is the magnitude of<br />

the acceleration of the blocks? What are (b) tension T 2 and (c) tenson T 1?<br />

(d) What is the<br />

magnitude of the pully’s angular acceleration? (e) What is its rotational inertia?<br />

圖 10-45。積木 1 質量 m1= 460g,積木<br />

2 質量 m2= 500g,被掛在一無摩擦滑輪上,滑輪半<br />

徑 R = 5cm<br />

。從靜止被釋放,積木在 5 秒內降落了 75 公分,繩子沒有滑動。(a)積木加速<br />

T ?(d)滑輪角加速度?(e)滑輪轉動慣量?<br />

度?(b)繩子張力 T 2 ?(c)繩子張力 1<br />

(圖 10-45)<br />

:(a) We use constant acceleration kinematics. If down is taken to be positive and a is the<br />

acceleration of the heavier block m2, then its coordinate is given by y = at 1 2<br />

2 , so<br />

2y2(. 0750m)<br />

−2<br />

2<br />

a = = = 600 . × 10 m/s .<br />

2 2<br />

t (. 500s)<br />

Block 1 has an acceleration of 6.00 × 10 –2 m/s 2 upward.<br />

(b) Newton’s second law for block 2 is mg 2 − T2 = ma 2 , where m2 is its mass and T2 is the<br />

tension force on the block. Thus,<br />

2 2<br />

2 −2<br />

2<br />

( )<br />

T = m ( g− a)<br />

= (0.500 kg) 9.8 m/s − 6.00× 10 m/s = 4.87 N.<br />

(c) Newton’s second law for block 1 is 1 1 1 ,<br />

mg T ma<br />

the block. Thus,<br />

1 1<br />

− = − where T1 is the tension force on<br />

2 −2<br />

2<br />

( )<br />

T = m ( g+ a)<br />

= (0.460 kg) 9.8 m/s + 6.00× 10 m/s = 4.54 N.<br />

(d) Since the cord does not slip on the pulley, the tangential acceleration of a point on the<br />

<br />

Fundamentals of Physics<br />

Halliday & Resnic<br />

rim of the pulley must be the same as the acceleration of the blocks, so<br />

−2<br />

2<br />

a 600 . × 10 m/s<br />

2<br />

α = =<br />

= 120 . rad / s .<br />

−2<br />

R 500 . × 10 m<br />

<strong>東海大學</strong>物理系<br />

(e) The net torque acting on the pulley is τ = ( T2 − T1) R.<br />

Equating this to Iα we solve for the<br />

rotational inertia:<br />

−2<br />

( T −T<br />

) R ( − )( × )<br />

4.87 N 4.54 N 5.00 10 m 2 1 −2<br />

2<br />

I = = = 1.38× 10 kg ⋅ m .<br />

2<br />

α<br />

1.20 rad/s<br />

【Problem 10-59】<br />

A 32.0 kg wheel, essentially a thin hoop with radius 1.20 m, is rotating at 280 rev/min. It must be<br />

brought to a stop in 15.0 s. (a) How much work must be done to stop it? (b) What is the required<br />

average power?<br />

一個 32 公斤輪子,基本上是一個薄圈,半徑 1.2m,每分鐘 280 轉。它必須在 15 秒內停止<br />

(a)為了使它停止需作多少功?(b)所需的平均功率為何?<br />

280rev 2<strong>π</strong><br />

: <strong>ω</strong> = ( ) = 29.3 rad / s<br />

min 60<br />

2 2 2<br />

(a) 轉動慣量: I = mr = (32)(1.2) = 46.1kg<br />

⋅ m<br />

1 2 1<br />

2 4<br />

W =Δ K = 0 − I<strong>ω</strong>=− (46.1)(29.3) = 1.98× 10 J<br />

2 2<br />

3<br />

W 19.8× 10<br />

3<br />

(b) P = = = 1.32× 10 W<br />

Δt<br />

15<br />

【Problem 10-63】<br />

A meter stick is held vertically with one end on the floor and is then allowed to fall. Find the speed<br />

of the other end just before it hits the floor, assuming that the end on the floor does not slip. (Hint:<br />

Consider the stick to be a thin rod and use the conservation of energy principle.)<br />

一米長棒子,直立的讓一端固定在地板,使其落下,問另一端撞到地面的速度。假設固定<br />

的那端不滑動。(提示:考慮棒子是細長的,且利用能量守恆原理。)<br />

:We use to denote the length of the stick. Since its center of mass is /2 from either end,<br />

its initial potential energy is 1<br />

2 mg, where m is its mass. Its initial kinetic energy is zero. Its<br />

final potential energy is zero, and its final kinetic energy is 1 2<br />

I<strong>ω</strong> , where I is its rotational<br />

inertia about an axis passing through one end of the stick and <strong>ω</strong> is the angular velocity just<br />

before it hits the floor. Conservation of energy yields<br />

2


Fundamentals of Physics<br />

Halliday & Resnic<br />

<strong>東海大學</strong>物理系<br />

1 1 2 mg<br />

mg = I<strong>ω</strong><br />

⇒ <strong>ω</strong> = .<br />

2 2 I<br />

The free end of the stick is a distance from the rotation axis, so its speed as it hits the<br />

floor is (from Eq. 10-18)<br />

v<br />

= <strong>ω</strong> =<br />

mg<br />

I<br />

3<br />

.<br />

Using Table 10-2 and the parallel-axis theorem, the rotational inertial is I = m 1<br />

2<br />

v = 3g = 3 9.8 m / s 1.00 m = 5.42 m / s.<br />

c hb g<br />

3<br />

2 , so<br />

【Problem 10-66】<br />

A uniform spherical shell of mass M = 4.5kg<br />

and radius R = 8.5cm<br />

can rotate about a vertical<br />

axis on frictionless bearings (Fig. 10-48). A massless cord passes around the equator of the shell,<br />

−3<br />

2<br />

over a pulley of rotational inertia I = 3× 10 kg ⋅ m and radius r = 5cm,<br />

and is attached to a small<br />

object of mass m= 0.6kg<br />

. There is no friction on the pulley’s axle; the cord does not slip on the<br />

pulley. What is the speed of the object when it has fallen 82 cm after being released from rest? Use<br />

energy considerations.<br />

一均勻球殼,質量 M = 4.5kg<br />

,半徑 R = 8.5cm<br />

,繞著無摩擦的軸承上的鉛直軸轉動。如圖<br />

−3<br />

2<br />

10-48,一繩子繫在球的赤道上,經由轉動慣量 I = 3× 10 kg ⋅ m ,半徑 r = 5cm的滑輪,與質<br />

量 m= 0.6kg<br />

的小物體連接。滑輪上無摩擦,繩子在滑輪上沒有滑動,當物體從靜止降落了<br />

82cm 時,物體速度為何?<br />

(圖 10-48)<br />

2 2<br />

:球殼轉動慣量為<br />

3 MR<br />

so the kinetic energy (after the object has descended distance h) is<br />

K = MR I mv<br />

F HG 1 2 2I2 1 2 1 2<br />

KJ <strong>ω</strong>sphere + <strong>ω</strong> pulley + .<br />

2 3<br />

2 2<br />

Since it started from rest, then this energy must be equal (in the absence of friction) to the<br />

potential energy mgh with which the system started. We substitute v/r for the pulley’s<br />

<br />

Fundamentals of Physics<br />

Halliday & Resnic<br />

angular speed and v/R for that of the sphere and solve for v.<br />

mgh 2gh<br />

v = =<br />

m+ + + I mr + M m<br />

1 1 I M<br />

2 2 2<br />

r 3<br />

2<br />

1 ( / ) (2 /3 )<br />

2(9.8)(0.82)<br />

= = 1.4 m/s<br />

+ × +<br />

−3<br />

2<br />

1 3.0 10 /((0.60)(0.050) ) 2(4.5)/3(0.60)<br />

<strong>東海大學</strong>物理系

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!