25.08.2013 Views

presentation - Eurandom

presentation - Eurandom

presentation - Eurandom

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Recent results on volatility change point estimation<br />

for stochastic differential equations<br />

Stefano M. Iacus (University of Milan & Core Team)<br />

Workshop on Parameter Estimation for Dynamical Systems, <strong>Eurandom</strong>, 4-6 June 2012<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 1 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

The change point problem<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 2 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

Change point problem<br />

Discover from the data a structural change in the generating model.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 3 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

Change point problem<br />

Discover from the data a structural change in the generating model.<br />

Next example shows historical change points for the Dow-Jones index.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 3 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

Change point problem<br />

Discover from the data a structural change in the generating model.<br />

Next example shows historical change points for the Dow-Jones index.<br />

750 850 950 1050<br />

-0.06 0.00 0.04<br />

Dow-Jones closings<br />

1972 1973 1974<br />

Dow-Jones returns<br />

1972 1973 1974<br />

break of gold-US$ linkage (left) Watergate scandal (right)<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 3 / 95


The change point<br />

problem<br />

Historical remarks<br />

The i.i.d. case and time<br />

series<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

Historical remarks<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 4 / 95


The change point<br />

problem<br />

Historical remarks<br />

The i.i.d. case and time<br />

series<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

The i.i.d. case and time series<br />

Originally, the problem was considered for i.i.d samples; see Hinkley<br />

(1971), Csörgő and Horváth (1997), Inclan and Tiao (1994)<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 5 / 95


The change point<br />

problem<br />

Historical remarks<br />

The i.i.d. case and time<br />

series<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

The i.i.d. case and time series<br />

Originally, the problem was considered for i.i.d samples; see Hinkley<br />

(1971), Csörgő and Horváth (1997), Inclan and Tiao (1994)<br />

It moved quickly to time series analysis: Bai (1994, 1997), Kim et al.<br />

(2000), Lee et al. (2003), Chen et al. (2005) and the papers cited therein.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 5 / 95


The change point<br />

problem<br />

Historical remarks<br />

The i.i.d. case and time<br />

series<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

The i.i.d. case and time series<br />

Originally, the problem was considered for i.i.d samples; see Hinkley<br />

(1971), Csörgő and Horváth (1997), Inclan and Tiao (1994)<br />

It moved quickly to time series analysis: Bai (1994, 1997), Kim et al.<br />

(2000), Lee et al. (2003), Chen et al. (2005) and the papers cited therein.<br />

The list is vastly incomplete.<br />

Main approaches: least squares, MLE, Bayesian and CUSUM<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 5 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

Diffusion processes<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 6 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

Change point for diffusion processes<br />

For continuous time observations, Kutoyants (1994, 2004) considered<br />

change point (in space) problem for the drift of an ergodic diffusion<br />

process solution to<br />

dXt = S(θ, Xt)dt + σ(Xt)dWt, X0, t ≥ 0 (1)<br />

with the trend function discontinuous along the two points of the state<br />

space of Xt, say x (1)<br />

∗ (θ) and x (2)<br />

∗ (θ), θ ∈ [α, β] ⊂ R and the interest is in<br />

the estimation of θ.<br />

Lee, Nishiyama and Yoshida (2003) considered CUSUM tests statistic for<br />

the time change point for the model in (1) where θ takes different values<br />

before and after a time instant τ ∗ .<br />

Habibi R. (2012) considered a recursive-MLE approach for the estimation<br />

of the change point in the parameter of the drift from 1-d continuous time<br />

observations in the very special case of gBm with stochastic volatility:<br />

dXt = θXtdt + σtXtdWt.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 7 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

Estimation of volatility under discrete time sampling<br />

The problem of parametric estimation of the volatility (and drift) for<br />

discretely observed diffusion processes under different sampling schemes,<br />

dates back to the works of Genon-Catalot and Jacod (1993, 1994),<br />

Yoshida (1992) and Kessler (1997).<br />

Change point analysis for the volatility appears in the few works reviewed<br />

in the following.<br />

The main peculiarity is the non regularity of the statistical model with<br />

respect to the structural change, i.e. the (quasi-)likelihood is not smooth<br />

with respect to the parameter τ, the change point instant. This fact add<br />

some technicalities in the proofs and different limiting distributions are<br />

obtained and rates of convergence are faster than usual √ n.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 8 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

Least squares approach<br />

De Gregorio and I. (2008) considered the change point problem for the<br />

ergodic model<br />

dXt = b(Xt)dt + √ θσ(Xt)dWt, 0 ≤ t ≤ T,X0 = x0,<br />

observed at discrete time instants ti = i∆n, i =0,...,n, ∆n = ti+1 − ti<br />

under the sampling scheme ∆n → 0, n →∞, n∆n = T , T fixed. The<br />

coefficients b and σ are supposed to be known. The change point problem<br />

is formulated as follows<br />

Xt =<br />

<br />

X0 + t<br />

0 b(Xs)ds + √ θ1<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 9 / 95<br />

t<br />

Xτ ∗ + t<br />

τ ∗ b(Xs)ds + √ θ2<br />

0 σ(Xs)dWs, 0 ≤ t ≤ τ ∗<br />

t<br />

τ ∗ σ(Xs)dWs, τ ∗


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

i=1<br />

Least squares approach<br />

Let Zi = Xi+1−Xi−b(Xi)∆n<br />

√ be the standardized residuals. Let<br />

∆nσ(Xi)<br />

k0 =[n · τ ∗ ], then the LS estimator is obtained via<br />

ˆk0 =<br />

<br />

k<br />

argmin min (Z<br />

k θ1,θ2<br />

i=1<br />

2 i − θ1) 2 n<br />

+ (Z<br />

i=k+1<br />

2 i − θ2) 2<br />

=<br />

<br />

<br />

k<br />

argmin (Z<br />

k<br />

2 i − ¯ θ1) 2 n<br />

+ (Z 2 i − ¯ θ2) 2<br />

<br />

, (2)<br />

where<br />

¯θ1 = 1<br />

k<br />

k<br />

i=1<br />

Z 2 i =: Sk<br />

k<br />

i=k+1<br />

and ¯ θ2 = 1<br />

n − k<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 10 / 95<br />

n<br />

i=k+1<br />

Z 2 i =: S∗ n−k<br />

n − k .


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

Solving (2) is equivalent to solve the following<br />

Dk = k<br />

n<br />

Least squares approach<br />

Sk<br />

− .<br />

Sn<br />

Therefore, least squares change point estimator ˆ k0 (ˆτn = ˆ k0/n)isgiven<br />

by<br />

ˆk0 =argmax|Dk|<br />

k<br />

Theorem: Under H0 : θ1 = θ2, i.e. “no change point”, we have that<br />

<br />

n<br />

2 |Dk| d →|B0(τ)|, B0(τ) Brownian bridge on [0, 1]<br />

The estimator ˆτn is consistent.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 11 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

Let ϑn = |θ2 − θ1|. Under the conditions<br />

ϑn → 0,<br />

nϑ 2 n(ˆτn − τ ∗ )<br />

2 ˆ θ 2<br />

Under contiguous alternatives<br />

√ nϑn<br />

√ log n →∞,<br />

<br />

d<br />

→ arg max W(v) −<br />

v<br />

|v|<br />

<br />

2<br />

with ˆ θ some consistent estimator of the common limit θ0 of θ1 and θ2; W<br />

is a two sided Brownian motion, i.e.<br />

<br />

W1(−u), u < 0<br />

W(u) =<br />

(3)<br />

W2(u), u ≥ 0<br />

where W1,W2 are two independent Brownian motions.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 12 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

The estimators ˆ θ1, ˆ θ2 are also well behaved, i.e.<br />

<br />

√ ˆθ1 − θ1<br />

n<br />

ˆθ2 − θ2<br />

Under contiguous alternatives<br />

d→ N (0, Σ) , where Σ=<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 13 / 95<br />

<br />

2 θ2 0<br />

τ ∗ 0<br />

0 2 θ2 0<br />

1−τ ∗<br />

The above results hold in the high frequency case ∆n → 0 with n →∞<br />

and n∆ =T fixed, but also for the rapidly increasing design case<br />

n∆n = T →∞.<br />

<br />

.


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

Case of unknown drift<br />

We assume now to observe a diffusion process that is a solution to the<br />

reduced stochastic differential equation<br />

dXt = b(Xt)dt + √ θdWt,<br />

where b(·) is unknown and estimated using nonparametric methods. Let<br />

K be a suitable kernel, and consider the estimator<br />

ˆ b(x) =<br />

Xi−x<br />

n i=1 K<br />

n i=1 K<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 14 / 95<br />

hn<br />

Xi+1−Xi<br />

Xi−x<br />

the above is a particular case of the nonparametric estimators of the drift<br />

considered in Bandi and Phillips (2003), but other approaches exist.<br />

For fixed T , the drift b(·) cannot be estimated consistently, hence it is<br />

required that T →∞.<br />

hn<br />

∆n


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

Let<br />

¯LX(t, x) = lim<br />

ɛ→0<br />

Bandwidth hn and local time<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 15 / 95<br />

1<br />

2ɛ<br />

t<br />

0<br />

1 {x,x+ɛ}(Xs)ds<br />

be the the chronological local time of X. Bandi and Phillips (2003) shown<br />

that under the following additional assumption<br />

<br />

¯LX(T,x)<br />

<br />

1<br />

∆n log = oa.s.(1)<br />

hn<br />

and hn ¯ LX(T,x) a.s.<br />

→∞, ˆb(·) is a consistent estimator of b(·). In the<br />

stationary case, the above condition may be replaced by<br />

<br />

T<br />

1<br />

∆n log = oa.s.(1).<br />

hn<br />

∆n<br />

∆n


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

Pluggin-in the standardized residuals<br />

ˆZi = Xi+1 − Xi − ˆ b(Xi)∆n<br />

√ ∆n<br />

into the statistic Dk, all previous results hold.<br />

Case of unknown drift<br />

This approach has been used in Smaldone (2009) to re-analyze the recent<br />

global financial crisis using data from different markets. It emerged that<br />

the analysis of some of the assets could have predict by the last week of<br />

June 2008 the global structural change of late september 2008.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 16 / 95


June 30<br />

July 4<br />

Lehman<br />

Brothers<br />

July 7<br />

July 11<br />

July 14<br />

July18<br />

DJ Stoxx America 600 Banks<br />

DJ DJ Stoxx 600 Banks<br />

Deutsche Bank<br />

HBSC<br />

Barclays<br />

Deutsche Bank (GER)<br />

CAC<br />

DJ Stoxx Global<br />

1800 Banks<br />

August 18<br />

August 22<br />

S&P MIB<br />

Nikkei 225<br />

August 25<br />

August 29<br />

FTSE<br />

DJ Stoxx 600<br />

Time<br />

Sept. 1<br />

Sept. 5<br />

Lehman<br />

Brothers<br />

Sept. 8<br />

Sept. 12<br />

DJ Stoxx<br />

600 Banks<br />

Sept. 15<br />

Sept. 19<br />

Goldman<br />

Sachs<br />

Sept. 22<br />

Sept. 26<br />

Sept. 29<br />

Oct. 3<br />

Oct. 6<br />

Oct. 10<br />

Deutsche Bank<br />

HSBC Nasdaq<br />

Nyse<br />

Dow Jones<br />

S&P 500<br />

FTSE<br />

DAX<br />

S&P MIB<br />

CAC<br />

IBEX<br />

SMI<br />

Nikkei 225<br />

DJ Stoxx 600 Banks<br />

DJ Stoxx Global 1800<br />

MCSI World<br />

Morgan Stanley<br />

Bank of America<br />

Barclays<br />

RBS<br />

Unicredit<br />

Intesa Sanpaolo<br />

Deutsche Bank (GER)<br />

Commerzbank<br />

Oct. 20<br />

Oct 24<br />

Dj Stoxx Asia Pacific<br />

600 Banks<br />

JP Morgan Chase


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 18 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 19 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 20 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 21 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 22 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 23 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 24 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 25 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 26 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 27 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 28 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 29 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 30 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 31 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 32 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 33 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 34 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 35 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 36 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 37 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 38 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 39 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 40 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 41 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 42 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 43 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 44 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 45 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 46 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 47 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 48 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 49 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 50 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 51 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 52 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 53 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 54 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 55 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 56 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 57 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 58 / 95


8000 9000 10000 11000 12000 13000<br />

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10<br />

Financial crisis 2008 - Real time analysis<br />

Dow Jones Jan08−Jan09<br />

Jan Mar May Jul Sep Nov Jan<br />

weekly returns<br />

Jan Mar May Jul Sep Nov Jan<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 59 / 95


cpoint function in the sde package<br />

> library(tseries)<br />

> S require(sde)<br />

> cpoint(S)<br />

$k0<br />

[1] 123<br />

$tau0<br />

[1] "2005-01-11"<br />

$theta1<br />

0.1020001<br />

$theta2<br />

0.3770111<br />

> X plot(X, type = "l", main = "log returns")<br />

> abline(v = cpoint(X)$tau0, lty = 3, col = "red")<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 60 / 95


X<br />

−0.04 −0.02 0.00 0.02 0.04<br />

log returns<br />

0 50 100 150 200<br />

Index<br />

cpoint function in the sde package<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 61 / 95<br />

22<br />

20<br />

18<br />

16<br />

S [2004−07−23/2005−05−05]<br />

Lug 23<br />

2004<br />

Last 20.45<br />

Bollinger Bands (20,2) [Upper/Lower]: 21.731/20.100<br />

Ott 01<br />

2004<br />

Dic 01<br />

2004<br />

Feb 01<br />

2005<br />

Apr 01<br />

2005


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

Song and Lee (2009) considered the model<br />

CUSUM approach<br />

dXt = b(Xt)dt + σ(θ, Xt)dWt, 0 ≤ t ≤ T,X0 = x0,<br />

under the sampling scheme ∆n → 0, n∆n = T →∞, with b and σ<br />

known.<br />

The object is to study a test statistics to verify the presence of the change<br />

point rather than estimate the instant of the change point. The results of<br />

this paper are based also on Kessler (1997).<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 62 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

The CUSUM test statistics is given the form<br />

Tn = max<br />

l≤k≤n<br />

k 2<br />

n (ˆ θn,k − ˆ θn,n) 2 ˆ<br />

Jn<br />

CUSUM approach<br />

where ˆ θn,k is the estimator based on the first k observations and ˆ θn,n the<br />

one based on all the n observations. ˆ Jn is a consistent estimator of<br />

J =2<br />

µ0 the invariant law, for θ = θ0.<br />

2 ∂θσ(θ0,x)<br />

σ(θ0,x)<br />

dµ0(x)<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 63 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

CUSUM approach<br />

The main regularity conditions are contained in Assumption [A]k: let k<br />

be a positive integer.<br />

(i) The function σ(·, ·) is continuously differentiable with respect to x up<br />

to order k for all θ and its derivatives are twice differentiable in θ for<br />

all x. All derivatives belong to the sets of functions<br />

{f(x, θ) :|f(θ, x)| ≤C(1 + |x|)) C for some C not depending on θ}.<br />

(ii) The function b(·) is continuously differentiable with respect to x up to<br />

order k and its derivatives are at most of polynomial growth in x.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 64 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

Change point for diffusion processes<br />

Under the additional assumptions n∆ p n → 0, n∆ q n →∞, p>q>4 and<br />

[A]k with k =2k0, k0 =[p/2], under H0 : θ1 = θ2 = θ0, i.e. “no<br />

change”,<br />

Tn d → sup B<br />

0≤s≤1<br />

2 0(s)<br />

with B0 the Brownian bridge and<br />

J 1<br />

2<br />

[ns]<br />

√n<br />

ˆθn,[ns] − θ0<br />

d→ Ws in D[0, 1],<br />

No properties of the change point estimator but only on the estimator of<br />

parameters.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 65 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

Continuous time obs.<br />

Discrete sampling<br />

Least Squares<br />

CUSUM<br />

General Itô processes<br />

YUIMA R Package<br />

Change point for diffusion processes<br />

Under the above conditions on p and q, CUSUM test may loose efficiency<br />

because the time series has to be too long, e.g., for daily data at least 5<br />

years of observations are needed in order to get good rate of convergence.<br />

Recently, S. Lee (2011), considered a new type of CUSUM-type test<br />

statistics based on the residuals which provide better performance than his<br />

previous result above.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 66 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

General Itô processes<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 67 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Change point for multidimensional Itô processes<br />

As in I. and Yoshida (2012), we consider<br />

dYt = btdt + σ(θ, Xt)dWt, t ∈ [0,T],<br />

where Wt is an r-dimensional standard Wiener process, on a stochastic<br />

basis, bt and Xt are vector valued progressively measurable processes,<br />

and σ(θ, x) is a matrix valued function.<br />

The coefficient σ(θ, x) is assumed to be known up to the parameter θ,<br />

while bt is completely unknown and unobservable, therefore possibly<br />

depending on θ and τ ∗ .<br />

The parameter space Θ of θ is a bounded domain in Rd0 , d0 ≥ 1, and the<br />

parameter θ is a nuisance in estimation of τ ∗ . Denote by θ∗ k the true value<br />

of θk for k =1, 2.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 68 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

dYt = btdt + σ(θ, Xt)dWt<br />

The sample consists of (Xti ,Yti ), i =0, 1, ..., n, where ti = i∆ for<br />

∆=∆n = T/n. In this work T is fixed. Pure high-frequency setup.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 69 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

dYt = btdt + σ(θ, Xt)dWt<br />

The sample consists of (Xti ,Yti ), i =0, 1, ..., n, where ti = i∆ for<br />

∆=∆n = T/n. In this work T is fixed. Pure high-frequency setup.<br />

It will be assumed that the process Y generating the data is an Itô process<br />

and satisfies the stochastic integral equation<br />

<br />

Y0 +<br />

Yt =<br />

t<br />

0 bsds + t<br />

0 σ(θ∗ 1 ,Xs)dWs for t ∈ [0, τ ∗ )<br />

Yτ ∗ + t<br />

τ ∗ bsds + t<br />

τ ∗ σ(θ ∗ 2 ,Xs)dWs for t ∈ [τ ∗ ,T].<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 69 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

dYt = btdt + σ(θ, Xt)dWt<br />

The sample consists of (Xti ,Yti ), i =0, 1, ..., n, where ti = i∆ for<br />

∆=∆n = T/n. In this work T is fixed. Pure high-frequency setup.<br />

It will be assumed that the process Y generating the data is an Itô process<br />

and satisfies the stochastic integral equation<br />

<br />

Y0 +<br />

Yt =<br />

t<br />

0 bsds + t<br />

0 σ(θ∗ 1 ,Xs)dWs for t ∈ [0, τ ∗ )<br />

Yτ ∗ + t<br />

τ ∗ bsds + t<br />

τ ∗ σ(θ ∗ 2 ,Xs)dWs for t ∈ [τ ∗ ,T].<br />

We assume that consistent estimators for θ exist and afterward propose a<br />

way to obtain them. The focus is on the estimation of the change point<br />

and its properties.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 69 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

dYt = btdt + σ(θ, Xt)dWt<br />

The sample consists of (Xti ,Yti ), i =0, 1, ..., n, where ti = i∆ for<br />

∆=∆n = T/n. In this work T is fixed. Pure high-frequency setup.<br />

It will be assumed that the process Y generating the data is an Itô process<br />

and satisfies the stochastic integral equation<br />

<br />

Y0 +<br />

Yt =<br />

t<br />

0 bsds + t<br />

0 σ(θ∗ 1 ,Xs)dWs for t ∈ [0, τ ∗ )<br />

Yτ ∗ + t<br />

τ ∗ bsds + t<br />

τ ∗ σ(θ ∗ 2 ,Xs)dWs for t ∈ [τ ∗ ,T].<br />

We assume that consistent estimators for θ exist and afterward propose a<br />

way to obtain them. The focus is on the estimation of the change point<br />

and its properties.<br />

Remark: clearly this model includes diffusion models by taking, e.g.,<br />

Yt = Xt and bt = b(Xt).<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 69 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Write ∆iY = Yti<br />

where<br />

− Yti−1 and let<br />

Φn(t; θ1,θ2) =<br />

[nt/T ]<br />

<br />

Quasi ML approach<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 70 / 95<br />

i=1<br />

Gi(θ1)+<br />

n<br />

i=[nt/T ]+1<br />

Gi(θ2),<br />

Gi(θ) =logdetS(Xti−1 ,θ)+∆−1 S(Xti−1 ,θ)−1 [(∆iY ) ⊗2 ]<br />

with S(x, θ) =σ(θ, x) ⊗2 with A[B ⊗2 ]=B ′ AB. This is a modification<br />

of the QL introduced in Genon-Catalot and Jacod (1993).


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Change point for multidimensional Itô processes<br />

Suppose that there exists an estimator ˆ θk for each θk, k =1, 2. In case θ ∗ k<br />

are known, we define ˆ θk just as ˆ θk = θ ∗ k .<br />

for the estimation of τ ∗ .<br />

ˆτn =arg min<br />

t∈[0,T ] Φn(t; ˆ θ1, ˆ θ2)<br />

More precisely, ˆτn is any measurable function of (Xti )i=0,1,...,n satisfying<br />

Φn(ˆτn; ˆ θ1, ˆ θ2) = min<br />

t∈[0,T ] Φn(t; ˆ θ1, ˆ θ2).<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 71 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Regularity conditions<br />

[H ]j (i) σ(θ, x) is a measurable function defined on Θ ×X satisfying<br />

(a) inf (x,θ)∈X ×Θ λ1(S(x, θ)) > 0,(λ1 first eigenvalue of S)<br />

(b) derivatives ∂ ℓ θ σ (0 ≤ ℓ ≤ j+[d0/2]) exist and those functions are<br />

continuous on Θ ×X,<br />

(c) there exists a locally bounded function L : X×X×Θ → R+ such<br />

that<br />

|σ(θ, x) − σ(θ, x ′ )|≤L(x, x ′ ,θ)|x − x ′ | α<br />

for some constant α>0.<br />

(x, x ′ ∈X,θ∈ Θ)<br />

(ii) (Xt) t∈[0,T ] is a progressively measurable process taking values in X<br />

such that<br />

w [0,T ]<br />

as n →∞.<br />

<br />

1<br />

n ,X<br />

<br />

= op(ϑ 1/α<br />

n ), (w : modulus of continuity func.)<br />

(iii) (bt) t∈[0,T ] is a progressively measurable process taking values in R<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 72 / 95<br />

d<br />

such that (bt − b0) t∈[0,T ] is locally bounded.


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Identifiability conditions & consistent estimators<br />

[A] P [S(Xτ ∗; θ ∗ 1) = S(Xτ ∗; θ ∗ 2)] = 1;<br />

[B] Ξ(Xτ ∗,θ ∗ ) is positive-definite a.s., where<br />

Ξ(x, θ) =<br />

<br />

Tr((∂θ (i1 )S)S −1 (∂θ (i2 )S)S −1 d0 )(x, θ)<br />

i1,i2=1<br />

, θ =(θ (i) ).<br />

[C] Let ϑn = |θ ∗ 2 − θ∗ 1 | and |ˆ θk − θ ∗ k | = op(ϑn) as n →∞for k =1, 2.<br />

In case the parameters are known, ˆ θk should read θ ∗ k , and then Condition [C]<br />

requires nothing.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 73 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Two kinds of limit theorems<br />

Let ϑn = |θ∗ 2 − θ∗ 1 |. We will consider the following two different<br />

situations.<br />

A : “Non shrinking case”: θ ∗ 1 and θ∗ 2<br />

are fixed and do not depend on n.<br />

B : “Shrinking case” (contiguous alternatives): θ∗ 1 and θ∗ 2 depend on n,<br />

and as n →∞, θ∗ 1 → θ∗ ∈ Θ, ϑn → 0 and nϑ2 n →∞.<br />

In Case A, ϑn is a constant ϑ0 independent of n.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 74 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Consistency<br />

Theorem 1: The family {nϑ 2 n(ˆτn − τ ∗ )}n∈N is tight under any one of the<br />

following conditions.<br />

(a) [H]1, [A] and [C] hold in Case A.<br />

(b) [H]2, [B] and [C] hold in Case B.<br />

In Case B, this result gives immediately consistency of ˆτn since<br />

nϑ 2 n →∞by assumption.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 75 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Let<br />

Asymptotic distribution: shrinking case<br />

<br />

H(v) =−2<br />

Γ 1<br />

2<br />

η W(v) − 1<br />

2 Γη|v|<br />

for Γη =(2T ) −1 Ξ(Xτ ∗,θ ∗ )[η ⊗2 ]. Here W is a two-sided standard<br />

Wiener process independent of Xτ ∗.<br />

Theorem 2: Suppose that the limit η = limn→∞ ϑ−1 n (θ∗ 2 − θ∗ 1 ) exists.<br />

Suppose that [H]2, [C] and [B] are fulfilled in Case B. Then<br />

as n →∞.<br />

nϑ 2 n(ˆτn − τ ∗ )→ d arg min<br />

v∈R H(v)<br />

Remind that in the simple 1-d case we have<br />

nϑ2 n(ˆτn − τ ∗ )<br />

2ˆ θ2 <br />

d<br />

→ arg max W(v) −<br />

v<br />

|v|<br />

<br />

2<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 76 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Let<br />

K(v) =<br />

i=1<br />

Asymptotic distribution: non shrinking case<br />

v<br />

<br />

Tr<br />

tσ(θ∗ 2,Xτ∗)S(Xτ ∗,θ∗ 1) −1 − S(Xτ ∗,θ∗ 2) −1 σ(θ ∗ 2,Xτ∗)ζ⊗2 <br />

<br />

− log det S(Xτ ∗,θ∗ 1) −1 S(Xτ ∗,θ∗ <br />

2) ,<br />

where ζi are independent r-dimensional standard normal variables and<br />

independent of Xτ ∗.<br />

Theorem 3: Suppose that [H]1, [C] and [A] are fulfilled in Case A. Then<br />

<br />

nτ ∗<br />

ˆkn − →<br />

T<br />

d arg min<br />

v∈Z K(v)<br />

as n →∞.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 77 / 95<br />

i


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Two stage procedure<br />

When θ1 and θ2 are not known, we propose a two stage estimation<br />

procedure:<br />

First θ1 is estimated with ˆ θ1 using the first part of the series [0,an]<br />

and θ2 with ˆ θ2 using the last part [T − an,T].<br />

Then a first stage change point estimator ˆτ is obtained plugin in the<br />

contrast function the first stage estimators ˆ θ1 and ˆ θ2.<br />

Then, a second stage estimator of the change point ˇτ is obtained, and<br />

further refinement of the estimators of θ1 and θ2 can be calculated,<br />

say ˇ θ1 and ˇ θ2.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 78 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Two stage procedure<br />

Under a suitable sequence an, Theorems 1-3 hold for (ˇτ, ˇ θ1, ˇ θ2).<br />

For example, we assume that there exitst a constant β ∈ (0, 1/2) such that<br />

an ≥ 1/(nϑ 1/β<br />

n ) and that | ˆ θk − θ ∗ k | = op((nan) −β ) for k =1, 2.<br />

When lim sup n→∞ ϑn > 0, we also assume nan →∞.<br />

The first condition implies nϑ 2 n →∞, which is required in our theorems.<br />

The second condition is natural because the number of data is<br />

proportional to nan.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 79 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

A modified QML<br />

For small sample sizes or when the asymptotic is not realized, it may be<br />

the case to modify the QL in the following way<br />

with<br />

and<br />

Φ ′ n(t; θ1,θ2) =<br />

[nt/2T ]<br />

<br />

i=1<br />

G ′ i(θ1)+<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 80 / 95<br />

n<br />

i=[nt/2T ]+1<br />

G ′ i(θ2), (4)<br />

G ′ i(θ) =logdetS(Xt2i−1 ,θ)+∆−1<br />

n S(Xt2i−1 ,θ)−1 [( ˜ ∆iY ) ⊗2 ]<br />

˜∆Yi = Y2i+1 − 2Y2i + Y2i−1<br />

√ 2<br />

With this approach we use less observation in the estimator of τ ∗ but we<br />

control better for the drift effect. Asymptotically the same results hold. So<br />

no change in the proofs and in the construction of the estimators.


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Numerical experiment<br />

To test the finite sample behaviour of all estimators considered in this<br />

review, we set up a simulation study.<br />

We consider different combinations of the sample size<br />

n = 500, 1000, 2000 and time horizon T =1, 2, 5, 10, which correspond<br />

to different ∆n =0.01, 0.001. Each experiment is replicated 1000 times.<br />

We consider three different statistical models.<br />

We compare the estimators: LS (ˆτn), CUSUM (˜τn), QML (ˇτn) and the<br />

modified QML (ˇτ ′ n).<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 81 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Finite sample properties. Driftless model.<br />

n ∆n T = n∆n τ ∗ ˆτn ˇτn ˜τn ˇτ ′ n<br />

L.S. Q.MLE CUSUM Modified Q.MLE.<br />

1000 0.001 1 0.6 0.606 0.602 0.751 0.604<br />

(0.061) (0.012) (0.150) (0.031)<br />

2000 0.001 2 1.2 1.202 1.205 1.784 1.214<br />

(0.196) (0.095) (0.316) (0.109)<br />

500 0.01 5 3 3.020 3.024 4.206 3.075<br />

(0.698) (0.512) (0.801) (0.623)<br />

1000 0.01 10 6 5.981 6.087 8.804 6.129<br />

(1.122) (1.617) (1.547) (1.296)<br />

dXt =(1+X 2 t ) θ∗<br />

dWt<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 82 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Finite sample properties. Model with drift.<br />

n ∆n T = n∆n τ ∗ ˆτn ˇτn ˜τn ˇτ ′ n<br />

L.S. Q.MLE CUSUM Modified Q.MLE<br />

1000 0.001 1 0.6 0.609 0.600 0.692 0.602<br />

(0.018) (0.005) (0.159) (0.011)<br />

2000 0.001 2 1.2 1.230 1.200 1.272 1.202<br />

(0.049) (0.005) (0.223) (0.010)<br />

500 0.01 5 3 3.644 2.977 3.005 3.002<br />

(0.320) (0.067) (0.012) (0.052)<br />

1000 0.01 10 6 8.179 3.607 5.983 6.001<br />

(0.221) (0.375) (0.045) (0.011)<br />

dXt = Xtdt +(1+X 2 t ) θ∗<br />

dWt<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 83 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Finite sample properties. Mean reverting.<br />

n ∆n T = n∆n τ ∗ ˆτn ˇτn ˜τn ˇτ ′ n<br />

L.S. Q.MLE CUSUM Modified Q.MLE<br />

1000 0.001 1 0.6 0.604 0.601 0.895 0.602<br />

(0.008) (0.007) (0.136) (0.015)<br />

2000 0.001 2 1.2 1.204 1.202 1.842 1.204<br />

(0.009) (0.009) (0.258) (0.017)<br />

500 0.01 5 3 3.030 3.033 4.299 3.013<br />

(0.051) (0.084) (0.691) (0.145)<br />

1000 0.01 10 6 6.036 6.027 8.947 6.022<br />

(0.076) (0.078) (1.367) (0.146)<br />

dXt =(2− Xt)dt + θ ∗ dWt<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 84 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

Numerical experiment<br />

YUIMA R Package<br />

Empirical vs True Asymptotic Distribution. Model 1<br />

Due to mixed-normal limit, we studied the distribution of the studentized<br />

limiting distribution of nθ 2 n(ˇτn − τ ∗ ) under the true model, i.e.<br />

Z = nθ 2 n(ˇτn − τ ∗ ) ˆ Γ(Xτ ∗,θ0),<br />

with ˆ Γ(Xτ ∗,θ0) = (log(1 + X2 τ ∗)) 2 . Then Z converges to W(v) − 1<br />

2 |v|<br />

with density<br />

f(x) = 3<br />

2 e|x|<br />

<br />

1 − Φ<br />

<br />

3<br />

|x| −<br />

2<br />

1<br />

2<br />

<br />

1 − Φ<br />

<br />

1<br />

|x|<br />

2<br />

and distribution function F (x) =<br />

<br />

g(x),<br />

1 − g(−x),<br />

x > 0<br />

, Φ(x) the<br />

x ≤ 0<br />

distribution function of N (0, 1), and<br />

<br />

x x<br />

g(x) =1+ e− 8 −<br />

2π 1<br />

√ <br />

x<br />

(x +5)Φ − +<br />

2 2<br />

3<br />

2 ex <br />

Φ − 3<br />

<br />

√<br />

x<br />

2<br />

(see e.g. Csörgő and Horváth, 1997).<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 85 / 95


Density<br />

0.0 0.1 0.2 0.3 0.4 0.5<br />

Empirical vs True Asymptotic Distribution. Driftless model.<br />

histogram vs limit distribution (second stage)<br />

−30 −20 −10 0 10 20 30<br />

Fn(x)<br />

−30 −20 −10 0 10 20 30<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 86 / 95<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

EDF vs limit (second stage)<br />

● ● ●● ●●●● ●●● ●● ●● ●● ● ●●● ●● ● ●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●<br />

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●● ● ● ●●●●● ●● ●●●●●●●●<br />

●●●


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

YUIMA R Package<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 87 / 95


Example of Volatility Change-Point Estimation<br />

Consider the 2-dimensional stochastic differential equation<br />

<br />

dX1 t<br />

dX2 t<br />

<br />

sin(X1 t )<br />

=<br />

3 − X2 <br />

θ1.k · X<br />

dt +<br />

t<br />

1 t 0 · X1 0 · X<br />

t<br />

2 t<br />

with change point instant at time τ =4<br />

x1<br />

x2<br />

2.0 3.0 4.0<br />

2 3 4 5<br />

X 1 0 =1.0, X 2 0 =1.0,<br />

θ2.k · X 2 t<br />

dW 1 t<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 88 / 95<br />

dW 2 t<br />

0 2 4 6 8 10<br />

t


The following model can be specified in the yuima package<br />

<br />

dX1 t<br />

dX2 t<br />

<br />

sin(X1 t )<br />

=<br />

3 − X2 <br />

θ1.k · X<br />

dt +<br />

t<br />

1 t 0 · X1 0 · X<br />

t<br />

2 t<br />

> library(yuima)<br />

θ2.k · X 2 t<br />

YUIMA Package<br />

dW 1 t<br />

> diff.matrix drift.c drift.matrix ymodel yuima


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

We can call CPoint on the yuima object<br />

Example with YUIMA package<br />

> t1 t2 t.est t.est$tau<br />

[1] 3.99<br />

> t.est$param1<br />

theta1.k theta2.k<br />

0.4723067 0.2899005<br />

> t.est$param2<br />

theta1.k theta2.k<br />

0.2515379 0.5518635<br />

http://R-Forge.R-Project.org/projects/yuima<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 90 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

The model specification<br />

We consider here the three main classes of SDE’s which can be easily<br />

specified. All multidimensional and eventually parametric models.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 91 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

The model specification<br />

We consider here the three main classes of SDE’s which can be easily<br />

specified. All multidimensional and eventually parametric models.<br />

Diffusions dXt = a(t, Xt)dt + b(t, Xt)dWt<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 91 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

The model specification<br />

We consider here the three main classes of SDE’s which can be easily<br />

specified. All multidimensional and eventually parametric models.<br />

Diffusions dXt = a(t, Xt)dt + b(t, Xt)dWt<br />

Fractional Gaussian Noise, with H the Hurst parameter<br />

dXt = a(t, Xt)dt + b(t, Xt)dW H t<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 91 / 95


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

The model specification<br />

We consider here the three main classes of SDE’s which can be easily<br />

specified. All multidimensional and eventually parametric models.<br />

Diffusions dXt = a(t, Xt)dt + b(t, Xt)dWt<br />

Fractional Gaussian Noise, with H the Hurst parameter<br />

Diffusions with jumps, Lévy<br />

dXt = a(t, Xt)dt + b(t, Xt)dW H t<br />

dXt = a(Xt)dt + b(Xt)dWt +<br />

+<br />

<br />

01<br />

c(Xt−,z)µ(dt, dz)<br />

c(Xt−,z){µ(dt, dz) − ν(dz)dt}


egular<br />

irregular<br />

tick times<br />

space disc.<br />

...<br />

multigrid<br />

asynch.<br />

Sampling<br />

random<br />

deterministic<br />

univariate<br />

multivariate<br />

Data<br />

Yuima<br />

ts, xts, ...<br />

diffusion<br />

Lévy<br />

CoGarch<br />

Model<br />

fractional<br />

BM<br />

Markov<br />

Switching HMM


Exact<br />

Asymptotic<br />

expansion<br />

Monte<br />

Carlo<br />

Euler-<br />

Maruyama<br />

Simulation<br />

Option<br />

pricing<br />

Covariation<br />

LASSOtype<br />

Space<br />

discr.<br />

Akaike’s<br />

Nonparametrics<br />

Yuima<br />

Model<br />

selection<br />

p-variation<br />

High freq.<br />

Low freq.<br />

Adaptive<br />

Bayes<br />

MCMC<br />

Hypotheses<br />

Testing<br />

Parametric<br />

Inference<br />

Quasi<br />

MLE<br />

Diff, fBM,<br />

Jumps<br />

Change<br />

point


The change point<br />

problem<br />

Historical remarks<br />

Diffusion processes<br />

General Itô processes<br />

YUIMA R Package<br />

For more informations and software see<br />

The YUIMA Project<br />

http://R-Forge.R-Project.org/projects/yuima<br />

A. Brouste (Univ. Le Mans, FR)<br />

M. Fukasawa (Osaka Univ. JP)<br />

H. Hino (Waseda Univ., Tokyo, JP)<br />

S.M. Iacus (Milan Univ., IT)<br />

K. Kengo (Tokyo Univ., JP)<br />

H. Masuda (Kyushu Univ., JP)<br />

Y. Shimitzu (Osaka Univ., JP)<br />

M. Uchida (Osaka Univ., JP)<br />

N. Yoshida (Tokyo Univ., JP)<br />

. . . more to come<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 94 / 95


References<br />

Bai, J. (1994) Least squares estimation of a shift in linear processes, Journal of Times Series Analysis, 15, 453-472.<br />

Bai, J. (1997) Estimation of a change point in multiple regression models, The Review of Economics and Statistics, 79, 551-563.<br />

Chen, G., Choi, Y.K., Zhou, Y. (2005) Nonparametric estimation of structural change points in volatility models for time series, Journal of Econometrics, 126,<br />

79-144.<br />

Csörgő, M., Horváth, L. (1997) Limit Theorems in Change-point Analysis. New York: Wiley.<br />

De Gregorio, A., Iacus, S.M. (2008) Least squares volatility change point estimation for partially observed diffusion processes, Communications in Statistics,<br />

Theory and Methods, 37(15), 2342-2357.<br />

Genon-Catalot, V., Jacod, J. (1993) On the estimation of the diffusion coefficient for multidimensional diffusion processes, Ann. Inst. Henri Poincaré, 29,<br />

119–151.<br />

Genon-Catalot, V., Jacod, J. (1994) On the estimation of the diffusion coefficient for diffusion processes: random sampling, Scand. J. Stat., 21, 192–221.<br />

Habibi, R. (2012) Change point detection in Black-Scholes models using recursive estimation, Int. J. of E-Business Dev., 2(1), 13-15.<br />

Hinkley, D.V. (1971) Inference about the change-point from cumulative sum tests, Biometrika, 58, 509-523.<br />

Iacus, S.M., Yoshida, N. (2012) Estimation for the change point of volatility in a stochastic differential equation, Stochastic Processes and Their Applications,<br />

122(3), 1068-1092.<br />

Inclan, C., Tiao, G.C. (1994) Use of cumulative sums of squares for retrospective detection of change of variance, Journal of the American Statistical<br />

Association, 89, 913-923.<br />

Kessler, M. (1997) Estimation of an ergodic diffusion from discrete observations, Scand. J. Stat., 24, 211–229.<br />

Kim, S., Cho, S., Lee, S. (2000) On the cusum test for parameter changes in GARCH(1,1) models. Commun. Statist. Theory Methods, 29, 445-462.<br />

Kutoyants, Y. (1994) Identification of Dynamical Systems with Small Noise, Kluwer, Dordrecht.<br />

Kutoyants, Y. (2004) Statistical Inference for Ergodic Diffusion Processes, Springer-Verlag, London.<br />

Lee, S. (2011) Change point test for dispersion parameter based on discretely observed sample from SDE models, Bull. Korean. Math. Soc, 48(4), 839-845.<br />

Lee, S., Ha, J., Na, O., Na, S. (2003) The Cusum test for parameter change in time series models, Scandinavian Journal of Statistics, 30, 781-796.<br />

Lee, S., Nishiyama, Y., Yoshida, N. (2006) Test for parameter change in diffusion processes by cusum statistics based on one-step estimators, Ann. Inst. Statist.<br />

Mat., 58, 211-222.<br />

Song, J., Lee, S. (2009) Test for parameter change in discretely observed diffusion processes, forthcoming in Statistical Inference for Stochastic Processes.<br />

Yoshida, N. (1992) Estimation for diffusion processes from discrete observation, J. Multivar. Anal., 41(2), 220–242.<br />

S.M. Iacus 2012 PEDS2 <strong>Eurandom</strong> – 95 / 95

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!