21.08.2013 Views

OED Research Directions

OED Research Directions

OED Research Directions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>OED</strong> <strong>Research</strong> <strong>Directions</strong><br />

Meint Smit<br />

COBRA – TU Eindhoven


Outline<br />

• ECOC presentation about Generic Integration<br />

Technology<br />

• Short overview of running and new projects.<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien 2/19


InP-based Photonic Integration:<br />

Learning from CMOS<br />

Meint Smit COBRA – TU Eindhoven<br />

Roel Baets IMEC – U Gent<br />

Mike Wale Oclaro


Transponder-based DWDM<br />

Receive Transmit<br />

FOE 2009, LS InP PIC in Dig Comm Networks, Nagarajan, Infinera, 169 Java Dr., Sunnyvale, CA 94089 | 4


Transmit<br />

Receive<br />

Infinera’s Photonic Integrated Circuit innovation<br />

100Gb/s Receive<br />

5mm<br />

100Gb/s Transmit<br />

Size, weight, power ↓ Reliability ↑<br />

FOE 2009, LS InP PIC in Dig Comm Networks, Nagarajan, Infinera, 169 Java Dr., Sunnyvale, CA 94089 | 5


Moore’s law for Photonic ICs<br />

Component count<br />

1000<br />

100<br />

10<br />

1<br />

1980 1990 2000 2010<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

6/19<br />

Commercial<br />

COBRA/35P<br />

Philips/COBRA<br />

Alcatel/Opto+<br />

Lucent/Bell Labs<br />

NTT<br />

Infinera<br />

UCSB


What went wrong?<br />

• Since 1990 worldwide > 1 B$ invested in development of<br />

integration technologies<br />

• Almost all research was application driven<br />

• Therefore almost as many technologies as applications<br />

• For most of them: market too small for payback of<br />

investments<br />

• (By far too) many degrees of freedom<br />

• many different materials and technologies<br />

• many different component types<br />

• many different wavelength ranges and applications<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

7/19


The (only?) way out<br />

• Develop a limited number of generic wafer-scale<br />

integration technologies, that can support a broad<br />

range of functionalities and applications<br />

• Move to a generic foundry model (as in CMOS)<br />

• Convergence of technologies<br />

• Decouple design (IP) from technology (IP)<br />

• Set up libraries and tools for ASPIC design<br />

• Organize training and design support for fabless<br />

companies<br />

• Work on market development<br />

(new applications)<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

8/19


Generic Integration philosophy<br />

Electronic integration<br />

3 basic elements<br />

Photonic integration<br />

3 basic elements<br />

PWD<br />

PHM<br />

SOA<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

ϕ<br />

Α<br />

9/19<br />

Waveguide<br />

Phase control<br />

Amplitude control<br />

SOA<br />

PWD<br />

PHM


Photonic Integration<br />

with 3 basic building blocks<br />

Passive<br />

Waveguide Devices<br />

waveguide<br />

curve<br />

MMI-coupler<br />

AWG-demux<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

Devices with<br />

Phase Modulators<br />

phase modulator<br />

amplitude modulator<br />

2x2 switch<br />

WDM OXC<br />

10/19<br />

Devices with<br />

SOA<br />

Optical Amplifiers<br />

optical amplifier<br />

λ converter, ultrafast switch<br />

picosecond pulse laser<br />

multiwavelength laser


Examples<br />

optical crossconnect<br />

optical crossconnect<br />

WDM-TTD switch<br />

Cascaded WDM laser<br />

tunable multiwavelength laser<br />

multiwavelength laser<br />

wavelength converter picosecond pulse laser<br />

WDM ring laser<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

11/19


Integrated Filtered Feedback – Tunable Laser<br />

Boudewijn Docter<br />

Wednesday 16:00, Hall E2<br />

Power in fiber [dBm]<br />

-25<br />

-35<br />

-45<br />

-55<br />

-65<br />

Gate 1<br />

Gate 2<br />

Gate 3<br />

Gate 4<br />

404 GHz<br />

1570 1575 1580 1585 1590 1595 1600<br />

Wavelength [nm]<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

R<br />

ITU<br />

SOA<br />

Fabry-Perot Laser<br />

12/19<br />

R<br />

Feedback Filter<br />

SOA R<br />

Switching time: few ns<br />

Switching current ~ 10 mA


A Generic Integration Platform<br />

JePPIX:<br />

Joint European Platform for InP-based Photonic<br />

Integration of Components and Circuits<br />

Industrial partners: Oclaro, CIP, Philips,<br />

Alcatel-Thales III-V Lab,<br />

FhG-HHI, ASML, Aixtron, OPT<br />

Photonic CAD: Phoenix, Photon Design,<br />

Filarete<br />

Universities: COBRA –TU/e, Cambridge,<br />

Coordination: COBRA<br />

Step 1: Small-scale access to the COBRA process<br />

for research purposes (proof-of-concept)<br />

Step 2: Move to an industrial foundry (EuroPIC)<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

13/19<br />

JePPIX


non-telecom applications<br />

Skin analysis equipment<br />

Readout units for fibre strain sensors<br />

Optical Coherence Tomography<br />

Skin Analysis<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

14/19<br />

market<br />

Custom<br />

Technology<br />

2000 2010 2020<br />

Compact Frequency-comb<br />

generators for metrology<br />

Generic<br />

Technology


Component count<br />

Complexity of InP Photonic ICs?<br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

Nanophotonic<br />

Integration<br />

Technology<br />

1980 1990 2000 2010 2020 2030<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

15/19<br />

Generic<br />

Integration<br />

Technology<br />

Digital<br />

Analog<br />

COBRA/35P<br />

Philips<br />

Opto+<br />

Lucent<br />

NTT<br />

Infinera<br />

UCSB


From analog to digital<br />

Martin Hill et al.,<br />

Nature, Vol. 432, 11 Nov. 2004, pp.206-209<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

16/19<br />

Digital photonic flip-flop<br />

based on<br />

coupled micro-lasers<br />

Dimensions < 20 x 40 µm 2<br />

Switching time < 15 ps<br />

Switching energy < 6 fJ


IMOS: InP Membrane On Silicon<br />

Legend<br />

silicon<br />

silicon<br />

(a)<br />

(c)<br />

silicon<br />

IMOS (d)<br />

silicon<br />

(b)<br />

silicon<br />

silicon dioxide / BCB<br />

active InGaAsP/InP<br />

passive InP<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

17/19<br />

Photonic Crystal Laser<br />

metal contacts<br />

active<br />

region<br />

Frederic Bordas<br />

Tuesday 16:30, Hall E2


Metallic and Plasmonic lasers<br />

A BREAKTHROUGH<br />

The world’s smallest electrically injected laser (diameter 250 nm)<br />

small active volume means low power and high speed<br />

Martin Hill et al., Nature Photonics, October 2007<br />

Gold<br />

InP<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

18/19<br />

I th = 6 µA @ 77K


Latest Results for Plasmonic Lasers<br />

Room-temperature<br />

operation (pulsed)<br />

for 300 nm ridge<br />

width<br />

Plasmon laser<br />

operation for 80<br />

nm ridge width<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

d ~80nm to<br />

340nm<br />

h=300nm<br />

19/19<br />

counts<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

x 104<br />

5<br />

Run 6, Row 1 dev #14, 298K<br />

3.7 V<br />

4.3 V<br />

5.8 V<br />

0<br />

1350 1400 1450 1500 1550 1600 1650<br />

wavelength (nm)


Potential<br />

100 nm<br />

silver<br />

InP<br />

• Integration of more than 100,000 lasers on a chip<br />

• Operating at speeds well beyond 1 THz<br />

Superior to high-speed transistors<br />

for ultrafast signal processing<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

20/19


Component count<br />

Complexity of InP Photonic ICs?<br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

Nanophotonic<br />

Integration<br />

Technology<br />

1980 1990 2000 2010 2020 2030<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien<br />

21/19<br />

IMOS<br />

Generic<br />

Integration<br />

Technology<br />

Digital<br />

Analog<br />

COBRA/35P<br />

Philips<br />

Opto+<br />

Lucent<br />

NTT<br />

Infinera<br />

UCSB


Acknowledgement: the COBRA – <strong>OED</strong> team<br />

EU-IST, NRC Photonics, IOP, STW


Generic Integration Technology<br />

Running projects<br />

• STW TWICE Chaotic encryption Jose Pozo Dec ‘10<br />

• STW EFFECT FF tunable lasers Boudewijn Docter, Jose Dec ‘10<br />

• MEMPHIS Plasmonic laser Milan Marell Dec ‘10<br />

MW-laser ASTRON Jing Zhao 2011<br />

• IOP PD OCT Bauke Tilma 2010<br />

• IOP PD FC-laser Saeed Tahvili 2011<br />

• EuroPIC MW-laser Flexpon Kate Lawnicuk 2012<br />

KM3 detector Stanislas Stopinski 2012<br />

Brillouin Sensor Manuela Felicetti 2012<br />

• KWR Baas Brillouin Sensor Klein Breteler Dec ‘10<br />

Sasbrink Dec ‘10<br />

• KWR ASML Scanner Adaptions Laurene Flannery Dec ‘10<br />

• KWR Philips Long λ platform 3 persons Dec ‘10<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien 25/19


Generic Integration Technology<br />

New projects<br />

• JePPIX IP Passive component library 1 PhD<br />

Laser library (FP, DBR, Pulse) 1 PhD<br />

Pol handling + new modulation formats 1 PhD<br />

On-wafer test methodology 1 PhD<br />

Long wavelength QD’s 1 PD<br />

• JePPIX SA Coordinator + support for chip design & char<br />

• STW Perspectief Generic Photonic Integration Technologies 4 M€<br />

• IOP PD 2 Generic Fabrication Technology + Med. Appl. 10 M€<br />

• NWO Groot ASML wafer scanner<br />

• ePIXnet CA UPV / small role for TUE<br />

• IST STREP QD lasers / Univ Madrid<br />

• IST STREP 100 Gb ethernet TRX / UPV<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien 26/19


Nanophotonic Integration Technology<br />

Running projects<br />

• Nanoned/NRC Pillar PhX Dima Dzibrou Mar ‘10<br />

• HISTORIC IMOS PhX laser Ray Zhang 2012<br />

• Phot for Comp IMOS Josselin Pello 2013<br />

New projects<br />

• FES NNI Plasmonic lasers 1 PhD<br />

• FET open Plasmonic lasers 1 PhD <strong>OED</strong>, 1 PhD PMP<br />

• IST Call 5 IMOS Active Cable WDM TX + RX TUE<br />

Polarisation MUX TUE<br />

Modulator Ugent<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien 27/19


Nanophotonic Integration Technology<br />

Running Projects<br />

• JePPIX IP Passive component library 1 PhD<br />

Laser library (FP, DBR, Pulse) 1 PhD<br />

Pol handling + new modulation formats 1 PhD<br />

On-wafer test methodology 1 PhD<br />

Long wavelength QD’s 1 PD<br />

• JePPIX SA Coordinator + support for chip design & char<br />

• STW Perspectief Generic Photonic Integration Technologies 4 M€<br />

• IOP PD 2 Generic Fabrication Technology + Med. Appl. 10 M<br />

Photonic Integration : Learning from CMOS ECOC’09, Wien 28/19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!