25.08.2013 Views

Busse balloons - from the reversible Gray-Scott model ... - Eurandom

Busse balloons - from the reversible Gray-Scott model ... - Eurandom

Busse balloons - from the reversible Gray-Scott model ... - Eurandom

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

<strong>Busse</strong> <strong>balloons</strong><br />

<strong>from</strong> <strong>the</strong> <strong>reversible</strong> <strong>Gray</strong>-<strong>Scott</strong> <strong>model</strong> to non<strong>reversible</strong><br />

Klausmeier <strong>model</strong>s with nonlinear diffusion<br />

Sjors van der Stelt<br />

University of Amsterdam<br />

April 14, 2010<br />

in cooperation with<br />

Arjen Doelman and Jens D.M. Rademacher<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

Direct motivation: vegetation patterns. Below in Sahel<br />

Figure: Spotted patterns<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


The Model<br />

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

◮ We <strong>model</strong> <strong>the</strong>se patterns by<br />

Ut = DU γ xx + A(1 − U) − UV 2 + CUx<br />

Vt = δ 2 Vxx − BV + UV 2 .<br />

(γ depending on <strong>the</strong> kind of soil, C = 0 on flat terrain)<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


The Model<br />

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

◮ We <strong>model</strong> <strong>the</strong>se patterns by<br />

Ut = DU γ xx + A(1 − U) − UV 2 + CUx<br />

Vt = δ 2 Vxx − BV + UV 2 .<br />

(γ depending on <strong>the</strong> kind of soil, C = 0 on flat terrain)<br />

◮ This is a generalization of <strong>the</strong> system introduced by <strong>the</strong> ecologist C.<br />

Klausmeier (’99) (D=0, parameters in Klausmeier’s original scaling)<br />

Ut = Ux + n − U − UV 2<br />

Vt = δ 2 Vxx − mV + UV 2 ;<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


The Model<br />

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

◮ We <strong>model</strong> <strong>the</strong>se patterns by<br />

Ut = DU γ xx + A(1 − U) − UV 2 + CUx<br />

Vt = δ 2 Vxx − BV + UV 2 .<br />

(γ depending on <strong>the</strong> kind of soil, C = 0 on flat terrain)<br />

◮ This is a generalization of <strong>the</strong> system introduced by <strong>the</strong> ecologist C.<br />

Klausmeier (’99) (D=0, parameters in Klausmeier’s original scaling)<br />

Ut = Ux + n − U − UV 2<br />

Vt = δ 2 Vxx − mV + UV 2 ;<br />

◮ It also generalises <strong>the</strong> <strong>Gray</strong>-<strong>Scott</strong> system (C = 0, D = 1, γ = 1)<br />

Ut = Uxx + A(1 − U) − UV 2<br />

Vt = δ 2 Vxx − BV + UV 2 .<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Birth of patterns<br />

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

◮ We consider A as <strong>the</strong> critical parameter. A corresponds to <strong>the</strong><br />

rainfall.<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Birth of patterns<br />

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

◮ We consider A as <strong>the</strong> critical parameter. A corresponds to <strong>the</strong><br />

rainfall.<br />

◮ For A below some critical value Ac, <strong>the</strong> (stable) homogeneous<br />

background state looses its stability with respect to periodic<br />

perturbations. This is called a Turing-Hopf bifurcation.<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

The Eckhaus band: symmetric (<strong>Gray</strong>-<strong>Scott</strong>) case<br />

Let A be <strong>the</strong> amplitude of <strong>the</strong> emerging pattern. Then <strong>the</strong> pattern can<br />

be written out as<br />

U ∝ U0 + εA(ξ, τ)e ikc x + c.c. + h.o.t.<br />

In <strong>the</strong> case of <strong>the</strong> <strong>Gray</strong>-<strong>Scott</strong> system, e.g., we find for A a real GLE:<br />

Aτ = 2<br />

√ b A + 2 √ 2Aξξ − 2<br />

9 (10√ 2 − 7)|A| 2 A<br />

A band of spatially periodic patterns bifurcates for<br />

k ∈ (kc − ε √ r, kc + ε √ r)<br />

Stable patterns only exist in <strong>the</strong> Eckhaus band<br />

<br />

r<br />

k ∈ (kc − ε<br />

3 , kc<br />

<br />

r<br />

+ ε<br />

3 )<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

Let k be <strong>the</strong> wavenumber of a pattern born at <strong>the</strong> Turing bifurcation.<br />

For |A − Ac| = O(ε), <strong>the</strong> Eckhaus band describes a region in (A, k)-space<br />

where stable patterns exist.<br />

A<br />

Eckhaus band<br />

Existence band<br />

k<br />

Figure: The Eckhaus band.<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong><br />

A=A Turing


Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

The Eckhaus band: nonsymmetric case (C > 0)<br />

Let A be <strong>the</strong> amplitude of <strong>the</strong> emerging pattern. The evolution of A is<br />

now described by <strong>the</strong> Complex GLE :<br />

Aτ = (α1 + iα2)Aξξ + (β1 + iβ2)A + (γ1 + iγ2)|A| 2 A.<br />

Spatially periodic patterns appear at a Turing-Hopf bifurcation and are<br />

now travelling:<br />

i(kc x+ωc t)<br />

A(ξ, τ) = Re<br />

The Turing-Hopf bifurcation is subcritical if <strong>the</strong> so-called Landau<br />

coefficient satisfies<br />

1 + α2γ2<br />

α1γ2<br />

> 0.<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

Super- vs. subcritical bifurcation<br />

k<br />

A<br />

Figure: Schematic picture of supercritical bifurcation (left) and<br />

subcritical bifurcation (right).<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong><br />

k<br />

A


Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

Results: calculation of Landau-coefficient<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1<br />

1<br />

1<br />

0<br />

3<br />

4<br />

1<br />

1<br />

2<br />

4<br />

0<br />

3<br />

2 4 6 8 10 12 14 16<br />

2<br />

0<br />

20<br />

40<br />

60<br />

80<br />

2 4 6 8 10 12 14 16<br />

Figure: plots of b against C, for γ = 1 (supercritical) and γ = 2<br />

(subcritical for some values of b if C > 0)<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong><br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0


<strong>Busse</strong> balloon<br />

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

◮ The Eckhaus band is only <strong>the</strong> beginning! The complete region of<br />

stable patterns in (A, k)-space is called <strong>the</strong> <strong>Busse</strong> balloon.<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


<strong>Busse</strong> balloon<br />

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

◮ The Eckhaus band is only <strong>the</strong> beginning! The complete region of<br />

stable patterns in (A, k)-space is called <strong>the</strong> <strong>Busse</strong> balloon.<br />

◮ No ma<strong>the</strong>matical analysis possible! → but numerics! Continuation<br />

and bifurcation software (Auto)<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

Example: <strong>Busse</strong> balloon for <strong>Gray</strong>-<strong>Scott</strong> system<br />

k<br />

17.5<br />

15.0<br />

12.5<br />

10.0<br />

7.5<br />

5.0<br />

2.5<br />

sn 1<br />

Hopf +1<br />

sideband<br />

0.0<br />

0.000 0.010 0.020 0.030 0.040 0.050<br />

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00<br />

sn<br />

2<br />

equilibrium<br />

A<br />

<strong>Busse</strong> balloon<br />

sideband<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

0.00<br />

equilibrium<br />

sideband<br />

sn<br />

1<br />

Hopf+1<br />

Hopf−1<br />

Figure: A <strong>Busse</strong> balloon for <strong>the</strong> <strong>Gray</strong>-<strong>Scott</strong> <strong>model</strong> with b = ... and γ = 1.<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


The ‘Hopf dance’<br />

k<br />

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

Fold<br />

−1<br />

+1<br />

<strong>Busse</strong> balloon<br />

A<br />

(a) (b)<br />

Figure: (a) The Hopf-dance enlarged, schematically. (b) Oscillations in or<br />

out of phase (i.e. for γ = 0 or γ = 1).<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

Spectrum of solution at Hopf instability<br />

O<br />

Im<br />

Re<br />

Figure: Spectrum for a solution that undergoes a Hopf instability. Left<br />

<strong>the</strong> case for <strong>reversible</strong> systems (like <strong>Gray</strong>-<strong>Scott</strong>), right <strong>the</strong> case for<br />

non<strong>reversible</strong> systems.<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong><br />

O<br />

Im<br />

Re


Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

Spectrum of solution at sideband instability<br />

Im<br />

O Re<br />

(a) (b)<br />

Im<br />

O Re<br />

Figure: Spectrum for a solution that undergoes a sideband instability.<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

<strong>Busse</strong> balloon for C > 0<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

’b.sideband-C=0.4-B=0.2’ u 9:(2*3.1415926535/$5)<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

Figure: (Nonedited version of <strong>the</strong>) <strong>Busse</strong> balloon for C = 0.4, B = 0.2,<br />

γ = 1.<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

Disappearing Hopf dance with increasing C<br />

Figure: Schematic picture showing <strong>the</strong> Hopf instabilities with<br />

γ-eigenvalues for γ = 0 and γ = π and <strong>the</strong> sideband instability in <strong>the</strong><br />

neighbourhood of <strong>the</strong> origin, for C = 0.0 (left), C = 0.2 (middle) and<br />

C = 0.4 (right).<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Conclusions<br />

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

◮ for γ = 2 and C > 0 <strong>the</strong>re are choices for B such that <strong>the</strong><br />

Turing-Hopf bifurcation becomes subcritical (stable patterns and<br />

stable background state)<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Conclusions<br />

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

◮ for γ = 2 and C > 0 <strong>the</strong>re are choices for B such that <strong>the</strong><br />

Turing-Hopf bifurcation becomes subcritical (stable patterns and<br />

stable background state)<br />

◮ for γ = 1 and C = 0 (<strong>Gray</strong>-<strong>Scott</strong>) <strong>the</strong> boundary of <strong>the</strong> full <strong>Busse</strong><br />

balloon consists of a complex interplay of different instabilities<br />

(Hopf, sideband, fold...)<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Conclusions<br />

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

◮ for γ = 2 and C > 0 <strong>the</strong>re are choices for B such that <strong>the</strong><br />

Turing-Hopf bifurcation becomes subcritical (stable patterns and<br />

stable background state)<br />

◮ for γ = 1 and C = 0 (<strong>Gray</strong>-<strong>Scott</strong>) <strong>the</strong> boundary of <strong>the</strong> full <strong>Busse</strong><br />

balloon consists of a complex interplay of different instabilities<br />

(Hopf, sideband, fold...)<br />

◮ for C > 0 (and γ = 1), <strong>the</strong> Hopf dance moves out of <strong>the</strong> stable<br />

<strong>Busse</strong> region<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Ongoing research<br />

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

◮ what exactly happens at <strong>the</strong> right side of <strong>the</strong> <strong>Busse</strong> balloon?<br />

Possible new Hopf instabilies .....<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Ongoing research<br />

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

◮ what exactly happens at <strong>the</strong> right side of <strong>the</strong> <strong>Busse</strong> balloon?<br />

Possible new Hopf instabilies .....<br />

◮ how does <strong>the</strong> <strong>Busse</strong> balloon look like for γ = 2?<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>


Ongoing research<br />

Introduction<br />

Rise of Patterns<br />

The <strong>Busse</strong> balloon<br />

Conclusions and ongoing research<br />

◮ what exactly happens at <strong>the</strong> right side of <strong>the</strong> <strong>Busse</strong> balloon?<br />

Possible new Hopf instabilies .....<br />

◮ how does <strong>the</strong> <strong>Busse</strong> balloon look like for γ = 2?<br />

Sjors van der Stelt <strong>Busse</strong> <strong>balloons</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!