28.08.2013 Views

Dynamics of Machines - Part II - IFS.pdf

Dynamics of Machines - Part II - IFS.pdf

Dynamics of Machines - Part II - IFS.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

DYNAMICS OF MACHINES 41614<br />

PART I – INTRODUCTION TO THE BASIC TOOLS OF<br />

MODELLING, SIMULATION, ANALYSIS & EXPERIMENTAL VALIDATION<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

x 10−4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−5<br />

2<br />

1<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

6<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

1<br />

x 10 −4<br />

−4<br />

1<br />

x 10 −3<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

0.5<br />

x 10 −7<br />

0.5<br />

Angular Velocity: 0 rpm Mode: 2 Nat. Freq.: 14.7288 Hz<br />

0<br />

0<br />

−0.5<br />

−0.5<br />

−1 0<br />

−1 0<br />

2<br />

Angular Speed: 1 Mode: 1 Nat. Freq.: 15.6815 Hz<br />

2<br />

Kompendie 1034 – February 2004<br />

4<br />

1<br />

4<br />

6<br />

6<br />

8<br />

8<br />

10<br />

10<br />

12<br />

12<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−10 −5 0 5 10<br />

Dr.-Ing. Ilmar Ferreira Santos, Associate Pr<strong>of</strong>essor<br />

Department <strong>of</strong> Mechanical Engineering<br />

Technical University <strong>of</strong> Denmark<br />

Building 358, Room 159<br />

2800 Lyngby<br />

Denmark<br />

Phone: +45 45 25 62 69<br />

Fax: +45 45 88 14 51<br />

E-Mail: ifs@mek.dtu.dk


Contents<br />

1 Introduction to Dynamical Modelling <strong>of</strong> <strong>Machines</strong> and Structures and Experimental<br />

Analysis <strong>of</strong> Mechanical Vibrations based on the Human Senses 3<br />

1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.2 Description <strong>of</strong> the Test Facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

1.3 Data <strong>of</strong> the Mechanical System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

1.4 Calculating Equivalent Stiffness Coefficients – Beam Theory . . . . . . . . . . . 5<br />

1.5 Calculating Stiffness Matrices – Beam Theory . . . . . . . . . . . . . . . . . . . 7<br />

1.6 Mechanical Systems with 1 D.O.F. . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

1.6.1 Physical System and Mechanical Model . . . . . . . . . . . . . . . . . . . 9<br />

1.6.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

1.6.3 Analytical and Numerical Solution <strong>of</strong> the Equation <strong>of</strong> Motion . . . . . . . 10<br />

1.6.4 Analytical and Numerical Solution <strong>of</strong> Equation <strong>of</strong> Motion using Matlab . 15<br />

1.6.5 Comparison between the Analytical and Numerical Solutions <strong>of</strong> Equation<br />

<strong>of</strong> Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

1.6.6 Homogeneous Solution or Free-Vibrations or Transient Response - Experimental<br />

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

1.6.7 Natural Frequency – ωn [rad/s] or fn [Hz] . . . . . . . . . . . . . . . . . . 19<br />

1.6.8 Damping Factor ξ or Logarithmic Decrement β . . . . . . . . . . . . . . . 19<br />

1.6.9 Forced Vibrations or Steady-State Response . . . . . . . . . . . . . . . . 24<br />

1.6.10 Resonance and Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

1.6.11 Superposition <strong>of</strong> Transient and Forced Vibrations in Time Domain (Simulation)<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

1.6.12 Resonance – Experimental Analysis in Time Domain . . . . . . . . . . . . 28<br />

1.7 Mechanical Systems with 2 D.O.F. . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

1.7.1 Physical System and Mechanical Model . . . . . . . . . . . . . . . . . . . 31<br />

1.7.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br />

1.7.3 Analytical and Numerical Solution <strong>of</strong> System <strong>of</strong> Differential Linear Equations<br />

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br />

1.7.4 Modal Analysis using Matlab eig-function [u, w] = eig(−B, A) . . . . . . . 37<br />

1.7.5 Analytical and Numerical Solutions <strong>of</strong> Equation <strong>of</strong> Motion using Matlab . 40<br />

1.7.6 Analytical and Numerical Results <strong>of</strong> the System <strong>of</strong> Equations <strong>of</strong> Motion . 41<br />

1.7.7 Programming in Matlab – Frequency Response Analysis . . . . . . . . . . 42<br />

1.7.8 Understanding Resonances and Mode Shapes using your Eyes and Fingers 43<br />

1.7.9 Resonance – Experimental Analysis in Time Domain . . . . . . . . . . . . 48<br />

1.8 Mechanical Systems with 3 D.O.F. . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

1.8.1 Physical System and Mechanical Model . . . . . . . . . . . . . . . . . . . 49<br />

1.8.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br />

1.8.3 Programming in Matlab – Theoretical Parameter Studies and Experimental<br />

Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52<br />

1.8.4 Theoretical Frequency Response Function . . . . . . . . . . . . . . . . . . 55<br />

1.8.5 Experimental – Natural Frequencies . . . . . . . . . . . . . . . . . . . . . 56<br />

1.8.6 Experimental – Resonances and Mode Shapes . . . . . . . . . . . . . . . . 56<br />

1.9 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br />

1.10 Project 0 – Identification <strong>of</strong> Model Parameters (An Example) . . . . . . . . . . . 61<br />

1.11 Project 1 – Modal Analysis & Validation <strong>of</strong> Models . . . . . . . . . . . . . . . . . 66<br />

2


1 Introduction to Dynamical Modelling <strong>of</strong> <strong>Machines</strong> and Structures<br />

and Experimental Analysis <strong>of</strong> Mechanical Vibrations<br />

based on the Human Senses<br />

1.1 Summary<br />

The aim <strong>of</strong> this study is to show some theoretical and experimental examples to facilitate the<br />

understanding <strong>of</strong> the physical meaning <strong>of</strong> the main topics and definitions used in relation to<br />

vibrations in machines. Theoretical and experimental studies are led side-by-side, clarifying<br />

the definitions <strong>of</strong> stiffness, flexibility, natural frequency, damping factor, logarithmic decrement,<br />

resonance, phase, beating, unbalance, natural mode shape, modal node and so on. The experimental<br />

investigations are always carried out in low frequency ranges, aiming at making easy<br />

the visualization <strong>of</strong> the movements by the human eyes and the understanding <strong>of</strong> the mechanical<br />

vibrations without necessarily having to use sensors and electronic devices.<br />

1.2 Description <strong>of</strong> the Test Facilities<br />

Figures 1 and 2 show the simple elements used during the experimental investigations: a flexible<br />

beam (ruler), concentrated masses or magnets, a support, an accelerometer, a signal amplifier, a<br />

shaker and a signal analyzer. The beam or ruler already has a scale, enabling it to easily achieve<br />

the information about the position (length) where the magnets will be mounted. At each position<br />

more than one magnet can be mounted, allowing changes in the values <strong>of</strong> the concentrated<br />

masses. The masses or magnets can be easily moved and attached to different positions along<br />

the ruler, aiming at investigating changes in the natural frequencies <strong>of</strong> the magnet-ruler system<br />

(mass-spring system). The ruler is very flexible in one plane only due to the characteristic <strong>of</strong><br />

its cross-section (moment <strong>of</strong> inertia <strong>of</strong> area). The beam can easily be mounted with different<br />

boundary conditions, as free-free, clamped-free, simply supported in both ends, etc. allowing an<br />

investigation <strong>of</strong> the influence <strong>of</strong> the boundary conditions on its flexibility, and consequently on<br />

the natural frequencies <strong>of</strong> the system.<br />

Regarding rotating machines some analogies can be made between the mass-spring system presented<br />

here and a centrifugal compressor, while comparing the ruler (or flexible beam) to the<br />

flexible shaft, and the magnets (or concentrated masses) to the impellers or rigid discs. Changes<br />

in the montage <strong>of</strong> shaft into the bearings (boundary conditions) or changes in the positioning<br />

<strong>of</strong> the impellers along the shaft will lead to different critical speeds and mode shapes.<br />

As mentioned above, the mass-spring system was designed to have a very flexible behavior with<br />

very low natural frequencies. This allows the detection <strong>of</strong> natural frequencies, modes shapes<br />

and resonance using the human eyes as sensors (or sighting senses). Moreover, it is also made<br />

possible to excite the structure with human fingers, aiming at understanding the 90 degrees<br />

phase between displacement and excitation (while operating around resonance conditions) by<br />

means <strong>of</strong> tactile senses. Accelerometer, amplifier, shaker and signal analyzer are used aiming at<br />

confirming what the human senses detect.<br />

3


By understanding the topics related to mechanical vibration in low frequency ranges (high<br />

flexibility and slow motions detectable by human senses), it gets easier to understand mechanical<br />

vibration in high frequency ranges where one has faster motions with small amplitudes, just<br />

detectable by sensors and electronic devices.<br />

Figure 1: Experimental investigation <strong>of</strong> a mechanical continuous system with concentrated<br />

masses modelled as equivalent spring-mass systems with 1, 2 and 3 degrees <strong>of</strong> freedom (D.O.F.).<br />

Figure 2: Signal analyzer and shaker used for inducing and measuring mechanical vibrations<br />

while analyzing the behavior <strong>of</strong> the spring-mass systems with 1 D.O.F., 2 D.O.F. and 3 D.O.F.<br />

4


1.3 Data <strong>of</strong> the Mechanical System<br />

ρ material density <strong>of</strong> the beam 7, 800 Kg/m 3<br />

E elasticity modulus 2 × 10 11 N/m 2<br />

L total length <strong>of</strong> the beam 0.600 m<br />

b width <strong>of</strong> the beam 0.030 m<br />

h thickness 0.0012 m<br />

mi concentrated mass (i = 1, ...,6) 0.191 Kg<br />

Table 1: Data <strong>of</strong> the mass-spring system ”A”.<br />

ρ material density <strong>of</strong> the beam 7, 800 Kg/m 3<br />

E elasticity modulus 2 × 10 11 N/m 2<br />

L total length <strong>of</strong> the beam 0.300 m<br />

b width <strong>of</strong> the beam 0.025 m<br />

h thickness 0.0010 m<br />

ρ material density (steel) 7, 800 Kg/m 3<br />

mi concentrated mass (i = 1, ...,6) 0.191 Kg<br />

Table 2: Data <strong>of</strong> the mass-spring system ”B”.<br />

1.4 Calculating Equivalent Stiffness Coefficients – Beam Theory<br />

(a) (b)<br />

Figure 3: (a) Flexible beam – clamped-free boundary condition case with force applied to the end<br />

L; (b) clamped-free boundary condition case with force applied to a general position L ∗ ;<br />

By applying a vertical force F at the end <strong>of</strong> the beam as shown in figure 3(a) and using Beam<br />

Theory, one can write:<br />

EI d4y(x) = 0 (1)<br />

dx4 Integrating in X once, one has:<br />

EI d3 y(x)<br />

dx 3 = F(x) = C1 (2)<br />

5


Integrating twice in X, it gives:<br />

EI d2 y(x)<br />

dx 2 = M(x) = C1x + C2 (3)<br />

Integrating again in X, one gets the rotation angle <strong>of</strong> the beam:<br />

EI dy(x)<br />

dx<br />

x<br />

= EIΘ(x) = C1<br />

2<br />

2 + C2x + C3<br />

And finally, integrating the last time in X, one achieves the equation responsible for describing<br />

the deflexion <strong>of</strong> the beam:<br />

x<br />

EI y(x) = C1<br />

3<br />

6<br />

x<br />

+ C2<br />

2<br />

2 + C3x + C4<br />

The boundary conditions for the clamped-free beam are:<br />

•y(x = 0) = 0<br />

•Θ(x = 0) = 0<br />

•M(x = L) = 0<br />

•F(x = L) = −F (reaction)<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

After calculating the constants Ci using the boundary condition for the clamped-free beam case,<br />

one gets<br />

y(x) = − F<br />

E I<br />

dy(x)<br />

dx<br />

x 3<br />

6<br />

= Θ(x) = − F<br />

E I<br />

<br />

L x2<br />

−<br />

2<br />

x 2<br />

2<br />

<br />

− L x<br />

Using the relationship between applied force F and the induced deflexion at a given point along<br />

the beam length, x = L for instance, one gets the equivalent stiffness as:<br />

K = F<br />

y(L)<br />

= 3 EI<br />

L 3<br />

Suggestion (I): Change the beam boundary conditions, for example bi-supported at both ends,<br />

and calculate the equivalent stiffness in the new case.<br />

Suggestion (<strong>II</strong>): Change the beam boundary conditions, for example clamped-clamped at both<br />

ends, and calculate the equivalent stiffness in the new case.<br />

6<br />

(4)<br />

(5)<br />

(6)<br />

(7)<br />

(8)<br />

(9)


1.5 Calculating Stiffness Matrices – Beam Theory<br />

Two Different Lengths for Applying Forces – To facilitate the understanding <strong>of</strong> steps<br />

which will be presented, one can introduce the follow nomenclature (see figure 3(b)):<br />

• L ∗ = L1 or L ∗ = L2 – length where the force F is applied.<br />

• x = L1 or x = L2 – length where the displacement is measured.<br />

Taking into account two different points for applying the forces and measuring the displacements<br />

<strong>of</strong> the beam, one works with the following set <strong>of</strong> equations<br />

x [0, L ∗ ]<br />

and<br />

x [L ∗ , L]<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

y(x) = − F<br />

E I<br />

dy(x)<br />

dx<br />

= − F<br />

E I<br />

<br />

x3 6 − L∗ x2 <br />

2<br />

<br />

x2 2 − L∗ <br />

x<br />

y(x) = y(L ∗ ) + dy(x)<br />

dx<br />

dy(x)<br />

dx<br />

= dy(x)<br />

dx<br />

<br />

<br />

x=L ∗<br />

<br />

<br />

<br />

x=L∗ · (x − L∗ )<br />

which are responsible for describing the deflection <strong>of</strong> the beam, considering the loading on<br />

different coordinates.<br />

Let us introduce an example <strong>of</strong> a system with two points <strong>of</strong> force application. Assuming in case<br />

(I) the force F is applied to the first coordinate L ∗ = L1. One can measure and/or calculate<br />

the beam deflection at the coordinates x = L1 and x = L2 through equations (10) and (11):<br />

y1 = y(L1) = F · L3 1<br />

3 · EI<br />

and<br />

y2 = y(L2) = F<br />

6EI · (2L3 1 + 3L 2 1(L2 − L1)) (13)<br />

Assuming in case (<strong>II</strong>) that the force F is applied to the second coordinate L ∗ = L2, one can<br />

measure and/or calculate the follow beam displacements at the coordinates x = L1 and x = L2<br />

through the equations (10) and (11):<br />

y1 = y(L1) = F<br />

6EI · (2L3 1 + 3L 2 1(L2 − L1)) (14)<br />

and<br />

y2 = y(L2) = F · L3 2<br />

3 · EI<br />

7<br />

(10)<br />

(11)<br />

(12)<br />

(15)


In order to calculate the stiffness matrix (k11, k12, k21, k22) <strong>of</strong> the 2 d.o.f. system,<br />

Ky = f (16)<br />

where<br />

K =<br />

k11 k12<br />

k21 k22<br />

<br />

y = { y1 y2 } T<br />

f = { f1 f2 } T<br />

one has to solve the following system <strong>of</strong> equations for case (I) and case (<strong>II</strong>):<br />

k11 k12<br />

k21 k22<br />

<br />

y1<br />

·<br />

y2<br />

<br />

=<br />

Case (I): f = { F 0 } T<br />

k11 k12<br />

k21 k22<br />

<br />

·<br />

Case (<strong>II</strong>): f = { 0 F } T<br />

k11 k12<br />

k21 k22<br />

f1<br />

f2<br />

<br />

F ·L 3 1<br />

3·EI<br />

F<br />

6EI · (2L3 1 + 3L2 1 (L2 − L1))<br />

<br />

F<br />

6EI<br />

·<br />

· (2L31 + 3L21 (L2 − L1))<br />

F ·L3 2<br />

3·EI<br />

<br />

<br />

=<br />

=<br />

F<br />

0<br />

0<br />

F<br />

It leads to a system <strong>of</strong> 4 equations, which can be written in a matrix form:<br />

⎡<br />

⎢<br />

⎣<br />

F ·L 3 1<br />

3·EI<br />

F<br />

6EI · (2L31 + 3L 2 0<br />

1(L2 − L1))<br />

0<br />

0<br />

F ·L<br />

0<br />

3 1<br />

3·EI<br />

F<br />

6EI · (2L31 + 3L 2 F<br />

6EI<br />

1(L2 − L1))<br />

· (2L31 + 3L 2 1(L2 − L1))<br />

F ·L 3 0<br />

2<br />

3·EI<br />

0<br />

0<br />

F<br />

6EI<br />

0<br />

· (2L31 + 3L 2 1(L2 − L1))<br />

F ·L 3 ⎤<br />

⎥<br />

⎦<br />

2<br />

3·EI<br />

·<br />

⎧<br />

⎪⎨<br />

·<br />

⎪⎩<br />

⎫ ⎧<br />

⎪⎬ ⎪⎨<br />

F<br />

0<br />

=<br />

⎪⎭ ⎪⎩<br />

0<br />

F<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

(21)<br />

k11<br />

k12<br />

k21<br />

k22<br />

Solving this matrix system <strong>of</strong> order 4 by using the s<strong>of</strong>tware MATHEMATICA, or by using<br />

Cramer’s rule, one achieves the stiffness matrix:<br />

EI<br />

K =<br />

(4L2 − L1)(L1 − L2) 2<br />

⎡<br />

12(L2/L1)<br />

⎣<br />

3 ⎤<br />

6(L1 − 3L2)/L1<br />

⎦ (22)<br />

6(L1 − 3L2)/L1 12<br />

Similar procedure can be made in order to get the stiffness matrix <strong>of</strong> the 3 d.o.f system. This is<br />

the motivation <strong>of</strong> an exercise later on. The results (stiffness matrix with 9 stiffness coefficient)<br />

will be presented in the section describing mechanical systems with 3 d.o.f.<br />

8<br />

<br />

<br />

(17)<br />

(18)<br />

(19)<br />

(20)


1.6 Mechanical Systems with 1 D.O.F.<br />

1.6.1 Physical System and Mechanical Model<br />

(a)<br />

(b)<br />

(c)<br />

Figure 4: (a) Real mechanical system composed <strong>of</strong> a turbine attached to an airplane flexible wing;<br />

(b) Laboratory prototype built by a lumped mass attached to a flexible beam); (c) Equivalent<br />

mechanical model with 1 D.O.F. for a lumped mass attached to a flexible beam.<br />

1.6.2 Mathematical Model<br />

It is important to point out, that the equations <strong>of</strong> motion in <strong>Dynamics</strong> <strong>of</strong> Machinery will frequently<br />

have the form <strong>of</strong> second order differential equations: ¨y(t) = F(y(t), ˙y(t)). Such equations<br />

can generally be linearized around an operational position <strong>of</strong> a physical system, leading to second<br />

order linear differential equations. It means that the coefficients which are multiplying the<br />

variables ¨y(t) , ˙y(t) , y(t) (co-ordinate chosen for describing the motion <strong>of</strong> the physical system)<br />

do not depend on the variables themselves. In the mechanical model presented in figure 4 these<br />

coefficients are constants: m1, d1 and k1. One <strong>of</strong> the aims <strong>of</strong> the course <strong>Dynamics</strong> <strong>of</strong> Machinery<br />

is to help the students to properly find these coefficients so that the equations <strong>of</strong> motion can<br />

really describe the movement <strong>of</strong> the physical system. The coefficients can be predicted using<br />

theoretical or experimental approaches.<br />

9


After having created the mechanical model for the physical system, the next step is to derive<br />

the equation <strong>of</strong> motion based on the mechanical model. The mechanical model is composed <strong>of</strong><br />

a lumped mass m1 (assumption !!!), spring with equivalent stiffness coefficient k1 (calculated<br />

using beam theory) and damper with equivalent viscous coefficient d (obtained experimentally).<br />

While creating the mechanical model and assuming that the mass is a particle, the equation <strong>of</strong><br />

motion can be derived, for example, using Newton’s second law:<br />

m1¨y1(t) + d1 ˙y1(t) + k1y1(t) = f1(t) (23)<br />

¨y1(t) + d1<br />

˙y1(t) +<br />

m1<br />

k1<br />

y1(t) =<br />

m1<br />

f1<br />

(t) (24)<br />

m1<br />

¨y1(t) + 2ξωn ˙y1(t) + ω 2 ny1(t) = f1<br />

(t) (25)<br />

m1<br />

1.6.3 Analytical and Numerical Solution <strong>of</strong> the Equation <strong>of</strong> Motion<br />

After having created the mechanical model (step 1) and derived the mathematical model (step<br />

2) for this mechanical model, the next step is to solve the equation <strong>of</strong> motion (step 3), aiming<br />

at analyzing (step 4) the dynamical behavior <strong>of</strong> the physical system. Here the analytical and<br />

numerical solutions <strong>of</strong> linear differential equations are presented and compared. Later on you<br />

can choose the most convenient way to solve the equations and analyze the dynamical behavior<br />

<strong>of</strong> physical systems. It is important to mention that the numerical procedure is very simple,<br />

an integrator <strong>of</strong> first-order. Other integrators can be used depending on the characteristics <strong>of</strong><br />

the mechanical models, for example, Runge-Kutta <strong>of</strong> higher order (third, fourth, etc.) among<br />

others.<br />

Homogeneous Solution or Transient Solution and Transient Analysis – The homogeneous<br />

solution <strong>of</strong> a linear differential equation is also called transient solution. The homogeneous<br />

differential equation is achieved when the right side <strong>of</strong> the equation is set zero (see eq.(26), or in<br />

other words, when no force acts on the system. All analyzes and conclusions obtained from the<br />

homogeneous solution are called transient analyzes, and provide information about the dynamical<br />

behavior <strong>of</strong> the system while perturbations <strong>of</strong> displacement and velocities (in case <strong>of</strong> second<br />

order differential equations <strong>of</strong> motion) are introduced into the system.<br />

¨y(t) + 2ξωn ˙y(t) + ω 2 ny(t) = 0 (26)<br />

yh(t) = Ce λt , (assumption) (27)<br />

˙yh(t) = λCe λt<br />

¨yh(t) = λ 2 Ce λt<br />

The assumption (27) and its derivatives are introduced into the differential equation (26), leading<br />

to<br />

⇕<br />

λ 2 Ce λt + 2ξωnλCe λt + ω 2 nCe λt = 0<br />

(λ 2 + 2ξωnλ + ω 2 n)Ce λt = 0 (28)<br />

10


Demanding (λ 2 + 2ξωnλ + ω 2 n) = 0, because Ce λt = 0 in eq.(28), one gets two values <strong>of</strong> λ, or<br />

two roots for the equation (λ 2 + 2ξωnλ + ω 2 n) = 0:<br />

<br />

λ1 = −ξωn − ωn 1 − ξ2 · i<br />

<br />

λ2 = −ξωn + ωn 1 − ξ2 · i<br />

It is important to highlight that all analyzes carried out here will be concentrated<br />

in cases where ξ < 1 (sub-critically damped system). Cases where ξ = 1 or ξ > 1<br />

are called critically or super-critically damped systems respectively. In these cases<br />

no problem related to amplification <strong>of</strong> vibration amplitudes can be found while<br />

crossing resonances. Using the roots λ1 and λ2 the homogenous solution is:<br />

yh(t) = C1e λ1t + C2e λ2t<br />

where C1 and C2 are defined as a function <strong>of</strong> the initial condition <strong>of</strong> the movement when t = 0:<br />

• initial displacement y(0) = yini<br />

• initial movement ˙y(0) = vini<br />

It is important to point out that these constants have to be calculated by using the general<br />

solution, which will be presented later.<br />

Permanent Solution and Steady-State Analysis – The permanent solution <strong>of</strong> a linear<br />

differential equation is also called steady-state solution. The complete differential equation is<br />

achieved when the right side <strong>of</strong> the equation is completed with the excitation (see eq.(30)), or<br />

in other words, when static or dynamic forces act on the system. All analyzes and conclusions<br />

obtained from the permanent solution are called steady-state analyzes, and provide information<br />

about the dynamical behavior <strong>of</strong> the system while excitation forces are introduced into the<br />

system. Let us introduce an excitation force which value oscillates in time with frequency ω<br />

[rad/s]:<br />

¨y(t) + 2ξωn ˙y(t) + ω 2 ny(t) = f<br />

m eiωt<br />

(29)<br />

(30)<br />

yh(t) = Ae iωt , (assumption) (31)<br />

˙yh(t) = jωAe iωt<br />

¨yh(t) = (jω) 2 Ae iωt = −(ω) 2 Ae iωt<br />

The assumption (31) and its derivatives are introduced into the differential equation (30), leading<br />

to:<br />

− (ω) 2 Ae iωt + 2ξωn(jωAe jωt ) + ω 2 nAe iωt = f<br />

m eiωt<br />

⇕<br />

(−ω 2 + ω 2 n + i2ξωnω)A = f<br />

m<br />

11<br />

(32)


The amplitude A eq.(33) and the particular solution yp(t) eq.(34) are derived by eq.(32) and<br />

(31):<br />

A =<br />

f/m<br />

−ω 2 + ω 2 n + i2ξωnω<br />

yp(t) = A · e iωt <br />

=<br />

f/m<br />

−ω 2 + ω 2 n + i2ξωnω<br />

<br />

· e iωt<br />

General Solution = Transient Solution + Steady-State Solution – The general solution<br />

<strong>of</strong> a linear differential equation is achieved by adding the homogenous and the permanent<br />

solutions, and sequentially by defining the initial conditions <strong>of</strong> the movement. This solution<br />

will provide information about the transient and steady-state response <strong>of</strong> the mechanical model.<br />

Considering that the order <strong>of</strong> the mechanical model is correct (in this case, one degree-<strong>of</strong>-freedom<br />

system), the solution <strong>of</strong> the linear differential equation will be useful for predicting the dynamical<br />

behavior <strong>of</strong> the physical system, if the coefficients <strong>of</strong> the differential equation (m, d and k,<br />

or ωn and ξ) are properly chosen, using either the theoretical or experimental information or a<br />

combination <strong>of</strong> both. The general solution <strong>of</strong> the differential equation <strong>of</strong> motion is given by:<br />

y(t) = C1e λ1t + C2e λ2t + Ae iωt<br />

where y(t) is the displacement <strong>of</strong> the mass-damping-spring system.<br />

For achieving the velocity <strong>of</strong> the mass-damping-spring system, eq.(35) has to be differentiated<br />

in time:<br />

˙y(t) = λ1C1e λ1t + λ2C2e λ2t + iωAe iωt<br />

Introducing the initial conditions <strong>of</strong> displacement and velocity into eq.(35) and (36), when t = 0,<br />

one gets:<br />

y(0) =C1e λ10 + C2e λ20 + Ae iω0 ⇒ yini = C1 + C2 + A (37)<br />

˙y(0) =λ1C1e λ10 + λ2C2e λ20 + iωAe iω0 ⇒ vini = λ1C1 + λ2C2 + iωA (38)<br />

Rewriting eq.(37) and eq.(38) in matrix form, one gets:<br />

1 1<br />

λ1 λ2<br />

C1<br />

C2<br />

<br />

=<br />

yini − A<br />

vini − jωA<br />

<br />

Solving the linear system eq.(39) using Cramer’s rule, the constants C1 and C2 are calculated:<br />

C1 =<br />

<br />

yini − A 1<br />

det<br />

vini − A λ2<br />

=<br />

1 1<br />

det<br />

λ2(yini − A) − (vini − iωA)<br />

λ2 − λ1<br />

λ1 λ2<br />

12<br />

(33)<br />

(34)<br />

(35)<br />

(36)<br />

(39)


1 yini − A<br />

det<br />

λ1 vini − A<br />

C2 = =<br />

1 1<br />

det<br />

−λ1(yini − A) + (vini − iωA)<br />

λ2 − λ1<br />

λ1 λ2<br />

Summarizing, below is the analytical solution <strong>of</strong> second order differential equation, which is<br />

responsible for describing the movements <strong>of</strong> the mass-damping-spring system in time domain,<br />

as a function <strong>of</strong> the excitation force and initial condition <strong>of</strong> displacement and velocity:<br />

y(t) = C1e λ1t + C2e λ2t + Ae iωt<br />

where<br />

<br />

λ1 = −ξωn − ωn 1 − ξ2 · i<br />

<br />

λ2 = −ξωn + ωn 1 − ξ2 · i<br />

A =<br />

f/m<br />

−ω 2 + ω 2 n + i2ξωnω<br />

C1 = λ1(yini − A) − (vini − iωA)<br />

λ2 − λ1<br />

C2 = −λ1(yini − A) + (vini − iωA)<br />

λ2 − λ1<br />

Numerical Solution According to Taylor’s expansion, an equation can be approximated by:<br />

f(t) ⋍ f(t0) + df<br />

<br />

<br />

<br />

<br />

dt<br />

t=t0<br />

(t − t0) + d2 f<br />

dt 2<br />

<br />

<br />

<br />

<br />

t=t0<br />

(t − t0)... + dn f<br />

dt n<br />

<br />

<br />

<br />

<br />

t=t0<br />

(40)<br />

(t − t0) (41)<br />

Assuming a very small time step t −t0 ≪ 1, the higher order terms <strong>of</strong> eq.(42) can be neglected.<br />

It turns:<br />

f(t) ⋍ f(t0) + df<br />

<br />

<br />

<br />

<br />

dt<br />

t=t0<br />

(t − t0) (42)<br />

Knowing the initial conditions <strong>of</strong> the movement when t = 0,<br />

y(0) = y0 = yini<br />

˙y(0) = ˙y0 = vini<br />

and the equation <strong>of</strong> motion, which has to be solved,<br />

¨y(t) = − 2ξωn ˙y(t) − ω 2 ny(t) + f<br />

m eiωt<br />

13<br />

(43)


one can get the initial acceleration, when t = 0, on the basis <strong>of</strong> initial conditions:<br />

t0 = 0<br />

˙y0<br />

y0<br />

⎫<br />

⎬<br />

⎭ ⇒ ¨y0 = −2ξωn ˙y0 − ω 2 ny0 + f<br />

m eiωt0<br />

The first predicted values <strong>of</strong> displacement, velocity and acceleration in time t1 = ∆t , using the<br />

approximation given by eq.(42), are:<br />

t1 = ∆t<br />

˙y1 = ˙y0 + ¨y0∆t<br />

y1 = y0 + ˙y1∆t<br />

¨y1 = −2ξωn ˙y1 − ω 2 ny1 + f<br />

m eiωt1<br />

The second predicted values <strong>of</strong> displacement, velocity and acceleration in time t2 = t1 + ∆t ,<br />

using the approximation given by eq.(42), are:<br />

t2 = 2∆t<br />

˙y2 = ˙y1 + ¨y1∆t<br />

y2 = y1 + ˙y2∆t<br />

¨y2 = −2ξωn ˙y2 − ω 2 ny2 + f<br />

m eiωt2<br />

The N-th predicted values <strong>of</strong> displacement, velocity and acceleration in time tN = tN−1 + ∆t ,<br />

using the approximation given by eq.(42), are:<br />

tN = N∆t<br />

˙yN = ˙yN−1 + ¨yN−1∆t<br />

yN = yN−1 + ˙yN∆t<br />

¨yN = −2ξωn ˙yN − ω 2 nyN + f<br />

m eiωtN (44)<br />

Plotting the points [y1, y2, y3, ..., yN] versus [t1, t2, t3, ..., tN], one can observe the numerical<br />

solution <strong>of</strong> the differential equation, which describes the displacement <strong>of</strong> the mass-dampingspring<br />

system in time domain. Plotting the points [ ˙y1, ˙y2, ˙y3, ..., ˙yN] versus [t1, t2, t3, ..., tN] or<br />

[¨y1, ¨y2, ¨y3, ..., ¨yN] versus [t1, t2, t3, ..., tN] one can also observe velocity and acceleration <strong>of</strong> the<br />

mass-damping-spring system in time domain. The analytical and numerical solutions eq.(43) <strong>of</strong><br />

the second order differential equation are illustrated using a Matlab code.<br />

14


1.6.4 Analytical and Numerical Solution <strong>of</strong> Equation <strong>of</strong> Motion using Matlab<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

% DYNAMICS OF MACHINERY LECTURES (41035) %<br />

% MEK - DEPARTMENT OF MECHANICAL ENGINEERING %<br />

% DTU - TECHNICAL UNIVERSITY OF DENMARK %<br />

% %<br />

% Copenhagen, October 30th, 2003 %<br />

% %<br />

% <strong>IFS</strong> %<br />

% %<br />

% 1 D.O.F. SYSTEM - EXACT AND NUMERICAL SOLUTION %<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

clear all;<br />

close all;<br />

%Concentred Masses<br />

m1= 0.191; %[Kg]<br />

m2= 0.191; %[Kg]<br />

m3= 0.191; %[Kg]<br />

m4= 0.191; %[Kg]<br />

m5= 0.191; %[Kg]<br />

m6= 0.191; %[Kg]<br />

%Elastic Properties <strong>of</strong> the Beam <strong>of</strong> 600 [mm]<br />

E = 2e11; %elasticity modulus [N/m^2]<br />

b = 0.030 ; %width [m]<br />

h = 0.0012 ; %thickness [m]<br />

Iz= (b*h^3)/12; %area moment <strong>of</strong> inertia [m^4]<br />

%Mass-Spring-Damping System Properties<br />

L=0.610; %beam length<br />

K= 3*E*Iz/L^3; %stiffness coefficient<br />

M=m1+m2; %mass coefficient<br />

xi=0.005; %damping factor [no-dimension]<br />

D=2*xi*sqrt(K*M); %damping coefficient<br />

wn=sqrt(K/M); %natural frequency [rad/s]<br />

fn=wn/2/pi %natural frequency [Hz]<br />

fnexp=0.875; %measured natural frequency [Hz]<br />

dif=(fn-fnexp)/fnexp;%error between calculated<br />

%and measured frequencies<br />

%_____________________________________________________<br />

%Initial Condition<br />

y_ini= -0.000 % beam initial deflection [m]<br />

v_ini= -0.000 % beam initial velocity [m/s]<br />

freq_exc=0.95 % excitation frequency [Hz]<br />

force=-0.100 % excitation force [N]<br />

time_max=30.0; % integration time [s]<br />

%_____________________________________________________<br />

15<br />

%_____________________________________________________<br />

%EXACT SOLUTION % EQUATION (40)<br />

n=600; % number <strong>of</strong> points for plotting<br />

j=sqrt(-1); % complex number<br />

w=2*pi*freq_exc; % excitation frequency [rad/s]<br />

lambda1=-xi*wn+j*wn*sqrt(1-xi*xi);<br />

lambda2=-xi*wn-j*wn*sqrt(1-xi*xi); AA=(force/M)/(wn*wn-w*w +<br />

j*2*xi*wn*w); C1=(<br />

lambda2*(y_ini-AA)-(v_ini-j*w*AA))/(lambda2-lambda1);<br />

C2=(-lambda1*(y_ini-AA)+(v_ini-j*w*AA))/(lambda2-lambda1);<br />

for i=1:n,<br />

t(i)=(i-1)/n*time_max;<br />

y_exact(i)=C1*exp(lambda1*t(i)) + ...<br />

C2*exp(lambda2*t(i)) + ...<br />

AA*exp(j*w*t(i));<br />

end<br />

%_____________________________________________________<br />

%NUMERICAL SOLUTION % EQUATION (44)<br />

% trying different time steps to observe convergence<br />

% deltaT=0.3605; % time step [s]<br />

% deltaT=0.3; % time step [s]<br />

% deltaT=0.1; % time step [s]<br />

% deltaT=0.05; % time step [s]<br />

deltaT=0.01; % time step [s]<br />

n_integ=time_max/deltaT; % number <strong>of</strong> points (integration)<br />

% Initial Conditions<br />

y_approx(1) = y_ini; % beam initial deflection [m]<br />

yp_approx(1) = v_ini; % beam initial velocity [m/s]<br />

for i=1:n_integ,<br />

t_integ(i)=(i-1)*deltaT;<br />

ypp_approx(i) =-(wn*wn)*y_approx(i) ...<br />

-(2*xi*wn)*yp_approx(i) ...<br />

+(force/M)*exp(j*w*t_integ(i));<br />

yp_approx(i+1)= yp_approx(i) + ypp_approx(i)*deltaT;<br />

y_approx(i+1) = y_approx(i) + yp_approx(i+1)*deltaT;<br />

end<br />

%_____________________________________________________<br />

%Graphical Results<br />

title(’Simulation <strong>of</strong> 1 D.O.F System in Time Domain’)<br />

subplot(3,1,1), plot(t,real(y_exact),’b’)<br />

title(’(a) Exact Solution - (b) Numerical Solution<br />

(delta T = 0.01 s) - (c) Comparison’)<br />

xlabel(’time [s]’)<br />

ylabel(’(a) y(t) [m]’)<br />

grid<br />

subplot(3,1,2),<br />

plot(t_integ(1:n_integ),real(y_approx(1:n_integ)),’r’)<br />

xlabel(’time [s]’)<br />

ylabel(’(b) y(t) [m]’)<br />

grid<br />

subplot(3,1,3), plot(t,real(y_exact),’b’,t_integ(1:n_integ),<br />

real(y_approx(1:n_integ)),’r’)<br />

xlabel(’time [s]’)<br />

ylabel(’(c) y(t) [m]’)<br />

grid


1.6.5 Comparison between the Analytical and Numerical Solutions <strong>of</strong> Equation <strong>of</strong><br />

Motion<br />

(a) y(t) [m]<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

(a) Exact Solution − (b) Numerical Solution (delta T = 0.3605 s) − (c) Comparison<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.4<br />

(b) y(t) [m]<br />

(c) y(t) [m]<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.4<br />

0.2<br />

0<br />

−0.2<br />

−0.4<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

Figure 5: Comparison between the analytical and numerical solutions when a time step <strong>of</strong><br />

0.3605 [s] is used – Divergence and numerical instability.<br />

(a) y(t) [m]<br />

(b) y(t) [m]<br />

(c) y(t) [m]<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

(a) Exact Solution − (b) Numerical Solution (delta T = 0.3 s) − (c) Comparison<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.02<br />

0.01<br />

0<br />

−0.01<br />

−0.02<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.02<br />

0.01<br />

0<br />

−0.01<br />

−0.02<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

Figure 6: Comparison between the analytical and numerical solutions when a time step <strong>of</strong> 0.3 [s]<br />

is used – Divergence between the numerical and analytical solution due to a ro<strong>of</strong> time step.<br />

16


(a) y(t) [m]<br />

(b) y(t) [m]<br />

(c) y(t) [m]<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

(a) Exact Solution − (b) Numerical Solution (delta T = 0.1 s) − (c) Comparison<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

Figure 7: Comparison between the analytical and numerical solutions when a time step <strong>of</strong> 0.1 [s]<br />

is used – Accumulation <strong>of</strong> errors with the number <strong>of</strong> iterations and divergence between the numerical<br />

and analytical solutions.<br />

(a) y(t) [m]<br />

(b) y(t) [m]<br />

(c) y(t) [m]<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

(a) Exact Solution − (b) Numerical Solution (delta T = 0.05 s) − (c) Comparison<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

Figure 8: Comparison between the analytical and numerical solutions when a time step <strong>of</strong> 0.05 [s]<br />

is used – Accumulation <strong>of</strong> errors with the number <strong>of</strong> iterations and divergence between the numerical<br />

and analytical solutions.<br />

17


(a) y(t) [m]<br />

(b) y(t) [m]<br />

(c) y(t) [m]<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

(a) Exact Solution − (b) Numerical Solution (delta T = 0.01 s) − (c) Comparison<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

0.01<br />

0.005<br />

0<br />

−0.005<br />

−0.01<br />

0 1 2 3 4 5<br />

time [s]<br />

6 7 8 9 10<br />

Figure 9: Comparison between the analytical and numerical solutions when a time step <strong>of</strong> 0.01 [s]<br />

is used – Good agreement between the numerical and analytical solutions in the total range <strong>of</strong><br />

time.<br />

(a) y(t) [m]<br />

(b) y(t) [m]<br />

(c) y(t) [m]<br />

1<br />

0.5<br />

0<br />

−0.5<br />

(a) Exact Solution − (b) Numerical Solution (delta T = 0.01 s) − (c) Comparison<br />

−1<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

Figure 10: Comparison between the analytical and numerical solutions when a time step <strong>of</strong><br />

0.01 [s] is used – Good agreement between the numerical and analytical solutions in the total<br />

range <strong>of</strong> time. System behavior when excited by a harmonic force with a frequency near the<br />

natural frequency.<br />

18


1.6.6 Homogeneous Solution or Free-Vibrations or Transient Response - Experimental<br />

Analysis<br />

¨y1(t) + 2ξωn ˙y1(t) + ω 2 ny1(t) = 0 (45)<br />

1.6.7 Natural Frequency – ωn [rad/s] or fn [Hz]<br />

fn = 1<br />

<br />

k1<br />

2π m1<br />

= 1<br />

<br />

<br />

<br />

2π<br />

3EI<br />

L3 1 <br />

mi<br />

[Hz]<br />

number Length fn fexp fexp<br />

<strong>of</strong> masses [m] [Hz] [Hz] [Hz]<br />

(theor.) (*) (**)<br />

1 0.610 1.23 12/10 = 1.2 1.250<br />

2 0.610 0.87 8.5/10 = 0.85 0.875<br />

3 0.610 0.71 7/10 = 0.7 0.705<br />

4 0.610 0.61 6/10 = 0.6 0.625<br />

Table 3: Measuring the natural frequency <strong>of</strong> the mass-spring system ”A” with 1. d.o.f, (*) using<br />

the human eyes and a watch, and (**) using an accelerometer attached to the mass, and making<br />

a comparison to the theoretical mathematical model.<br />

number Length fexp<br />

<strong>of</strong> masses [m] [Hz]<br />

(*)<br />

2 0.610 0.875<br />

2 0.310 1.875<br />

Table 4: Measuring the natural frequency <strong>of</strong> the mass-spring system ”A” with 1. d.o.f, (*) using<br />

the human eyes and a watch, when the equivalent stiffness <strong>of</strong> the system is changed, by modifying<br />

the position (length) where the lumped mass is attached to the beam.<br />

1.6.8 Damping Factor ξ or Logarithmic Decrement β<br />

• Experimental identification without using sensors (OBS: Experiment carried out using a<br />

watch, light and shadow, a calculator, and the mass-spring system oscillating from an<br />

initial condition <strong>of</strong> displacement yo = yini until half the initial amplitude yN = yini/2.)<br />

1<br />

2πN<br />

ξ =<br />

ln<br />

<br />

yo<br />

yN<br />

<br />

<br />

1 1 + 2πN ln<br />

<br />

yo<br />

yN<br />

2<br />

or β = 2π ξ<br />

19


Using the information <strong>of</strong> figure 11 (signal in time domain), where<br />

yo = 3.0 · 10 −5 [m/s 2 ] (first peak <strong>of</strong> signal in time domain, figure 11)<br />

yN = y6 = 2.0 · 10 −5 [m/s 2 ] (after 6 peaks)<br />

N = 6,<br />

one gets<br />

• Damping Factor <strong>of</strong> the system ”A” (ξ)<br />

ξ = <br />

• Log Dec<br />

1 +<br />

1<br />

2π·6 ln<br />

1<br />

2π·6 ln<br />

3.0·10 −5<br />

2.0·10 −5<br />

<br />

3.0·10 −5<br />

2.0·10 −5<br />

β = 2π ξ = 2π 0.010 = 0.068<br />

• Equivalent Viscous Damping (d)<br />

<br />

=<br />

2 0.010755<br />

≈ 0.010<br />

1.000058<br />

d = 2 · ξ · ωn · m = 2 · 0.010 · (0.87 · 2 · π) · 0.382 ≈ 0.016 [N · s/m]<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

2<br />

0<br />

−2<br />

x Signal 10−5<br />

4<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−4<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

x 10−5<br />

1<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 11: Transient Vibration – Acceleration <strong>of</strong> the clamped-free flexible beam when two concentrated<br />

masses m = m1 +m2 = 0.382 Kg are attached at its free end (L = 0.610 m) – Natural<br />

frequency <strong>of</strong> the mass-spring system ”A”: 0.87 Hz.<br />

20


(a) Amplitude [m/s 2 ]<br />

x Signal 10−5<br />

5<br />

0<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

(b) Amplitude [m/s 2 ]<br />

x 10−5<br />

2<br />

1<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 12: Transient Vibration – Acceleration <strong>of</strong> the clamped-free flexible beam when two concentrated<br />

masses m = m1 +m2 = 0.382 Kg are attached at its free end (L = 0.310 m) – Natural<br />

frequency <strong>of</strong> the mass-spring system ”B”: 1.75 Hz.<br />

• Damping Factor <strong>of</strong> the system ”B” – From fig.12, one gets: yo = 4.6 · 10 −5 [m/s 2 ], yN =<br />

y54 = 1.0 · 10 −5 [m/s 2 ] and N = 54:<br />

ξ = <br />

1 +<br />

1<br />

2π·54 ln<br />

1<br />

2π·54 ln<br />

4.6·10 −5<br />

1.0·10 −5<br />

<br />

4.6·10 −5<br />

1.0·10 −5<br />

• Equivalent Viscous Damping (d)<br />

<br />

=<br />

2 0.004498<br />

≈ 0.005 (46)<br />

1.000010<br />

d = 2 · ξ · ωn · m = 2 · 0.005 · (1.75 · 2 · π) · 0.382 ≈ 0.04 [N · s/m]<br />

21


(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

0.5<br />

0<br />

−0.5<br />

x Signal 10−4<br />

1<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−1<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−5<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 13: Free vibration – Spring-mass systems with 1 D.O.F. Two masses m = m1 + m2 =<br />

0.382 Kg fixed at the middle <strong>of</strong> the beam L1 = 0.155 m, resulting in a system ”B” natural<br />

frequency <strong>of</strong> 3.81 Hz<br />

• Damping Factor <strong>of</strong> the system ”B” – From fig.13, one gets: yo = 0.95 · 10 −4 [m/s 2 ],<br />

yN = y34 = 0.50 · 10 −4 [m/s 2 ] and N = 34:<br />

ξ = <br />

1 +<br />

1<br />

2π·34 ln<br />

1<br />

2π·34 ln<br />

0.95·10 −4<br />

0.50·10 −4<br />

<br />

0.95·10 −4<br />

0.50·10 −4<br />

• Equivalent Viscous Damping (d)<br />

<br />

=<br />

2 0.003029<br />

≈ 0.003<br />

1.000005<br />

d = 2 · ξ · ωn · m = 2 · 0.003 · (3.81 · 2 · π) · 0.382 ≈ 0.05 [N · s/m]<br />

22


(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

x 10 −4 Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

x 10−5<br />

1<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 14: Free vibration – Spring-mass systems with 1 D.O.F. One mass m = m1 = 0.191 Kg<br />

fixed at the middle <strong>of</strong> the beam L1 = 0.155 m, resulting in a system ”B” natural frequency <strong>of</strong><br />

4.94 Hz<br />

• Damping Factor <strong>of</strong> the system ”B” – From fig.13, one gets: yo = 0.95 · 10 −4 [m/s 2 ],<br />

yN = y14 = 0.50 · 10 −4 [m/s 2 ] and N = 14:<br />

ξ = <br />

1 +<br />

1<br />

2π·14 ln<br />

1<br />

2π·14 ln<br />

0.95·10 −4<br />

0.50·10 −4<br />

<br />

0.95·10 −4<br />

0.50·10 −4<br />

• Equivalent Viscous Damping (d)<br />

<br />

=<br />

2 0.007296<br />

≈ 0.007<br />

1.000026<br />

d = 2 · ξ · ωn · m = 2 · 0.007 · (4.94 · 2 · π) · 0.191 ≈ 0.08 [N · s/m]<br />

IMPORTANT CONCLUSION: THE DAMPING FACTOR IS A CHARACTER-<br />

ISTIC OF THE GLOBAL MECHANICAL SYSTEM AND SIMULTANEOUSLY DE-<br />

PENDS ON MASS m, STIFFNESS k AND DAMPING d COEFFICIENTS, NOT<br />

ONLY ON THE DAMPING COEFFICIENT, AS YOU CAN SEE IN THE DEFINI-<br />

TION:<br />

• ξ = d<br />

2·m·ωn<br />

= d1<br />

2· √ m·k<br />

IT IS POSSIBLE TO INCREASE THE DAMPING FACTOR OF A MECHANICAL<br />

SYSTEM EITHER BY DECREASING THE MASS m, OR BY DECREASING THE<br />

STIFFNESS k OR BY INCREASING THE DAMPING COEFFICIENT d. THE<br />

DAMPING FACTOR IS A VERY USEFUL PARAMETER FOR DEFINING THE<br />

RESERVE OF STABILITY IN MACHINERY DYNAMICS.<br />

23


1.6.9 Forced Vibrations or Steady-State Response<br />

The two most frequent ways <strong>of</strong> representing the frequency response function <strong>of</strong> mechanical<br />

systems are presented in figure 15: (a) and (b) real and imaginary parts as a function <strong>of</strong> the<br />

excitation frequency; (c) and (d) magnitude and phase as a function <strong>of</strong> the excitation frequency.<br />

Other alternative ways are presented in figures 16 and 17.<br />

(a) Frequency Response Function (Real <strong>Part</strong>)<br />

5<br />

ξ=0.005<br />

ξ=0.05<br />

Real(A(ω)) [m/N]<br />

0<br />

−5<br />

0 0.5 1 1.5 2<br />

Frequency [Hz]<br />

(b) Frequency Response Function (Imaginary <strong>Part</strong>)<br />

0<br />

ξ=0.005<br />

−2<br />

ξ=0.05<br />

Imag(A(ω)) [m/N]<br />

−4<br />

−6<br />

−8<br />

−10<br />

0 0.5 1 1.5 2<br />

Frequency [Hz]<br />

Phase(A(ω)) [ o]<br />

(c) Frequency Response Function (Amplitude)<br />

10<br />

ξ=0.005<br />

8<br />

ξ=0.05<br />

||A(ω)|| [m/N]<br />

6<br />

4<br />

2<br />

−100<br />

−150<br />

0<br />

0 0.5 1 1.5 2<br />

Frequency [Hz]<br />

(d) Frequency Response Function (Phase)<br />

0<br />

−50<br />

ξ=0.005<br />

ξ=0.05<br />

−200<br />

0 0.5 1 1.5 2<br />

Frequency [Hz]<br />

Figure 15: Steady state response in the frequency domain or Frequency Response Function<br />

f/m<br />

(FRF): (a) and (b) illustrate the real and imaginary part <strong>of</strong> A = −ω2 +ω2 n +i2ξωnω; (c) and (d)<br />

illustrate the magnitude and phase <strong>of</strong> the complex function A =<br />

1.6.10 Resonance and Phase<br />

f/m<br />

−ω 2 +ω 2 n+i2ξωnω .<br />

• In order to understand the ”90 degree phase while in resonance” use the tactile senses –<br />

Remember the experiments in the classroom using the mass-beam system and forces applied<br />

by your finger, and outside building 404, using a car and a tree and the forces applied by<br />

your hands (synchronization).<br />

• Complex Vector Diagram <strong>of</strong> Resonance and Phase<br />

24


Imag(A(ω)) [m/N]<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

−5<br />

−6<br />

−7<br />

−8<br />

Frequency Response Function (Real <strong>Part</strong>)<br />

ξ=0.005<br />

ξ=0.05<br />

−9<br />

−5 −4 −3 −2 −1 0 1 2 3 4 5<br />

Real(A(ω)) [m/N]<br />

Figure 16: Steady state response in the frequency domain or Frequency Response Function (FRF)<br />

illustrated as the real versus the imaginary part <strong>of</strong> A =<br />

Imag(A(ω)) [m/N]<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

1<br />

0.5<br />

Real(A(ω)) [m/N]<br />

0<br />

Frequency Response Function<br />

−0.5<br />

0<br />

0.5<br />

f/m<br />

−ω 2 +ω 2 n +i2ξωnω.<br />

1<br />

1.5<br />

Frequency [Hz]<br />

2<br />

ξ=0.05<br />

Figure 17: Steady state response in the frequency domain or Frequency Response Function (FRF)<br />

f/m<br />

illustrated in a 3D-plot: the real and imaginary parts <strong>of</strong> A = −ω2 +ω2 as a function <strong>of</strong> the<br />

n+i2ξωnω<br />

frequency.<br />

25


(a)<br />

(b)<br />

(c)<br />

Figure 18: Complex vector diagram using an excitation force <strong>of</strong> constant magnitude: (a) the<br />

frequency <strong>of</strong> the excitation force is lower than the natural frequency; (b) the frequency <strong>of</strong> the<br />

excitation force is coincident with the natural frequency, characterizing a resonance case where<br />

the phase between the force and the displacement is 90 degrees, i.e. the phase between the force<br />

and the velocity is 0 degrees, meaning a synchronization between force and velocity; (c) the<br />

frequency <strong>of</strong> the excitation force is bigger than the natural frequency.<br />

26


1.6.11 Superposition <strong>of</strong> Transient and Forced Vibrations in Time Domain (Simulation)<br />

(a)<br />

(c)<br />

(e)<br />

y(t) [m]<br />

y(t) [m]<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

(a) Excitation Frequency : 0.1 Hz<br />

−2.5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

−2.5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

y(t) [m]<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

(a) Excitation Frequency : 0.8 Hz<br />

(a) Excitation Frequency : 0.9 Hz<br />

−2.5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

(b)<br />

(d)<br />

(f)<br />

y(t) [m]<br />

y(t) [m]<br />

y(t) [m]<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

(a) Excitation Frequency : 0.7 Hz<br />

−2.5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

(a) Excitation Frequency : 0.8702 Hz<br />

−2.5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

(a) Excitation Frequency : 1.0 Hz<br />

−2.5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

Figure 19: Time response <strong>of</strong> the system with 1 D.O.F. excited by forces with different frequencies<br />

(a) ω = 0.1 Hz (before resonance); (b) ω = 0.7 Hz; (before resonance); (c) ω = 0.8 Hz (before<br />

resonance but close – beating); (d) ω = 0.8702 Hz (at resonance); (e) ω = 0.9 Hz (after<br />

resonance but close – beating); (f) ω = 1.0 Hz (after resonance).<br />

27


1.6.12 Resonance – Experimental Analysis in Time Domain<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

x 10 −5 Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−5<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

0.5<br />

x 10 −5 Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−5<br />

1.5<br />

1<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

0.5<br />

x 10 −5 Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−5<br />

1.5<br />

1<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 20: Resonance phenomena due to force excitations with frequency around the natural<br />

frequency <strong>of</strong> the mass-spring system: 1 D.O.F. system with natural frequency <strong>of</strong> 0.87 Hz, excited<br />

by the shaker with frequencies <strong>of</strong> 0.80 Hz, 0.87 Hz and 0.90 Hz – Spring-mass system (A) with<br />

two masses m = m1 + m2 = 0.382 Kg fixed at the beam (A) length L1 = 0.600 m, resulting in a<br />

natural frequency <strong>of</strong> 0.87 Hz.<br />

28


(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

x Signal 10−5<br />

5<br />

0<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−5<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 21: Beating phenomena with two transient responses – Two spring-mass systems with 1<br />

D.O.F. each, vibrating with very similar natural frequencies (transient responses), resulting in<br />

beating phenomena: Spring-mass system ”A” with three masses m = m1 +m2 +m3 = 0.576 Kg<br />

fixed at the beam length L1 = 0.285 m, resulting in a natural frequency near 1.75 Hz; Springmass<br />

system ”B” with masses m = m4 + m5 = 0.382 Kg fixed at the end <strong>of</strong> the beam L1 =<br />

0.310 m, resulting in a natural frequency <strong>of</strong> 1.75 Hz<br />

29


(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

6<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

x 10 −6 Signal (a) in Time Domain − (b) in Frequency Domain<br />

−8<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−6<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

(a) Amplitude [m/s 2 ]<br />

x Signal 10−5<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−1.5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

(b) Amplitude [m/s 2 ]<br />

x 10−6<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 22: Beating phenomena due to transient (low damping factor) and forced vibrations<br />

with similar frequencies: 1 D.O.F. system ”A” with natural frequency <strong>of</strong> 0.87 Hz, excited by<br />

a shaker with frequencies <strong>of</strong> 0.80 Hz and 0.90 Hz - Spring-mass system ”A” with two masses<br />

m = m1+m2 = 0.382 Kg fixed at the beam length L1 = 0.600 m, resulting in a natural frequency<br />

<strong>of</strong> 0.87 Hz.<br />

30


1.7 Mechanical Systems with 2 D.O.F.<br />

1.7.1 Physical System and Mechanical Model<br />

(a)<br />

(b)<br />

(c)<br />

Figure 23: (a) Real mechanical system built by two turbines attached to an airplane flexible wing;<br />

(b) Laboratory prototype built by two lumped masses attached to a flexible beam); (c) Equivalent<br />

mechanical model with 2 D.O.F. for the two lumped masses attached to the flexible beam.<br />

1.7.2 Mathematical Model<br />

M¨y(t) + D˙y(t) + Ky(t) = f(t) (47)<br />

m11 m12<br />

m21 m22<br />

¨y1<br />

¨y2<br />

<br />

d11 d12<br />

+<br />

d21 d22<br />

˙y1<br />

˙y2<br />

<br />

k11 k12<br />

+<br />

k21 k22<br />

31<br />

y1<br />

y2<br />

<br />

=<br />

f1<br />

f2<br />

<br />

(48)


where<br />

m11 = m1 + m2<br />

m12 = 0<br />

m21 = 0<br />

m22 = m3 + m4<br />

d11 = 2ξ k11m11<br />

d12 = 0<br />

d21 = 0<br />

d22 = 2ξ k22m22<br />

(49)<br />

⎫<br />

⎪⎬<br />

(Approximation <strong>of</strong> damping coefficients using the exp. damping factor!)<br />

⎪⎭<br />

12EI<br />

3<br />

k11 =<br />

(4L2 − L1)(L1 − L2) 2(L2/L1)<br />

6EI<br />

k12 =<br />

(4L2 − L1)(L1 − L2) 2(L1 − 3L2)/L1<br />

6EI<br />

k21 =<br />

(4L2 − L1)(L1 − L2) 2(L1 − 3L2)/L1<br />

12EI<br />

k22 =<br />

(4L2 − L1)(L1 − L2) 2<br />

The coefficients <strong>of</strong> the mass matrix can easily be achieved. Each <strong>of</strong> the single masses has<br />

m1 = m2 = m3 = m4 = m5 = m6 = 0.191 Kg. The stiffness coefficients kij were calculated<br />

in the section 1.5, using the geometry <strong>of</strong> the beam (I, L1 , L2) and its material properties<br />

(E). The damping matrix can be approximated by using proportional damping, for example,<br />

D = αM + βK. The coefficients α and β can be chosen, so that the damping factor ξ <strong>of</strong> the<br />

first resonance is <strong>of</strong> the same order as the one in the previous section. Please, note that this<br />

is just an approximation which be verified using Modal Analysis Techniques. Another way <strong>of</strong><br />

approximating the damping coefficients is given by eq.(50).<br />

1.7.3 Analytical and Numerical Solution <strong>of</strong> System <strong>of</strong> Differential Linear Equations<br />

System <strong>of</strong> Equation <strong>of</strong> motion<br />

<br />

m11<br />

m21<br />

<br />

m12 ¨y1 d11<br />

+<br />

m22 ¨y2 d21<br />

<br />

d12 ˙y1<br />

d22 ˙y2<br />

M¨y + D ˙y + Ky = ¯fe jωt<br />

<br />

+<br />

<br />

k11 k12 y1<br />

k21 k22<br />

Differential Equations 2nd order → 1st order<br />

<br />

M D ¨y<br />

0 M ˙y<br />

+<br />

<br />

0 K ˙y<br />

−M 0 y<br />

=<br />

<br />

¯f<br />

0<br />

A˙z(t) + Bz(t) = fe jωt<br />

32<br />

<br />

y2<br />

<br />

f1<br />

=<br />

f2<br />

e jωt<br />

<br />

e jωt<br />

(50)<br />

(51)<br />

(52)<br />

(53)


⎧ ⎫<br />

⎪⎨<br />

˙y1(t)<br />

⎪⎬<br />

˙y(t) ˙y2(t)<br />

z(t) = =<br />

y(t) ⎪⎩<br />

y1(t) ⎪⎭<br />

y2(t)<br />

→ velocity<br />

→ velocity<br />

→ displacement<br />

→ displacement<br />

The analytical solution can be divided into three steps: (I) homogeneous solution (transient analysis);<br />

(<strong>II</strong>) permanent solution (steady-state analysis) and (<strong>II</strong>I) general solution (homogeneous<br />

+ permanent).<br />

Homogeneous Solution and Transient Analysis – The homogeneous differential equation<br />

is achieved when the right side <strong>of</strong> the equation is set zero (see eq.(55)), or in other words, when<br />

no force is acting on the system.<br />

A˙zh(t) + Bzh(t) = 0 (55)<br />

(54)<br />

zh(t) = ue λt , (assumption) (56)<br />

˙zh(t) = λue λt<br />

The assumption (56) and its derivative are introduced into the differential equation (55), leading<br />

to an eigenvalue-eigenvector problem:<br />

[λA + B]ue λt = 0 ⇒ [λA + B]u = 0 (57)<br />

• Eigenvalues λi can be calculated by using eq.(58):<br />

determinant(λA + B) = 0 ⇒ λ1 , λ2 , λ3 , λ4 (58)<br />

• Eigenvectors ui can be calculated by using eq.(59):<br />

λ1Au = −Bu ⇒ u1<br />

λ2Au = −Bu ⇒ u2<br />

λ3Au = −Bu ⇒ u3<br />

λ4Au = −Bu ⇒ u4<br />

• The homogeneous solution can be written as:<br />

zh(t) = C1u1e λ1t + C2u2e λ2t + C3u3e λ3t + C4u4e λ4t<br />

where C1, C2, C3 and C4 are constants depending on the initial displacement and velocities <strong>of</strong><br />

the coordinates y1 and y2, when t = 0.<br />

33<br />

(59)


Permanent Solution and Steady-State Analysis – The permanent solution takes into<br />

account the right side <strong>of</strong> the differential equation (see eq.(60)), or in other words, the effect <strong>of</strong><br />

the force on the system. In case <strong>of</strong> harmonic excitation, one can write:<br />

A˙zp(t) + Bzp(t) = fe jωt<br />

(60)<br />

zp(t) = Ae jωt , (assumption!) (61)<br />

˙zp(t) = jωAe jωt<br />

The assumption adopted in eq.(61) and its derivative are introduced into the differential equation<br />

(60), leading to:<br />

[jωA + B]Ae jωt = fe jωt ⇒ A = [jωA + B] −1 f (62)<br />

The permanent solution <strong>of</strong> the equation <strong>of</strong> motion is given by:<br />

zp(t) = Ae jωt ⇒ zp(t) = [jωA + B] −1 fe jωt<br />

General Solution – The general solution <strong>of</strong> a linear differential equation is achieved by adding<br />

the homogenous and the permanent solutions, and by sequentially defining the initial conditions<br />

<strong>of</strong> the movement. This solution will provide information about the transient and steady-state<br />

response <strong>of</strong> the mechanical model. Considering that the order <strong>of</strong> the mechanical model is correct<br />

(in this case, the two degree-<strong>of</strong>-freedom system), the solution <strong>of</strong> the linear differential equation<br />

will be useful for predicting the dynamical behavior <strong>of</strong> the physical system, if the coefficients<br />

<strong>of</strong> the differential equation (M, D and K, or A and B) are properly chosen, either by using<br />

theoretical or experimental information or both. The general solution <strong>of</strong> the differential equation<br />

<strong>of</strong> motion is given by:<br />

z(t) = C1u1e λ1t + C2u2e λ2t + C3u3e λ3t + C4u4e λ4t + Ae iωt<br />

where z(t) gives information about the displacement and velocity <strong>of</strong> the coordinates y1 and y2.<br />

Introducing the initial conditions <strong>of</strong> displacement and velocity<br />

zini = { v1ini<br />

v2ini y1ini y2ini }T<br />

into eq.(64), when t = 0, one obtains<br />

z(0) = zini = C1u1e λ10 + C2u2e λ20 + C3u3e λ30 + C4u4e λ40 + Ae iω0<br />

or<br />

⎧<br />

⎪⎨<br />

zini = C1u1 + C2u2 + C3u3 + C4u4 + A = [ u1 u2 u3 u4 ]<br />

⎪⎩<br />

C1<br />

C2<br />

C3<br />

C4<br />

(63)<br />

(64)<br />

(65)<br />

(66)<br />

⎫<br />

⎪⎬<br />

+ A (67)<br />

⎪⎭<br />

Solving the linear system by inverting the modal matrix U = [ u1 u2 u3 u4 ] one achieves the<br />

vector c = { C1 C2 C3 C4 } T :<br />

34


zini = U c + A ⇒ c = U −1 {(zini − A)} (68)<br />

Summarizing, below is the analytical solution <strong>of</strong> a second order differential equation, which is<br />

responsible for describing the displacements and velocities <strong>of</strong> the coordinates y1(t) and y2(t) in<br />

time domain, as a function <strong>of</strong> the excitation force and the initial condition <strong>of</strong> displacement and<br />

velocity:<br />

z(t) = C1u1e λ1t + C2u2e λ2t + C3u3e λ3t + C4u4e λ4t + Ae iωt<br />

where<br />

<br />

λ1 = −ξ1ωn1 − ωn1 1 − ξ2 1 · i<br />

<br />

and u1<br />

λ2 = −ξ1ωn1 + ωn1 1 − ξ2 1 · i<br />

<br />

and u2<br />

λ3 = −ξ2ωn2 − ωn2 1 − ξ2 2 · i<br />

<br />

and u3<br />

λ4 = −ξ2ωn2 + ωn2 1 − ξ2 2 · i and u4<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

C1<br />

C2<br />

C3<br />

C4<br />

A = [jωA + B] −1 f<br />

⎫<br />

⎪⎬<br />

= [ u1 u2 u3 u4 ]<br />

⎪⎭<br />

−1 { zini − A}<br />

Numerical Solution – The numerical solution <strong>of</strong> the system <strong>of</strong> differential equations can be<br />

found by using the approximation according to Taylor’s expansion. Thus, one equation can be<br />

approximated by:<br />

f(t) ⋍ f(t0) + df<br />

<br />

<br />

<br />

<br />

dt<br />

t=t0<br />

(t − t0) + d2 f<br />

dt 2<br />

<br />

<br />

<br />

<br />

t=t0<br />

(t − t0)... + dn f<br />

dt n<br />

<br />

<br />

<br />

<br />

t=t0<br />

(69)<br />

(t − t0) (70)<br />

Assuming a very small time step t −t0 ≪ 1, the higher order terms <strong>of</strong> eq.(71) can be neglected.<br />

It turns:<br />

f(t) ⋍ f(t0) + df<br />

<br />

<br />

<br />

<br />

dt<br />

t=t0<br />

(t − t0) (71)<br />

Knowing the initial conditions <strong>of</strong> the movement, when t = t0 = 0,<br />

y(0) = y0<br />

y1(0)<br />

y2(0)<br />

<br />

=<br />

y1ini<br />

y1ini<br />

<br />

35<br />

(72)


and<br />

˙y(0) = ˙y0<br />

˙y1(0)<br />

˙y2(0)<br />

<br />

=<br />

v1ini<br />

v2ini<br />

<br />

and the equation <strong>of</strong> motion eq.(52), which has to be solved, one can calculate the acceleration,<br />

when t = t0 = 0:<br />

¨y0 = −M −1 D ˙y0 + Ky0 − ¯ jωt0 fe<br />

The first predicted values <strong>of</strong> displacement, velocity and acceleration in time t1 = ∆t , using the<br />

approximation given by eq.(71), are:<br />

t1 = ∆t<br />

˙y1 = ˙y0 + ¨y0∆t<br />

y1 = y0 + ˙y1∆t<br />

¨y1 = −M −1 D ˙y1 + Ky1 − ¯ jωt1 fe<br />

The second predicted values <strong>of</strong> displacement, velocity and acceleration in time t2 = t1 + ∆t ,<br />

using the approximation given by eq.(71), are:<br />

t2 = 2∆t<br />

˙y2 = ˙y1 + ¨y1∆t<br />

y2 = y1 + ˙y2∆t<br />

¨y2 = −M −1 D ˙y2 + Ky2 − ¯ jωt2 fe<br />

The N-th predicted values <strong>of</strong> displacement, velocity and acceleration in time tN = tN−1 + ∆t ,<br />

using the approximation given by eq.(74), are:<br />

tN = N∆t<br />

˙yN = ˙yN−1 + ¨yN−1∆t<br />

yN = yN−1 + ˙yN∆t<br />

¨yN = −M −1 D ˙yN + KyN − ¯ jωtN fe<br />

Plotting the points [y1,y2,y3, ...,yN] versus [t1, t2, t3, ..., tN], one can observe the numerical<br />

solution <strong>of</strong> the differential equation, which describes the displacements <strong>of</strong> the mass-dampingspring<br />

system in time domain. Plotting the points [ ˙y1, ˙y2, ˙y3, ..., ˙yN] versus [t1, t2, t3, ..., tN] or<br />

[¨y1, ¨y2, ¨y3, ..., ¨yN] versus [t1, t2, t3, ..., tN] one can also observe the velocity and acceleration <strong>of</strong><br />

the mass-damping-spring system in time domain. The analytical and numerical solutions <strong>of</strong> the<br />

second order differential equation, eq.(52), are illustrated using a Matlab code.<br />

36<br />

(74)<br />

(73)


1.7.4 Modal Analysis using Matlab eig-function [u, w] = eig(−B, A)<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

% MACHINERY DYNAMICS LECTURES (41614) %<br />

% MEK - DEPARTMENT OF MECHANICAL ENGINEERING %<br />

% DTU - TECHNICAL UNIVERSITY OF DENMARK %<br />

% %<br />

% Copenhagen, February 11th, 2000 %<br />

% <strong>IFS</strong> %<br />

% %<br />

% MODAL ANALYSIS %<br />

% %<br />

% 2 D.O.F. SYSTEMS - MODAL ANALYSIS - 3 EXPERIMENTAL CASES %<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

clear all; close all;<br />

%Concentred Masses<br />

m1= 0.191; %[Kg]<br />

m2= 0.191; %[Kg]<br />

m3= 0.191; %[Kg]<br />

m4= 0.191; %[Kg]<br />

m5= 0.191; %[Kg]<br />

m6= 0.191; %[Kg]<br />

%Elastic Properties <strong>of</strong> the Beam <strong>of</strong> 600 mm<br />

E= 2e11; %elasticity modulus [N/m^2]<br />

b= 0.030 ; %width [m]<br />

h= 0.0012 ; %thickness [m]<br />

I= (b*h^3)/12; %area moment <strong>of</strong> inertia [m^4]<br />

% (1.CASE) Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1; %concentrated mass [Kg] |<br />

M2=m2; %concentrated mass [Kg] |<br />

L1= 0.310; %length for positioning M1 [m] |<br />

L2= 0.610; %length for positioning M2 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix<br />

LL=(L1-4*L2)*(L1-L2)^2;<br />

K11= -12*(E*I/LL)*L2^3/L1^3; %equivalent Stiffness [N/m]<br />

K12= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m]<br />

K21= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m]<br />

K22= -12*(E*I/LL); %equivalent Stiffness [N/m]<br />

%Mass Matrix<br />

M= [M1 0; 0 M2];<br />

%Stiffness Matrix<br />

K= [K11 K12; K21 K22];<br />

%Damping Matrix<br />

D= [0 0; 0 0];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); % Eigenvectors u<br />

% Eigenvalues w [rad/s]<br />

w<br />

u<br />

pause;<br />

w_vector=diag(w);<br />

[natfreq,indice]=sort(w_vector); % Sorting the natural Frequencies<br />

% Natural Frequencies (Hz)<br />

w1=abs(imag(w_vector(indice(1))))/2/pi % First natural frequency<br />

w2=abs(imag(w_vector(indice(3))))/2/pi % Second natural frequency<br />

mass_position(1) = 0; mass_position(2) = L1; mass_position(3) =<br />

L2;<br />

% first mode shape<br />

uu1(1)=0; uu1(2)=u(1,indice(1)); uu1(3)=u(2,indice(1)); figure(1)<br />

plot(uu1,mass_position,’r*-.’,-uu1,mass_position,’r*-.’,’LineWidth’,1.5)<br />

grid f1=num2str(w1); set(gca,’FontSize’,12,’FontAngle’,’oblique’);<br />

title([’First Mode Shape - Freq.: ’,f1,’ Hz’])<br />

37<br />

% second mode shape<br />

uu2(1)=0; uu2(2)=u(1,indice(3)); uu2(3)=u(2,indice(3)); figure(2)<br />

plot(uu2,mass_position,’r*-.’,-uu2,mass_position,’r*-.’,’LineWidth’,1.5)<br />

grid f2=num2str(w2); set(gca,’FontSize’,12,’FontAngle’,’oblique’);<br />

title([’Second Mode Shape - Freq.: ’,f2,’ Hz’]) pause;<br />

% (2.CASE) Increasing the Mass Values<br />

%__________________________________________________<br />

M1=m1+m2; %concentrated mass [Kg] |<br />

M2=m3+m4; %concentrated mass [Kg] |<br />

L1= 0.310; %length for positioning M1 [m] |<br />

L2= 0.610; %length for positioning M2 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix<br />

LL=(L1-4*L2)*(L1-L2)^2;<br />

K11= -12*(E*I/LL)*L2^3/L1^3; %equivalent Stiffness [N/m]<br />

K12= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m]<br />

K21= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m]<br />

K22= -12*(E*I/LL); %equivalent Stiffness [N/m]<br />

%Mass Matrix<br />

M= [M1 0; 0 M2];<br />

%Stiffness Matrix<br />

K= [K11 K12; K21 K22];<br />

%Damping Matrix<br />

D= [0 0; 0 0];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); % Eigenvectors u<br />

% Eigenvalues w [rad/s]<br />

w<br />

u<br />

pause;<br />

w_vector=diag(w);<br />

[natfreq,indice]=sort(w_vector); % Sorting the natural Frequencies<br />

% Natural Frequencies (Hz)<br />

w1=abs(imag(w_vector(indice(1))))/2/pi % First natural frequency<br />

w2=abs(imag(w_vector(indice(3))))/2/pi % Second natural frequency<br />

mass_position(1) = 0; mass_position(2) = L1; mass_position(3) =<br />

L2;<br />

% first mode shape<br />

uu1(1)=0; uu1(2)=u(1,indice(1)); uu1(3)=u(2,indice(1)); figure(3)<br />

plot(uu1,mass_position,’b*-.’,-uu1,mass_position,’b*-.’,’LineWidth’,1.5)<br />

grid f1=num2str(w1); set(gca,’FontSize’,12,’FontAngle’,’oblique’);<br />

title([’First Mode Shape - Freq.: ’,f1,’ Hz’])<br />

% second mode shape<br />

uu2(1)=0; uu2(2)=u(1,indice(3)); uu2(3)=u(2,indice(3)); figure(4)<br />

plot(uu2,mass_position,’b*-.’,-uu2,mass_position,’b*-.’,’LineWidth’,1.5)<br />

grid f2=num2str(w2); set(gca,’FontSize’,12,’FontAngle’,’oblique’);<br />

title([’Second Mode Shape - Freq.: ’,f2,’ Hz’]) pause;<br />

% (3.CASE) Increasing the Mass Values<br />

%__________________________________________________<br />

M1=m1+m2+m3; %concentrated mass [Kg] |<br />

M2=m4+m5+m6; %concentrated mass [Kg] |<br />

L1= 0.310; %length for positioning M1 [m] |<br />

L2= 0.610; %length for positioning M2 [m] |<br />

%__________________________________________________|<br />

...


(1.CASE)<br />

w =<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); % Eigenvectors u<br />

% Eigenvalues w [rad/s]<br />

0 +48.8527i 0 0 0<br />

0 0 -48.8527i 0 0<br />

0 0 0 + 7.3517i 0<br />

0 0 0 0 - 7.3517i<br />

u =<br />

1.0000 1.0000 0.3300 0.3300<br />

-0.3300 -0.3300 1.0000 1.0000<br />

0 - 0.0355i 0 + 0.0355i 0 - 0.0778i 0 + 0.0778i<br />

0 + 0.0117i 0 - 0.0117i 0 - 0.2356i 0 + 0.2356i<br />

(2.CASE)<br />

w =<br />

0 +34.5441i 0 0 0<br />

0 0 -34.5441i 0 0<br />

0 0 0 + 5.1985i 0<br />

0 0 0 0 - 5.1985i<br />

u =<br />

1.0000 1.0000 -0.3300 -0.3300<br />

-0.3300 -0.3300 -1.0000 -1.0000<br />

0 - 0.0289i 0 + 0.0289i 0 + 0.0635i 0 - 0.0635i<br />

0 + 0.0096i 0 - 0.0096i 0 + 0.1924i 0 - 0.1924i<br />

(3.CASE)<br />

u =<br />

1.0000 1.0000 -0.3300 -0.3300<br />

-0.3300 -0.3300 -1.0000 -1.0000<br />

0 - 0.0205i 0 + 0.0205i 0 + 0.0449i 0 - 0.0449i<br />

0 + 0.0068i 0 - 0.0068i 0 + 0.1360i 0 - 0.1360i<br />

w =<br />

0 +28.2051i 0 0 0<br />

0 0 -28.2051i 0 0<br />

0 0 0 + 4.2445i 0<br />

0 0 0 0 - 4.2445i<br />

38


0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

First Mode Shape − Freq.: 1.1701 Hz<br />

0<br />

(a) −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

(b)<br />

(c)<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

First Mode Shape − Freq.: 0.82736 Hz<br />

First Mode Shape − Freq.: 0.67554 Hz<br />

0<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Second Mode Shape − Freq.: 7.7751 Hz<br />

0<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Second Mode Shape − Freq.: 5.4979 Hz<br />

0<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Second Mode Shape − Freq.: 4.489 Hz<br />

0<br />

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1<br />

Figure 24: First and second mode shapes <strong>of</strong> the mechanical system modelled with 2 D.O.F. (a)<br />

(1.CASE) – one mass attached to each <strong>of</strong> the two coordinates; (b) (2.CASE) – two masses<br />

attached to each one <strong>of</strong> the two coordinates; (c) (3.CASE) – three masses attached to each one<br />

<strong>of</strong> the two coordinates.<br />

39


1.7.5 Analytical and Numerical Solutions <strong>of</strong> Equation <strong>of</strong> Motion using Matlab<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

% DYNAMICS OF MACHINERY LECTURES (72213) %<br />

% MEK - DEPARTMENT OF MECHANICAL ENGINEERING %<br />

% DTU - TECHNICAL UNIVERSITY OF DENMARK %<br />

% %<br />

% Copenhagen, February 11th, 2000 %<br />

% %<br />

% <strong>IFS</strong> %<br />

% %<br />

% 2 D.O.F - EXACT AND NUMERICAL SOLUTION %<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

clear all;<br />

close all;<br />

%Concentred Masses<br />

m1= 0.191; %[Kg]<br />

m2= 0.191; %[Kg]<br />

m3= 0.191; %[Kg]<br />

m4= 0.191; %[Kg]<br />

m5= 0.191; %[Kg]<br />

m6= 0.191; %[Kg]<br />

%Elastic Properties <strong>of</strong> the Beam <strong>of</strong> 600 [mm]<br />

E = 2e11; %elasticity modulus [N/m^2]<br />

b = 0.030 ; %width [m]<br />

h = 0.0012 ; %thickness [m]<br />

Iz= (b*h^3)/12; %area moment <strong>of</strong> inertia [m^4]<br />

% (1.CASE) Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1+m2; %concentrated mass [Kg] |<br />

M2=m3+m4; %concentrated mass [Kg] |<br />

L1= 0.310; %length for positioning M1 [m] |<br />

L2= 0.610; %length for positioning M2 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix<br />

LL=(L1-4*L2)*(L1-L2)^2;<br />

K11= -12*(E*Iz/LL)*L2^3/L1^3; % Stiffness coeff.[N/m]<br />

K12= -6*(E*Iz/LL)*(L1-3*L2)/L1; % Stiffness coeff.[N/m]<br />

K21= -6*(E*Iz/LL)*(L1-3*L2)/L1; % Stiffness coeff.[N/m]<br />

K22= -12*(E*Iz/LL); % Stiffness coeff.[N/m]<br />

% Coefficients <strong>of</strong> the Damping Matrix<br />

% (damping factor xi=0.005)<br />

D11= 2*0.005*sqrt(M1/K11); % Damping coeff.[Ns/m]<br />

D12= 0; % Damping coeff.[Ns/m]<br />

D21= 0; % Damping coeff.[Ns/m]<br />

D22= 2*0.005*sqrt(M2/K22); % Damping coeff.[Ns/m]<br />

%Mass Matrix<br />

M= [M1 0; 0 M2];<br />

%Damping Matrix<br />

D=[D11 D12; D21 D22];<br />

%Stiffness Matrix<br />

K= [K11 K12; K21 K22];<br />

%State Matrices A & B % EQUATION (52)<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %eigenvectors u<br />

%eigenvalues w<br />

w1=abs(imag(w(3,3)))/2/pi; %first natural freq.[Hz]<br />

w2=abs(imag(w(1,1)))/2/pi; %second natural freq.[Hz]<br />

wexp1=0.78125; %measured natural freq.[Hz]<br />

wexp2=5.563; %measured natural freq.[Hz]<br />

dif1=(w1-wexp1)/wexp1; %error calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2; %error calculated and measured freq.<br />

%_____________________________________________________<br />

%Initial Condition<br />

y1_ini = -0.000 % beam initial deflection [m]<br />

y2_ini = -0.000 % beam initial deflection [m]<br />

v1_ini = -0.001 % beam initial velocity [m/s]<br />

v2_ini = -0.000 % beam initial velocity [m/s]<br />

freq_exc = 0.000 % excitation frequency [Hz]<br />

force1 = -0.000 % excitation force 1 [N]<br />

force2 = -0.000 % excitation force 2 [N]<br />

time_max = 30.0; % integration time [s]<br />

%_____________________________________________________<br />

40<br />

%_____________________________________________________<br />

%EXACT SOLUTION % EQUATION (68)<br />

n=2000; % number <strong>of</strong> points for plotting<br />

j=sqrt(-1); % complex number<br />

w_exc=2*pi*freq_exc; % excitation frequency [rad/s]<br />

z_ini = [v1_ini v2_ini y1_ini y2_ini]’;<br />

force_exc = [force1 force2 0 0 ]’;<br />

vec_aux = z_ini - inv((j*w_exc*A + B))*force_exc;<br />

lambda1=w(1,1);<br />

lambda2=w(2,2);<br />

lambda3=w(3,3);<br />

lambda4=w(4,4);<br />

u1=u(1:4,1);<br />

u2=u(1:4,2);<br />

u3=u(1:4,3);<br />

u4=u(1:4,4);<br />

C=inv(u)*(vec_aux);<br />

c1=C(1);<br />

c2=C(2);<br />

c3=C(3);<br />

c4=C(4);<br />

for i=1:n,<br />

t(i)=(i-1)/n*time_max;<br />

y_exact=c1*u1*exp(lambda1*t(i)) + ...<br />

c2*u2*exp(lambda2*t(i)) + ...<br />

c3*u3*exp(lambda3*t(i)) + ...<br />

c4*u4*exp(lambda4*t(i)) + ...<br />

inv((j*w_exc*A + B))*force_exc*exp(j*w_exc*t(i));<br />

end<br />

y1_exact(i) = y_exact(3);<br />

y2_exact(i) = y_exact(4);<br />

figure(1)<br />

title(’Simulation <strong>of</strong> 2 D.O.F System in Time Domain’)<br />

subplot(2,1,1), plot(t,real(y1_exact),’b’)<br />

title(’Exact Solution ’)<br />

xlabel(’time [s]’)<br />

ylabel(’ y1_{exact}(t) [m]’)<br />

grid<br />

subplot(2,1,2), plot(t,real(y2_exact),’b’)<br />

xlabel(’time [s]’)<br />

ylabel(’y2_{exact}(t) [m]’)<br />

grid<br />

pause;<br />

%_____________________________________________________<br />

%NUMERICAL SOLUTION % EQUATION (73)<br />

% deltaT=0.3605; % time step [s]<br />

% deltaT=0.3; % time step [s]<br />

% deltaT=0.1; % time step [s]<br />

% deltaT=0.05; % time step [s]<br />

% deltaT=0.01; % time step [s]<br />

deltaT=0.005; % time step [s]<br />

n_integ=time_max/deltaT; % number <strong>of</strong> points (integration)<br />

% Initial Conditions<br />

y1_approx(1) = y1_ini; % beam initial deflection [m]<br />

y2_approx(1) = y2_ini; % beam initial deflection [m]<br />

yp1_approx(1) = v1_ini; % beam initial velocity [m/s]<br />

yp2_approx(1) = v2_ini; % beam initial velocity [m/s]<br />

for i=1:n_integ,<br />

t_integ(i)=(i-1)*deltaT;<br />

ypp1_approx(i)=-1/M1*(K11*y1_approx(i)+K12*y2_approx(i) ...<br />

+ D11*yp1_approx(i)+D12*yp2_approx(i) ...<br />

-(force1)*exp(j*w_exc*t_integ(i)));<br />

ypp2_approx(i)=-1/M2*(K21*y1_approx(i)+K22*y2_approx(i) ...<br />

+D21*yp1_approx(i)+D22*yp2_approx(i) ...<br />

-(force2)*exp(j*w_exc*t_integ(i)));<br />

yp1_approx(i+1)=yp1_approx(i) + ypp1_approx(i)*deltaT;<br />

yp2_approx(i+1)=yp2_approx(i) + ypp2_approx(i)*deltaT;<br />

y1_approx(i+1)=y1_approx(i)+yp1_approx(i+1)*deltaT;<br />

y2_approx(i+1)=y2_approx(i)+yp2_approx(i+1)*deltaT;<br />

end<br />

%_____________________________________________________


%_____________________________________________________<br />

%Graphical Results<br />

figure(2)<br />

title(’Simulation <strong>of</strong> 2 D.O.F System in Time Domain’)<br />

subplot(2,1,1), plot(t_integ(1:n_integ),<br />

real(y1_approx(1:n_integ)),’r’)<br />

title(’Numerical Solution (delta T = 0.005 s)’)<br />

xlabel(’time [s]’)<br />

ylabel(’y1_{approx}(t) [m]’)<br />

grid<br />

subplot(2,1,2), plot(t_integ(1:n_integ),<br />

real(y2_approx(1:n_integ)),’r’)<br />

xlabel(’time [s]’)<br />

ylabel(’y2_{approx}(t) [m]’)<br />

grid<br />

%_____________________________________________________<br />

%Graphical Results (Comparison Exact vs. Numerical)<br />

figure(3)<br />

subplot(2,1,1), plot(t,real(y1_exact),’b’,<br />

t_integ(1:n_integ),real(y1_approx(1:n_integ)),’r’)<br />

title(’Simulation <strong>of</strong> 2 D.O.F System in Time Domain -<br />

Exact Solution vs. Numerical Solution<br />

(delta T = 0.005 s)’)<br />

xlabel(’time [s]’)<br />

ylabel(’y1_{approx}(t) [m]’)<br />

grid<br />

subplot(2,1,2), plot(t,real(y2_exact),’b’,<br />

t_integ(1:n_integ),real(y2_approx(1:n_integ)),’r’)<br />

xlabel(’time [s]’)<br />

ylabel(’y2_{approx}(t) [m]’)<br />

grid<br />

1.7.6 Analytical and Numerical Results <strong>of</strong> the System <strong>of</strong> Equations <strong>of</strong> Motion<br />

y1 exact (t) [m]<br />

y2 exact (t) [m]<br />

y1 approx (t) [m]<br />

y2 approx (t) [m]<br />

2<br />

0<br />

−2<br />

−4<br />

x Exact 10−5<br />

4<br />

Solution<br />

−6<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

x 10−5<br />

6<br />

−8<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x Numerical 10−5<br />

5<br />

0<br />

Solution (delta T = 0.005 s)<br />

−5<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

x 10−5<br />

6<br />

−8<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

Figure 25: Analytical and Numerical Solutions – (a) Analytical solution with initial velocity<br />

condition at ˙y1(0) = 1 mm/s, ˙y2(0) = 0 mm/s, y1(0) = 0 mm and y2(0) = 0 mm; (b) Numerical<br />

solution (time step <strong>of</strong> 0.005 [s]) with the same initial conditions – Transient Analysis.<br />

41


1.7.7 Programming in Matlab – Frequency Response Analysis<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

% MACHINERY DYNAMICS LECTURES (72213) %<br />

% IKS - DEPARTMENT OF CONTROL ENGINEERING DESIGN %<br />

% DTU - TECHNICAL UNIVERSITY OF DENMARK %<br />

% %<br />

% Copenhagen, February 11th, 2000 %<br />

% <strong>IFS</strong> %<br />

% %<br />

% 2 D.O.F. SYSTEMS - FRF (FREQUENCY RESPONSE FUNCTION) %<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

%Concentred Masses<br />

m1= 0.191; %[Kg]<br />

m2= 0.191; %[Kg]<br />

m3= 0.191; %[Kg]<br />

m4= 0.191; %[Kg]<br />

m5= 0.191; %[Kg]<br />

m6= 0.191; %[Kg]<br />

%Elastic Properties <strong>of</strong> the Beam <strong>of</strong> 600 [mm]<br />

E= 2e11; %elasticity modulus [N/m^2]<br />

b= 0.030 ; %width [m]<br />

h= 0.0012 ; %thickness [m]<br />

I= (b*h^3)/12; %area moment <strong>of</strong> inertia [m^4]<br />

% (1.CASE) Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1+m2+m5; %concentrated mass [Kg] |<br />

M2=m3+m4+m6; %concentrated mass [Kg] |<br />

L1= 0.310; %length for positioning M1 [m] |<br />

L2= 0.610; %length for positioning M2 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix<br />

LL=(L1-4*L2)*(L1-L2)^2;<br />

K11= -12*(E*I/LL)*L2^3/L1^3; %equivalent Stiffness [N/m]<br />

K12= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m]<br />

K21= -6*(E*I/LL)*(L1-3*L2)/L1; %equivalent Stiffness [N/m]<br />

K22= -12*(E*I/LL); %equivalent Stiffness [N/m]<br />

% Coefficients <strong>of</strong> the Damping Matrix<br />

D11= 2*0.01*(2*pi*5.0)*M1; %equivalent Damping [N/m]<br />

D12= 0; %equivalent Damping [N/m]<br />

D21= 0; %equivalent Damping [N/m]<br />

D22= 2*0.01*(2*pi*1.0)*M2; %equivalent Damping [N/m]<br />

%Mass Matrix<br />

M= [M1 0; 0 M2];<br />

%Damping Matrix<br />

D=[D11 D12; D21 D22];<br />

%Stiffness Matrix<br />

K= [K11 K12; K21 K22];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %natural frequency [rad/s]<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s]<br />

w1=w(1) %first natural frequency [Hz]<br />

w2=w(3) %second natural frequency [Hz]<br />

wexp1=0.625 %measured natural frequency [Hz]<br />

wexp2=4.405 %measured natural frequency [Hz]<br />

dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq.<br />

42<br />

% FRF -- FREQUENCY RESPONSE FUNCTION<br />

N = 800 ; % number <strong>of</strong> points for plotting (see HP-Analyzer)<br />

N_factor = 100 ;<br />

% Given Excitation Function acting on the the point 1<br />

fo1 = 1 ; % [N] force amplitude acting on the point 1 <strong>of</strong> the beam<br />

fo2 = 0 ; % [N] force amplitude acting on the point 2 <strong>of</strong> the beam<br />

for i=1:N;<br />

F1(i)= fo1;<br />

F2(i)= fo2;<br />

end;<br />

% Calculation <strong>of</strong> the displacement, velocity and acceleration responses<br />

for i=1:N;<br />

w(i) = 2*pi*i/N_factor;<br />

j = sqrt(-1);<br />

AA = [(-M*w(i)*w(i)+K)+D*w(i)*j]; % Dynamical Stiffness Matrix<br />

x = inv(AA)*[F1(i) F2(i)]’; % Displacement (complex)<br />

x11(i) = x(1); % rail vibration displacement<br />

x21(i) = x(2); % sleeves displacement<br />

end;<br />

% Given Excitation Function acting on the the point 2<br />

fo1 = 0 ; % [N] force amplitude acting on the point 1 <strong>of</strong> the beam<br />

fo2 = 1 ; % [N] force amplitude acting on the point 2 <strong>of</strong> the beam<br />

for i=1:N;<br />

F1(i)= fo1;<br />

F2(i)= fo2;<br />

end;<br />

% Calculation <strong>of</strong> the displacement, velocity and acceleration responses<br />

for i=1:N;<br />

w(i) = 2*pi*i/N_factor;<br />

j = sqrt(-1);<br />

AA = [(-M*w(i)*w(i)+K)+D*w(i)*j]; % Dynamical Stiffness Matrix<br />

x = inv(AA)*[F1(i) F2(i)]’; % Displacement (complex)<br />

x12(i) = x(1); % rail vibration displacement<br />

x22(i) = x(2); % sleeves displacement<br />

end;<br />

% Plotting the results<br />

figure(1)<br />

subplot(2,2,1),plot(w/2/pi,abs(x11))<br />

title(’Excitation on Point 1 and Response <strong>of</strong> Point 1’)<br />

xlabel(’Frequency [Hz]’)<br />

ylabel(’(a) y11 [m/N]’)<br />

grid on<br />

subplot(2,2,2),plot(w/2/pi,abs(x12))<br />

title(’Excitation on Point 2and Response <strong>of</strong> Point 1’)<br />

xlabel(’Frequency [Hz]’)<br />

ylabel(’(b) y12[m/N]’)<br />

grid on<br />

subplot(2,2,3),plot(w/2/pi,abs(x21))<br />

title(’Excitation on Point 1 and Response <strong>of</strong> Point 2’)<br />

xlabel(’Frequency [Hz]’)<br />

ylabel(’(c) y21 [m/N]’)<br />

grid on<br />

subplot(2,2,4),plot(w/2/pi,abs(x22))<br />

title(’Excitation on Point 2 and Response <strong>of</strong> Point 2’)<br />

xlabel(’Frequency [Hz]’)<br />

ylabel(’(d) y22 [m/N]’)<br />

grid on


||y 1 (ω)|| [m/N]<br />

Phase [ o]<br />

Excitation on Point 1 and Response <strong>of</strong> Point 1<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

0<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

0<br />

−50<br />

−350<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

||y 2 (ω)|| [m/N]<br />

Phase [ o]<br />

Excitation on Point 1 and Response <strong>of</strong> Point 2<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

0<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

0<br />

−50<br />

−350<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

Figure 26: Forced Vibration – Theoretical Frequency Response Function (FRF) <strong>of</strong> the clampedfree<br />

flexible beam when two concentrated masses m = m1 + m2 = 0.382 Kg are attached at its<br />

free end (L = 0.610 m) and two additional masses m = m1 + m2 = 0.382 Kg are attached at its<br />

middle (L = 0.310 m) – Natural frequencies <strong>of</strong> the 2. D.O.F. mass-spring system ”A”: 0.81 Hz<br />

and 5.56 Hz.<br />

1.7.8 Understanding Resonances and Mode Shapes using your Eyes and Fingers<br />

• Understanding the ”90 Degree Phase between excitation force and displacement response<br />

while in Resonance” using tactile senses. In other words, understanding ”Zero Degree Phase<br />

between the excitation force and velocity response while in resonance” using tactile senses.<br />

• Visualization <strong>of</strong> the participation <strong>of</strong> modes shapes in the transient response – Visualization<br />

using your eyes! Transient motion <strong>of</strong> the physical system excited with different initial<br />

conditions by using your fingers!<br />

43


||y 1 (ω)|| [m/N]<br />

Phase [ o]<br />

Excitation on Point 2 and Response <strong>of</strong> Point 1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

0<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

0<br />

−50<br />

−350<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

||y 2 (ω)|| [m/N]<br />

Phase [ o]<br />

Excitation on Point 2 and Response <strong>of</strong> Point 2<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

0<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

0<br />

−50<br />

−350<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

Figure 27: Forced Vibration – Theoretical Frequency Response Function (FRF) <strong>of</strong> the clampedfree<br />

flexible beam when two concentrated masses m = m1 + m2 = 0.382 Kg are attached at its<br />

free end (L = 0.610 m) and two additional masses m = m1 + m2 = 0.382 Kg are attached at its<br />

middle (L = 0.310 m) – Natural frequencies <strong>of</strong> the 2. D.O.F. mass-spring system ”A”: 0.81 Hz<br />

and 5.56 Hz.<br />

44


||y i (ω)|| [m/N]<br />

Phase [ o]<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

Excitation on Point 1<br />

0<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

0<br />

−50<br />

point 1<br />

point 2<br />

point 1<br />

point 2<br />

−350<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

||y i (ω)|| [m/N]<br />

Phase [ o]<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

−100<br />

−150<br />

−200<br />

−250<br />

−300<br />

Excitation on Point 2<br />

0<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

0<br />

−50<br />

point 1<br />

point 2<br />

point 1<br />

point 2<br />

−350<br />

0 2 4<br />

Frequency [Hz]<br />

6 8<br />

Figure 28: Forced Vibration – Theoretical Frequency Response Function (FRF) <strong>of</strong> the clampedfree<br />

flexible beam when two concentrated masses m = m1 + m2 = 0.382 Kg are attached at its<br />

free end (L = 0.610 m) and two additional masses m = m1 + m2 = 0.382 Kg are attached at its<br />

middle (L = 0.310 m) – Natural frequencies <strong>of</strong> the 2. D.O.F. mass-spring system ”A”: 0.81 Hz<br />

and 5.56 Hz.<br />

45


Imag(y i (ω)/f 1 (ω)) (i=1,2) [m/N]<br />

0.1<br />

0<br />

−0.1<br />

−0.2<br />

−0.3<br />

−0.4<br />

−0.5<br />

−0.6<br />

FRF − Excitation on Point 1<br />

point 1<br />

point 2<br />

−0.7<br />

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4<br />

Real(y (ω)/f (ω)) (i=1,2) [m/N]<br />

i 1<br />

Figure 29: Forced Vibration – Theoretical Frequency Response Function (FRF) <strong>of</strong> the clampedfree<br />

flexible beam when two concentrated masses m = m1 + m2 = 0.382 Kg are attached at its<br />

free end (L = 0.610 m) and two additional masses m = m1 + m2 = 0.382 Kg are attached at its<br />

middle (L = 0.310 m) – Natural frequencies <strong>of</strong> the 2. D.O.F. mass-spring system ”A”: 0.81 Hz<br />

and 5.56 Hz.<br />

46


Imag(y i (ω)/f 1 (ω)) (i=1,2) [m/N]<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

1<br />

0.5<br />

Real(y i (ω)/f 1 (ω)) (i=1,2) [m/N]<br />

0<br />

FRF − Excitation on Point 1<br />

−0.5<br />

0<br />

2<br />

4<br />

6<br />

Frequency [Hz]<br />

8<br />

point 1<br />

point 2<br />

Figure 30: Forced Vibration – Theoretical Frequency Response Function (FRF) <strong>of</strong> the clampedfree<br />

flexible beam when two concentrated masses m = m1 + m2 = 0.382 Kg are attached at its<br />

free end (L = 0.610 m) and two additional masses m = m1 + m2 = 0.382 Kg are attached at its<br />

middle (L = 0.310 m) – Natural frequencies <strong>of</strong> the 2. D.O.F. mass-spring system ”A”: 0.81 Hz<br />

and 5.56 Hz.<br />

47


1.7.9 Resonance – Experimental Analysis in Time Domain<br />

(a) Amplitude [m/s 2 ]<br />

1<br />

0<br />

−1<br />

x Signal 10−5<br />

2<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−2<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

(b) Amplitude [m/s 2 ]<br />

4<br />

3<br />

2<br />

1<br />

x 10 −6<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

(a) Amplitude [m/s 2 ]<br />

1<br />

0<br />

−1<br />

x Signal 10−5<br />

2<br />

(a) in Time Domain − (b) in Frequency Domain<br />

−2<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

(b) Amplitude [m/s 2 ]<br />

8<br />

6<br />

4<br />

2<br />

x 10 −6<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 31: Resonance phenomena due to the excitation force with frequency around the natural<br />

frequency <strong>of</strong> the mass-spring system: 2 D.O.F. system with the natural frequencies <strong>of</strong> 0.62 Hz<br />

and 4.59, excited by the shaker – Spring-mass system ”A” with three masses m = m1+m2+m3 =<br />

0.573 Kg fixed at the beam length L2 = 0.610 m and three additional masses m = m4+m5+m6 =<br />

0.573 Kg fixed at the middle L1 = 0.310 m resulting in two natural frequencies <strong>of</strong> 0.62 Hz and<br />

4.60 Hz.<br />

48


1.8 Mechanical Systems with 3 D.O.F.<br />

1.8.1 Physical System and Mechanical Model<br />

(a)<br />

(b)<br />

(c)<br />

Figure 32: (a) Real mechanical system built by three turbines attached to an airplane flexible<br />

wing; (b) Laboratory prototype built by three lumped masses attached to a flexible beam); (c)<br />

Equivalent mechanical model with 3 D.O.F. for the three lumped masses attached to a flexible<br />

beam.<br />

1.8.2 Mathematical Model<br />

It is important to point out again, that the equations <strong>of</strong> motion in <strong>Dynamics</strong> <strong>of</strong> Machinery will<br />

frequently have the form <strong>of</strong> a second order differential equation: ¨y(t) = F(y(t), ˙y(t)). Such<br />

equations can generally be linearized around an operational position <strong>of</strong> the physical system,<br />

leading to second order linear differential equations. It means that the coefficients which are<br />

multiplying the variables ¨y1(t) , ˙y1(t) , y1(t) , ¨y2(t) , ˙y2(t) , y2(t) , ¨y3(t) , ˙y3(t) , y3(t) (coordinates<br />

chosen to describe the motion <strong>of</strong> the physical system) do not depend on the variables<br />

themselves. In the case <strong>of</strong> the mechanical model presented in figure 32, these coefficients are<br />

constants: m1, m2 and m3 are related to the masses; d11, d12, d13, d21, d22, d23, d31, d32 and<br />

d33 are related to the equivalent viscous damping; and k11, k12, k13, k21, k22, k23, k31, k32 and<br />

k33 are related to equivalent stiffness. One <strong>of</strong> the goals <strong>of</strong> the course (<strong>Dynamics</strong> <strong>of</strong> <strong>Machines</strong>) is<br />

to present theoretical or experimental approaches to properly find these coefficients, so that the<br />

49


equations <strong>of</strong> motion can really describe the movement <strong>of</strong> the physical system.<br />

After creating the mechanical model for the physical system, the next step is to derive the<br />

equation <strong>of</strong> motion based on the mechanical model. The mechanical model is built by lumped<br />

masses m1, m2, m1 (assumption !!!), springs with equivalent stiffness coefficient (calculated<br />

using Beam Theory) and dampers with equivalent viscous coefficient (obtained experimentally).<br />

While creating the mechanical model and assuming that the mass is a particle, the equation <strong>of</strong><br />

motion can be derived using Newton’s or Lagrange axioms. For the 3 D.O.F system one can<br />

write:<br />

M¨y(t) + D˙y(t) + Ky(t) = f(t) (75)<br />

or<br />

⎡<br />

⎣<br />

m11 m12 m13<br />

m21 m21 m23<br />

m31 m32 m33<br />

The mass coefficients<br />

⎫<br />

m11 = m1 + m2<br />

m12 = 0<br />

m13 = 0<br />

m21 = 0<br />

m22 = m3 + m4<br />

m23 = 0<br />

m31 = 0<br />

m32 = 0<br />

m33 = m5 + m6<br />

⎤⎧<br />

⎨ ¨y1<br />

⎦ ¨y2<br />

⎩<br />

¨y3<br />

⎪⎬<br />

⎪⎭<br />

⎫<br />

⎬<br />

⎭ +<br />

⎡<br />

⎣<br />

d11 d12 d13<br />

d21 d22 d23<br />

d31 d32 d33<br />

⎡<br />

+ ⎣<br />

⎤⎧<br />

⎨<br />

⎦<br />

⎩<br />

˙y1<br />

˙y2<br />

˙y3<br />

k11 k12 k13<br />

k21 k22 k23<br />

k31 k32 k33<br />

⎫<br />

⎬<br />

⎭ +<br />

⎤⎧<br />

⎨<br />

⎦<br />

⎩<br />

y1<br />

y2<br />

y3<br />

⎫<br />

⎬<br />

⎭ =<br />

⎧<br />

⎨<br />

⎩<br />

f1<br />

f2<br />

f3<br />

⎫<br />

⎬<br />

⎭ ejωt<br />

can easily be achieved either by measuring the masses or by having the material density and<br />

mass dimensions.<br />

The equivalent damping coefficients can be approximated by<br />

d11 = 2ξ k11m11<br />

d12 = 0<br />

d13 = 0<br />

d21 = 0<br />

d22 = 2ξ k22m22<br />

d23 = 0<br />

d31 = 0<br />

d32 = 0<br />

d33 = 2ξ ⎫<br />

⎪⎬<br />

(Approximation!!!) (78)<br />

⎪⎭<br />

k33m33<br />

or by assuming, for example, proportional damping D = αM + βK. The coefficients α and β<br />

can be chosen, so that the damping factor ξ <strong>of</strong> the first resonance is <strong>of</strong> the same order as the<br />

damping factor achieved in the previous section. Please, note that this is just an approximation<br />

50<br />

(76)<br />

(77)


which could be verified using Modal Analysis Techniques. Another way <strong>of</strong> approximating the<br />

damping coefficients is given by eq.(78), which should also be verified through experiments!<br />

The stiffness coefficients<br />

k11 =<br />

3EIL 3 2 (L2 − 4L3)<br />

L 3 1 (L1 − L2) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

k12 = −3EI(−3L2(L2 − 2L3)L3 + L1(L 2 2 − 2L2L3 − 2L 2 3 ))<br />

L1(L1 − L2) 2 (L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

k13 =<br />

−9EIL 2 2<br />

L1(L1 − L2)(L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

k21 = −3EI(−3L2(L2 − 2L3)L3 + L1(L 2 2 − 2L2L3 − 2L 2 3 ))<br />

L1(L1 − L2) 2 (L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

k22 =<br />

k23 =<br />

k31 =<br />

k32 =<br />

k33 =<br />

3EI(L1 − 4L3)(L1 − L3) 2<br />

(L1 − L2) 2 (L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

−3EI(L 2 1 − 2L1L2 − 2L 2 2 − 3L1L3 + 6L2L3)<br />

(L1 − L2)(L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

−9EIL2 2<br />

L1(L1 − L2)(L2 − L3)(2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

−3EI(L 2 1 − 2L1L2 − 2L 2 2 − 3L1L3 + 6L2L3)<br />

(L1 − L2)(L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

3EI(L1 − 4L2)<br />

(L2 − L3) 2 (2L1L2 + L 2 2 + L1L3 − 4L2L3)<br />

can be calculated using the geometry <strong>of</strong> the beam (I, L1 , L2, L3) and its material properties (E),<br />

according to section 1.3. You can try to get these coefficients using the information presented<br />

in section 1.5.<br />

Differential Equations 2nd order → 1st order<br />

<br />

M D ¨y<br />

0 M ˙y<br />

+<br />

<br />

0 K ˙y<br />

−M 0 y<br />

=<br />

<br />

¯f<br />

0<br />

A˙z(t) + Bz(t) = fe jωt<br />

z(t) =<br />

˙y(t)<br />

y(t)<br />

⎧<br />

⎪⎨<br />

=<br />

⎪⎩<br />

˙y1(t)<br />

˙y2(t)<br />

˙y3(t)<br />

y1(t)<br />

y2(t)<br />

y3(t)<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

→ velocity<br />

→ velocity<br />

→ velocity<br />

→ displacement<br />

→ displacement<br />

→ displacement<br />

51<br />

<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

e jωt<br />

(79)<br />

(80)<br />

(81)


The analytical solution can be divided into three steps: (I) homogeneous solution (transient analysis);<br />

(<strong>II</strong>) permanent solution (steady-state analysis) and (<strong>II</strong>I) general solution (homogeneous<br />

+ permanent), as mentioned in section 1.7.3. Introducing the initial conditions <strong>of</strong> displacement<br />

and velocity<br />

zini = { v1ini<br />

one gets<br />

v2ini v3ini y1ini y2ini y3ini }T<br />

z(t) = C1u1e λ1t + C2u2e λ2t + C3u3e λ3t + C4u4e λ4t + C5u5e λ5t + C6u6e λ6t + Ae iωt<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

C1<br />

C2<br />

C3<br />

C4<br />

C5<br />

C6<br />

where<br />

<br />

λ1 = −ξ1ωn1 − ωn1 1 − ξ2 1 · i<br />

<br />

and u1<br />

λ2 = −ξ1ωn1 + ωn1 1 − ξ2 1 · i<br />

<br />

and u2<br />

λ3 = −ξ2ωn2 − ωn2 1 − ξ2 2 · i<br />

<br />

and u3<br />

λ4 = −ξ2ωn2 + ωn2 1 − ξ2 2 · i<br />

<br />

and u4<br />

λ5 = −ξ3ωn3 − ωn3 1 − ξ2 3 · i<br />

<br />

and u5<br />

λ6 = −ξ3ωn3 + ωn3 1 − ξ2 3 · i and u6<br />

⎫<br />

A = [jωA + B] −1 f<br />

⎪⎬<br />

= [ u1 u2 u3 u4 u5 u6 ] −1 { zini − A}<br />

⎪⎭<br />

1.8.3 Programming in Matlab – Theoretical Parameter Studies and Experimental<br />

Validation<br />

52<br />

(83)<br />

(82)


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

% MACHINERY DYNAMICS LECTURES (72213) %<br />

% IKS - DEPARTMENT OF CONTROL ENGINEERING DESIGN %<br />

% DTU - TECHNICAL UNIVERSITY OF DENMARK %<br />

% %<br />

% Copenhagen, February 11th, 2000 %<br />

% <strong>IFS</strong> %<br />

% %<br />

% 3 D.O.F. SYSTEMS - 4 DIFFERENT EXPERIMENTAL CASES %<br />

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%<br />

%Concentred Masses Values<br />

m1= 0.191; %[Kg]<br />

m2= 0.191; %[Kg]<br />

m3= 0.191; %[Kg]<br />

m4= 0.191; %[Kg]<br />

m5= 0.191; %[Kg]<br />

m6= 0.191; %[Kg]<br />

%Elastic Properties <strong>of</strong> the Beam <strong>of</strong> 600 [mm]<br />

E= 2.07e11; %elasticity modulus [N/m^2]<br />

b= 0.030 ; %width [m]<br />

h= 0.0012 ; %thickness [m]<br />

Iz= (b*h^3)/12; %area moment <strong>of</strong> inertia [m^4]<br />

% (1.CASE) Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1; %concentrated mass [Kg] |<br />

M2=m2; %concentrated mass [Kg] |<br />

M3=m3; %concentrated mass [Kg] |<br />

L1= 0.203; %length for positioning M1 [m] |<br />

L2= 0.406; %length for positioning M2 [m] |<br />

L3= 0.610; %length for positioning M3 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix [N/m]<br />

K11= (3*E*Iz*L2^3*(L2 - 4*L3))/(L1^3*(L1 - L2)^2*( ...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K12= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K13= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K21= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K22= (3*E*Iz*(L1 - 4*L3)*(L1 - L3)^2)/((L1 - ...<br />

L2)^2*(L2 - L3)^2*(2*L1*L2 + L2^2 + ...<br />

L1*L3 - 4*L2*L3));<br />

K23= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K31= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(2*L1*L2 ...<br />

+ L2^2 + L1*L3 - 4*L2*L3));<br />

K32= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K33= (3*E*Iz*(L1 - 4*L2))/((L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

%Mass Matrix<br />

M= [M1 0 0; 0 M2 0; 0 0 M3];<br />

%Stiffness Matrix<br />

K= [K11 K12 K13; K21 K22 K23; K31 K32 K33];<br />

%Damping Matrix<br />

D= [0 0 0; 0 0 0; 0 0 0];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %natural frequency [rad/s]<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s]<br />

w1=w(1); %first natural frequency [Hz]<br />

w2=w(3); %second natural frequency [Hz]<br />

w3=w(5); %third natural frequency [Hz]<br />

53<br />

wexp1=1.031 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp2=7.000 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp3=19.312 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq.<br />

dif3=(w3-wexp3)/wexp3 %error between calculated and measured freq.<br />

pause;<br />

% (2.CASE) Increasing the Mass Values<br />

% Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1+m4; %concentrated mass [Kg] |<br />

M2=m2+m5; %concentrated mass [Kg] |<br />

M3=m3+m6; %concentrated mass [Kg] |<br />

L1= 0.203; %length for positioning M1 [m] |<br />

L2= 0.406; %length for positioning M2 [m] |<br />

L3= 0.610; %length for positioning M3 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix [N/m]<br />

K11= (3*E*Iz*L2^3*(L2 - 4*L3))/(L1^3*(L1 - L2)^2*( ...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K12= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K13= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K21= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K22= (3*E*Iz*(L1 - 4*L3)*(L1 - L3)^2)/((L1 - ...<br />

L2)^2*(L2 - L3)^2*(2*L1*L2 + L2^2 + ...<br />

L1*L3 - 4*L2*L3));<br />

K23= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K31= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(2*L1*L2 ...<br />

+ L2^2 + L1*L3 - 4*L2*L3));<br />

K32= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K33= (3*E*Iz*(L1 - 4*L2))/((L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

%Mass Matrix<br />

M= [M1 0 0; 0 M2 0; 0 0 M3];<br />

%Stiffness Matrix<br />

K= [K11 K12 K13; K21 K22 K23; K31 K32 K33];<br />

%Damping Matrix<br />

D= [0 0 0; 0 0 0; 0 0 0];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %natural frequency [rad/s]<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s]<br />

w1=w(1); %first natural frequency [Hz]<br />

w2=w(3); %second natural frequency [Hz]<br />

w3=w(5); %third natural frequency [Hz]<br />

wexp1=0.71875 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp2=5.125 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp3=14.312 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq.<br />

dif3=(w3-wexp3)/wexp3 %error between calculated and measured freq.<br />

pause;


% (3.CASE) Changing the Position <strong>of</strong> the Concentrated Masses<br />

% Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1+m2; %concentrated mass [Kg] |<br />

M2=m3+m4; %concentrated mass [Kg] |<br />

M3=m5+m6; %concentrated mass [Kg] |<br />

L1= 0.150; %length for positioning M1 [m] |<br />

L2= 0.300; %length for positioning M2 [m] |<br />

L3= 0.450; %length for positioning M3 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix [N/m]<br />

K11= (3*E*Iz*L2^3*(L2 - 4*L3))/(L1^3*(L1 - L2)^2*( ...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K12= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K13= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K21= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K22= (3*E*Iz*(L1 - 4*L3)*(L1 - L3)^2)/((L1 - ...<br />

L2)^2*(L2 - L3)^2*(2*L1*L2 + L2^2 + ...<br />

L1*L3 - 4*L2*L3));<br />

K23= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K31= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(2*L1*L2 ...<br />

+ L2^2 + L1*L3 - 4*L2*L3));<br />

K32= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K33= (3*E*Iz*(L1 - 4*L2))/((L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

%Mass Matrix<br />

M= [M1 0 0; 0 M2 0; 0 0 M3];<br />

%Stiffness Matrix<br />

K= [K11 K12 K13; K21 K22 K23; K31 K32 K33];<br />

%Damping Matrix<br />

D= [0 0 0; 0 0 0; 0 0 0];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %natural frequency [rad/s]<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s]<br />

w1=w(1); %first natural frequency [Hz]<br />

w2=w(3); %second natural frequency [Hz]<br />

w3=w(5); %third natural frequency [Hz]<br />

wexp1=1.094 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp2=7.188 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp3=20.25 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq.<br />

dif3=(w3-wexp3)/wexp3 %error between calculated and measured freq.<br />

pause;<br />

54<br />

% (4.CASE) Changing the Position and the Values <strong>of</strong> the Concentrated Masses<br />

% Data for the mass-spring system<br />

%__________________________________________________<br />

M1=m1+m4+m5; %concentrated mass [Kg] |<br />

M2=m2+m6; %concentrated mass [Kg] |<br />

M3=m3; %concentrated mass [Kg] |<br />

L1= 0.150; %length for positioning M1 [m] |<br />

L2= 0.300; %length for positioning M2 [m] |<br />

L3= 0.450; %length for positioning M3 [m] |<br />

%__________________________________________________|<br />

% Coefficients <strong>of</strong> the Stiffness Matrix [N/m]<br />

K11= (3*E*Iz*L2^3*(L2 - 4*L3))/(L1^3*(L1 - L2)^2*( ...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K12= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K13= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(...<br />

2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K21= (-3*E*Iz*(-3*L2*(L2 - 2*L3)*L3 + L1*(L2^2 - ...<br />

2*L2*L3 - 2*L3^2)))/(L1*(L1 - L2)^2*(L2 - ...<br />

L3)*(2*L1*L2 + L2^2 + L1*L3 - 4*L2*L3));<br />

K22= (3*E*Iz*(L1 - 4*L3)*(L1 - L3)^2)/((L1 - ...<br />

L2)^2*(L2 - L3)^2*(2*L1*L2 + L2^2 + ...<br />

L1*L3 - 4*L2*L3));<br />

K23= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K31= (-9*E*Iz*L2^2)/(L1*(L1 - L2)*(L2 - L3)*(2*L1*L2 ...<br />

+ L2^2 + L1*L3 - 4*L2*L3));<br />

K32= (-3*E*Iz*(L1^2 - 2*L1*L2 - 2*L2^2 - 3*L1*L3 + ...<br />

6*L2*L3))/((L1 - L2)*(L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

K33= (3*E*Iz*(L1 - 4*L2))/((L2 - L3)^2*(2*L1*L2 + ...<br />

L2^2 + L1*L3 - 4*L2*L3));<br />

%Mass Matrix<br />

M= [M1 0 0; 0 M2 0; 0 0 M3];<br />

%Stiffness Matrix<br />

K= [K11 K12 K13; K21 K22 K23; K31 K32 K33];<br />

%Damping Matrix<br />

D= [0 0 0; 0 0 0; 0 0 0];<br />

%State Matrices<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

[u,w]=eig(-B,A); %natural frequency [rad/s]<br />

%Dynamical Properties <strong>of</strong> the Mass-Spring System<br />

w=sort(diag(abs(w)))/2/pi %natural frequency [rad/s]<br />

w1=w(1); %first natural frequency [Hz]<br />

w2=w(3); %second natural frequency [Hz]<br />

w3=w(5); %third natural frequency [Hz]<br />

exp1=1.312 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp2=7.219 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

wexp3=18.000 %measured natural frequency [Hz]<br />

%IMPORTANT: Freq resolution 400 lines<br />

dif1=(w1-wexp1)/wexp1 %error between calculated and measured freq.<br />

dif2=(w2-wexp2)/wexp2 %error between calculated and measured freq.<br />

dif3=(w3-wexp3)/wexp3 %error between calculated and measured freq.<br />

pause;


1.8.4 Theoretical Frequency Response Function<br />

(a) y11 [m/N]<br />

(d) y21 [m/N]<br />

(c) y31 [m/N]<br />

0.1<br />

0.05<br />

Excitation on Point 1<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

(b) y12 [m/N]<br />

(a) y22 [m/N]<br />

(d) y32 [m/N]<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Excitation on Point 2<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

(c) y13 [m/N]<br />

(b) y23 [m/N]<br />

(d) y33 [m/N]<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Excitation on Point 3<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

3<br />

2<br />

1<br />

0<br />

0 10 20 30<br />

Frequency [Hz]<br />

Figure 33: Forced Vibration – Theoretical Frequency Response Function (FRF) <strong>of</strong> the clampedfree<br />

flexible beam when two concentrated masses m33 = m1 + m2 = 0.382 Kg are attached at<br />

its free end (L = 0.610 m), two additional masses m22 = m3 + m4 = 0.382 Kg are attached<br />

at L = 0.410 m and two additional masses m11 = m5 + m6 = 0.382 Kg are attached at<br />

L = 0.210 m – – Natural frequencies <strong>of</strong> the 3 D.O.F. mass-spring system ”A”: 1.03 Hz,<br />

7.00 Hz and 19.31 Hz.<br />

55


1.8.5 Experimental – Natural Frequencies<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

x Signal 10−4<br />

3<br />

1<br />

(a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

x 10−5<br />

2<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 34: Transient Vibration – Acceleration <strong>of</strong> the clamped-free flexible beam when two concentrated<br />

masses m = m1 + m2 = 0.382 Kg are attached at its free end (L3 = 0.610 m), two<br />

additional masses m = m1 + m2 = 0.382 Kg are attached at its length (L2 = 0.410 m) and two<br />

additional masses m = m1 +m2 = 0.382 Kg are attached at its length (L1 = 0.210 m) – Natural<br />

frequencies <strong>of</strong> the 3 D.O.F. mass-spring system ”A”: 1.03 Hz, 7.00 Hz and 19.31 Hz.<br />

1.8.6 Experimental – Resonances and Mode Shapes<br />

• Visualization <strong>of</strong> the participation <strong>of</strong> modes shapes in the transient response – Visualization<br />

using your eyes! Transient motion <strong>of</strong> the physical system excited with different initial<br />

conditions by using your fingers!<br />

• Applying an oscillatory excitation by using your finger at the 3 different points <strong>of</strong> the<br />

physical system (co-ordinates <strong>of</strong> the mechanical model) and detecting the participation <strong>of</strong><br />

the mode shapes in the permanent solution or steady-state response by using your eyes.<br />

56


(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

(a) Amplitude [m/s 2 ]<br />

(b) Amplitude [m/s 2 ]<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

x 10 −5 Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

1.5<br />

1<br />

0.5<br />

x 10 −5<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

1.5<br />

0.5<br />

x 10 −5 Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

1<br />

x 10 −5<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

1.5<br />

0.5<br />

x 10 −5 Signal (a) in Time Domain − (b) in Frequency Domain<br />

0 5 10 15<br />

time [s]<br />

20 25 30<br />

1<br />

x 10 −5<br />

0<br />

0 5 10 15 20 25<br />

frequency [Hz]<br />

Figure 35: Resonance phenomena due to the excitation force with frequencies around the natural<br />

frequencies <strong>of</strong> the mass-spring system: 3 D.O.F. system with the natural frequencies <strong>of</strong> 0.75 Hz,<br />

5.12 Hz and 14.68 Hz, excited by the shaker – Spring-mass system ”A” with two masses m =<br />

m1 + m2 = 0.382 Kg fixed at the beam length L3 = 0.610 m, two additional masses fixed at<br />

L2 = 0.410 m and two more at L1 = 0.210 m.<br />

57


1.9 Exercises<br />

• Answer the questions using the Matlab program d<strong>of</strong>1-integration.m:<br />

1. Vary the cross section parameters <strong>of</strong> the beam (b,h) while exciting the mass-spring system<br />

with just an initial velocity (initial displacement and excitation force are set zero). (a)<br />

Explain what happens with the natural frequency <strong>of</strong> the mass-spring system; (b) What<br />

happens with the maximum vibration amplitude <strong>of</strong> the system?<br />

2. Vary the beam length (L) while exciting the mass-spring system with just an initial velocity<br />

(initial displacement and excitation force are set zero). (a) Explain what happens with<br />

the natural frequency <strong>of</strong> the mass-spring system; (b) What happens with the maximum<br />

vibration amplitude <strong>of</strong> the system?<br />

3. Vary the number <strong>of</strong> masses attached to the beam while exciting the mass-spring system with<br />

just an initial velocity (initial displacement and excitation force are set zero). (a) Explain<br />

what happens with the natural frequency <strong>of</strong> the mass-spring system; (b) What happens<br />

with the maximum vibration amplitude <strong>of</strong> the system?<br />

4. Vary the damping factor ξ while exciting the mass-spring-damping system with just an<br />

initial velocity (initial displacement and excitation force are set zero). (a) Explain what<br />

happens with the natural frequency wn <strong>of</strong> the mass-spring system and the damped natural<br />

frequency wd; (b) What happens with the maximum vibration amplitude <strong>of</strong> the system?<br />

5. Set the damping factor ξ = 0.005 while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f = 0.1 · e j·w·t [N] and initial velocity (initial displacement is set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies<br />

when: (a) w = 10%wn; (b) w = 50%wn; (c) w = 90%wn; (d) w = wn; (e) w = 110%wn; (f)<br />

w = 150%wn and (g) w = 200%wn.<br />

6. Set the damping factor at 10 times more than before, ξ = 0.05, while exciting the massspring-damping<br />

system with just an excitation force <strong>of</strong> f = 0.1·e j·w·t [N] and initial velocity<br />

(initial displacement is set zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong><br />

amplitudes and frequencies when: (a) w = 10%wn; (b) w = 50%wn; (c) w = 90%wn; (d)<br />

w = wn; (e) w = 110%wn; (f) w = 150%wn and (g) w = 200%wn.<br />

7. Explain how this parameters variation could be useful in the case <strong>of</strong> a real machine?<br />

• Answer the questions using the Matlab program d<strong>of</strong>2-integration.m:<br />

1. Excite the mass-spring system just with an initial velocity at the first coordinate ( ˙y1ini )<br />

(initial displacements and excitation forces are set zero). Describe the vibration behavior<br />

<strong>of</strong> points y1 and y2.<br />

2. Excite the mass-spring system just with an initial velocity at the second coordinate ( ˙y2ini )<br />

(initial displacements and excitation forces are set zero). Describe the vibration behavior<br />

<strong>of</strong> points y1 and y2.<br />

3. Compare the two last simulations. Why is the transient behavior so different when the<br />

system is perturbed with initial velocity at point y1 or at point y2?<br />

58


4. Vary the number <strong>of</strong> masses attached to the first coordinate y1 the beam while exciting<br />

the mass-spring system with just an initial velocity at the first coordinate ( ˙y1ini ) (initial<br />

displacements and excitation forces are set zero). (a) Explain what happens with the natural<br />

frequencies <strong>of</strong> the system; (b) How many natural frequencies change when you change the<br />

mass in just one point <strong>of</strong> the structure? Explain.<br />

5. Vary the number <strong>of</strong> masses attached to the second coordinate <strong>of</strong> the beam, y2, while exciting<br />

the mass-spring system with just an initial velocity at the first coordinate ( ˙y1ini ) (initial<br />

displacements and excitation forces are set zero). (a) Explain what happens with the natural<br />

frequencies <strong>of</strong> the system; (b) How many natural frequencies change when you change the<br />

mass in just one point <strong>of</strong> the structure? Explain.<br />

6. Set the damping factor ξ = 0.005, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f1 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2.<br />

7. Set the damping factor ξ = 0.05, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f1 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2.<br />

8. Set the damping factor ξ = 0.005, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f2 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2.<br />

9. Set the damping factor ξ = 0.05, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f2 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2;<br />

10. Explain how the variation <strong>of</strong> such parameters could be useful in a case with a real machine?<br />

• Create a program d<strong>of</strong>3-integration.m based on d<strong>of</strong>2-integration.m and answer the following<br />

questions:<br />

1. Make use <strong>of</strong> the beam theory, and show how to get the 9 stiffness coefficients k11, k12, k13,<br />

k21, k22, k23, k31, k32 and k33.<br />

2. Excite the mass-spring system with just an initial velocity at the first coordinate ( ˙y1ini )<br />

(initial displacements and excitation forces are set zero). Describe the vibration behavior<br />

<strong>of</strong> the points y1, y2 and y3.<br />

3. Excite the mass-spring system with just an initial velocity at the second coordinate ( ˙y2ini )<br />

(initial displacements and excitation forces are set zero). Describe the vibration behavior<br />

<strong>of</strong> the points y1, y2 and y3.<br />

59


4. Excite the mass-spring system with just an initial velocity at the third coordinate ( ˙y3ini )<br />

(initial displacements and excitation forces are set zero). Describe the vibration behavior<br />

<strong>of</strong> the points y1, y2 and y3.<br />

5. Compare the three last simulations. Why is the transient behavior so different when the<br />

system is perturbed with initial velocity at point y1, y2 or y3.<br />

6. Vary the number <strong>of</strong> masses attached to the first coordinate <strong>of</strong> the beam, y1, while exciting<br />

the mass-spring system with just an initial velocity at the first coordinate ( ˙y1ini ) (initial<br />

displacements and excitation forces are set zero). (a) Explain what happens with the natural<br />

frequencies <strong>of</strong> the system; (b) How many natural frequencies change when you change the<br />

mass in just one point <strong>of</strong> the structure? Explain.<br />

7. Vary the number <strong>of</strong> masses attached to the second coordinate <strong>of</strong> the beam, y2, while exciting<br />

the mass-spring system with just an initial velocity at the first coordinate ( ˙y1ini ) (initial<br />

displacements and excitation forces are set zero). (a) Explain what happens with the natural<br />

frequencies <strong>of</strong> the system; (b) How many natural frequencies change when you change the<br />

mass in just one point <strong>of</strong> the structure? Explain.<br />

8. Set the damping factor ξ = 0.005, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f1 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2; (j) w = 90%wn3; (k)<br />

w = wn3; (l) w = 110%wn3; (m) w = 200%wn3.<br />

9. Set the damping factor ξ = 0.05, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f1 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2; (j) w = 90%wn3; (k)<br />

w = wn3; (l) w = 110%wn3; (m) w = 200%wn3.<br />

10. Set the damping factor ξ = 0.005, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f3 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2; (j) w = 90%wn3; (k)<br />

w = wn3; (l) w = 110%wn3; (m) w = 200%wn3.<br />

11. Set the damping factor ξ = 0.05, while exciting the mass-spring-damping system with just<br />

an excitation force <strong>of</strong> f3 = 0.1 · e j·w·t [N] (initial velocities and initial displacements are set<br />

zero). Explain the vibration behavior <strong>of</strong> the system in terms <strong>of</strong> amplitudes and frequencies,<br />

when: (a) w = 10%wn1; (b) w = 50%wn1; (c) w = 90%wn1; (d) w = wn1; (e) w = 110%wn1;<br />

(f) w = 90%wn2; (g) w = wn2; (h) w = 110%wn2; (i) w = 200%wn2; (j) w = 90%wn3; (k)<br />

w = wn3; (l) w = 110%wn3; (m) w = 200%wn3;<br />

12. Explain how such a variation <strong>of</strong> parameters could be useful in a case with a real machine?<br />

60


1.10 Project 0 – Identification <strong>of</strong> Model Parameters (An Example)<br />

GOAL – With the first project the student will face a practical problem <strong>of</strong> the real life: how<br />

to properly choose the coefficients <strong>of</strong> linear differential equations <strong>of</strong> second order, aiming at<br />

achieving a reliable mathematical model, which can predict the machine dynamics?<br />

(a) (b)<br />

Figure 36: (a) Offshore platform http : //www.civl.port.ac.uk/comp−prog/<strong>of</strong>fshore−platforms;<br />

(b) Laboratory prototype composed <strong>of</strong> one concentrated mass (foundation and rotor) attached<br />

to four flexible beams – An equivalent model <strong>of</strong> 1 D.O.F. system for analyzing the platform’s<br />

linear vibration in the horizontal direction.<br />

To represent the 2D-movements <strong>of</strong> the <strong>of</strong>fshore platform shown in figure 36(a) a laboratory<br />

prototype was built, as it can be seen in figure 36(b). This simplified test rig is composed <strong>of</strong> one<br />

concentrated mass (foundation and rotor) attached to four flexible beams. An equivalent model<br />

<strong>of</strong> 1 D.O.F. system can be created with the purpose <strong>of</strong> analyzing the platform’s linear vibration<br />

in the horizontal direction.<br />

m0 2.108 [kg] platform mass<br />

L0 0.205 [m] beam length<br />

b0 0.025 [m] beam width<br />

h0 0.001 [m] beam thickness<br />

E 1.9 · 10 11 [N/m 2 ] steel elastic modulus<br />

Table 5: Main parameters <strong>of</strong> the test rig (platform)<br />

1. Create a mechanical model <strong>of</strong> one-degree-<strong>of</strong>-freedom for describing the horizontal vibration<br />

<strong>of</strong> the test rig. Use Newton’s law and equivalent coefficients <strong>of</strong> mass m [Kg], viscous<br />

damping d [N/(m/s)] and linear stiffness k [N/m].<br />

2. There are two different ways <strong>of</strong> experimentally obtaining the forced vibration response<br />

<strong>of</strong> the platform in the frequency domain, i.e. its frequency response functions FRF(ω),<br />

namely by means <strong>of</strong> H1(ω) and H2(ω) functions. Detail about how to experimentally<br />

obtain H1(ω) and H2(ω) will be given in the second part <strong>of</strong> manuscript. Anyway, for now,<br />

it is important to relate such experimental functions to the frequency response functions<br />

61


presented in section 1.6.9, to learn how to deal with experimental data and how to extract<br />

important information. H1(ω) as well as H2(ω) are obtained when an excitation force<br />

is horizontally acting on the platform mass and its value is measured by using a force<br />

transducer, and simultaneously the acceleration response <strong>of</strong> the platform is measured using<br />

a acceleration sensor. The experimental setup can be seen in figure 36(b). The most<br />

common ways <strong>of</strong> representing the frequency response functions H1(ω) and H2(ω) are in<br />

the form <strong>of</strong> amplitude and phase, or real and imaginary. In table 6 such values are presented<br />

in the real and imaginary forms and in figure 37 they are plotted. Please, plot H1(ω) and<br />

H2(ω) in terms <strong>of</strong> magnitude and phase.<br />

Frequency - H1 - H2 COHERENCE<br />

[Hz] [(m/s 2 )/N] [(m/s 2 )/N]<br />

1.6250 0.0490 - 0.0040i 0.0595 - 0.0049i 0.8236<br />

1.7500 0.0610 - 0.0051i 0.0698 - 0.0058i 0.8745<br />

1.8750 0.0750 - 0.0071i 0.0855 - 0.0080i 0.8776<br />

2.0000 0.0826 - 0.0068i 0.0945 - 0.0078i 0.8744<br />

2.1250 0.0974 - 0.0025i 0.1093 - 0.0028i 0.8907<br />

2.2500 0.1124 + 0.0015i 0.1204 + 0.0016i 0.9335<br />

2.3750 0.1310 - 0.0018i 0.1393 - 0.0019i 0.9403<br />

2.5000 0.1411 - 0.0100i 0.1477 - 0.0105i 0.9555<br />

2.6250 0.1540 - 0.0112i 0.1601 - 0.0116i 0.9621<br />

2.7500 0.1817 - 0.0040i 0.1889 - 0.0041i 0.9619<br />

2.8750 0.2113 - 0.0145i 0.2184 - 0.0150i 0.9677<br />

3.0000 0.2474 - 0.0172i 0.2520 - 0.0176i 0.9819<br />

3.1250 0.2676 - 0.0230i 0.2726 - 0.0234i 0.9817<br />

3.2500 0.3016 - 0.0364i 0.3080 - 0.0371i 0.9792<br />

3.3750 0.3460 - 0.0487i 0.3536 - 0.0497i 0.9787<br />

3.5000 0.4072 - 0.0467i 0.4173 - 0.0479i 0.9758<br />

3.6250 0.4601 - 0.0673i 0.4697 - 0.0687i 0.9795<br />

3.7500 0.5107 - 0.0903i 0.5165 - 0.0914i 0.9887<br />

3.8750 0.5894 - 0.1239i 0.5974 - 0.1256i 0.9866<br />

4.0000 0.6862 - 0.1427i 0.6994 - 0.1454i 0.9812<br />

4.1250 0.8110 - 0.1959i 0.8228 - 0.1987i 0.9857<br />

4.2500 0.9381 - 0.2824i 0.9539 - 0.2872i 0.9834<br />

4.3750 1.1113 - 0.4002i 1.1429 - 0.4116i 0.9723<br />

4.5000 1.3290 - 0.5385i 1.3711 - 0.5556i 0.9693<br />

4.6250 1.5586 - 0.8030i 1.6312 - 0.8405i 0.9555<br />

4.7500 1.8764 - 1.4666i 1.9844 - 1.5509i 0.9456<br />

4.8750 1.8832 - 2.0905i 2.0664 - 2.2938i 0.9114<br />

5.0000 1.2159 - 3.1027i 1.3216 - 3.3723i 0.9201<br />

5.1250 0.2098 - 3.6778i 0.2413 - 4.2301i 0.8694<br />

5.2500 -1.6165 - 3.2734i -1.7564 - 3.5568i 0.9203<br />

5.3750 -2.2154 - 2.3597i -2.3326 - 2.4844i 0.9498<br />

5.5000 -2.1657 - 1.4778i -2.2476 - 1.5337i 0.9635<br />

5.6250 -1.9289 - 1.1157i -1.9659 - 1.1371i 0.9812<br />

5.7500 -1.7058 - 0.8104i -1.7278 - 0.8208i 0.9873<br />

5.8750 -1.5511 - 0.6322i -1.5665 - 0.6384i 0.9902<br />

6.0000 -1.4389 - 0.5016i -1.4438 - 0.5033i 0.9966<br />

6.1250 -1.3520 - 0.4295i -1.3559 - 0.4307i 0.9971<br />

6.2500 -1.2591 - 0.3428i -1.2621 - 0.3436i 0.9976<br />

6.3750 -1.1843 - 0.3000i -1.1866 - 0.3006i 0.9980<br />

6.5000 -1.1241 - 0.2668i -1.1264 - 0.2673i 0.9980<br />

6.6250 -1.0716 - 0.2302i -1.0725 - 0.2304i 0.9991<br />

6.7500 -1.0206 - 0.2121i -1.0216 - 0.2123i 0.9990<br />

6.8750 -0.9715 - 0.1980i -0.9722 - 0.1981i 0.9993<br />

7.0000 -0.9376 - 0.1766i -0.9384 - 0.1767i 0.9992<br />

7.1250 -0.9073 - 0.1613i -0.9077 - 0.1614i 0.9995<br />

7.2500 -0.8793 - 0.1528i -0.8797 - 0.1529i 0.9995<br />

7.3750 -0.8516 - 0.1459i -0.8519 - 0.1459i 0.9996<br />

7.5000 -0.8271 - 0.1377i -0.8273 - 0.1377i 0.9998<br />

7.6250 -0.8107 - 0.1259i -0.8109 - 0.1260i 0.9997<br />

7.7500 -0.7879 - 0.1204i -0.7881 - 0.1204i 0.9997<br />

7.8750 -0.7695 - 0.1170i -0.7696 - 0.1170i 0.9998<br />

8.0000 -0.7513 - 0.1098i -0.7515 - 0.1098i 0.9998<br />

8.1250 -0.7374 - 0.1058i -0.7376 - 0.1059i 0.9998<br />

8.2500 -0.7240 - 0.1038i -0.7242 - 0.1038i 0.9998<br />

8.3750 -0.7122 - 0.0994i -0.7123 - 0.0994i 0.9998<br />

8.5000 -0.6963 - 0.0949i -0.6964 - 0.0950i 0.9998<br />

8.6250 -0.6861 - 0.0930i -0.6862 - 0.0930i 0.9999<br />

8.7500 -0.6792 - 0.0897i -0.6793 - 0.0897i 0.9998<br />

8.8750 -0.6705 - 0.0886i -0.6706 - 0.0886i 0.9998<br />

9.0000 -0.6606 - 0.0847i -0.6607 - 0.0847i 0.9999<br />

9.1250 -0.6544 - 0.0815i -0.6545 - 0.0815i 0.9998<br />

9.2500 -0.6463 - 0.0793i -0.6465 - 0.0794i 0.9997<br />

9.3750 -0.6365 - 0.0765i -0.6367 - 0.0765i 0.9997<br />

9.5000 -0.6287 - 0.0774i -0.6289 - 0.0774i 0.9997<br />

9.6250 -0.6250 - 0.0762i -0.6253 - 0.0762i 0.9996<br />

9.7500 -0.6207 - 0.0722i -0.6209 - 0.0722i 0.9997<br />

9.8750 -0.6160 - 0.0711i -0.6162 - 0.0711i 0.9997<br />

10.0000 -0.6081 - 0.0741i -0.6083 - 0.0741i 0.9998<br />

Table 6: Two experimental frequency response functions H1(ω) and H2(ω) <strong>of</strong> the test rig.<br />

3. Identification <strong>of</strong> model parameters – Suppose you have no access to the values <strong>of</strong> mass<br />

62


(a)<br />

(b)<br />

REAL(Acc/force) [(m/s 2 )/N]<br />

REAL(Acc/force) [(m/s 2 )/N]<br />

15<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

Experimental Frequency Response Function (with damper)<br />

measured<br />

−15<br />

0 1 2 3 4 5<br />

Frequency [Hz]<br />

6 7 8 9 10<br />

IMAG(Acc/force) [(m/s 2 )/N]<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

15<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

measured<br />

0 1 2 3 4 5<br />

Frequency [Hz]<br />

6 7 8 9 10<br />

Experimental Frequency Response Function (with damper)<br />

measured<br />

−15<br />

0 1 2 3 4 5<br />

Frequency [Hz]<br />

6 7 8 9 10<br />

IMAG(Acc/force) [(m/s 2 )/N]<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

measured<br />

0 1 2 3 4 5<br />

Frequency [Hz]<br />

6 7 8 9 10<br />

Figure 37: Two experimental frequency response function FRF(ω) <strong>of</strong> the test rig obtained by<br />

means <strong>of</strong> H1(ω) and H2(ω) functions.<br />

63


m [kg], damping d [N/(m/s)] and stiffness k [N/m] <strong>of</strong> the platform and then can not be<br />

calculated. However, you can measure the forces applied to the platform and its acceleration<br />

response (steady-state response) and are able to experimentally obtain the frequency response<br />

function presented in table 1 6 and plotted in figure 37. Remember that the frequency<br />

response function is acceleration/force in this case, or<br />

FRF(ω) =<br />

−ω 2 /m<br />

(−ω 2 + ω 2 n + 2 · ξ · ωn · ω · i) =<br />

−ω 2<br />

(−m · ω 2 + d · ω · i + k)<br />

Elaborate a simple parameter identification procedures based on the Least-Square Method,<br />

assuming that the frequency response functions FRF(ω) are known, and identify simultaneously<br />

the three parameter, i.e. mass, stiffness and damping:<br />

⎡<br />

⎢<br />

⎣<br />

−ω 2 1 1<br />

−ω 2 2 1<br />

−ω 2 3 1<br />

... ...<br />

−ω 2 N 1<br />

⎤<br />

⎥<br />

⎥ m<br />

⎥<br />

⎦ k<br />

⎧<br />

⎪⎩<br />

<br />

REAL<br />

<br />

REAL<br />

⎪⎨ <br />

= REAL<br />

<br />

...<br />

REAL<br />

ω2 1<br />

FRF(ω1)<br />

ω2 2<br />

FRF(ω2)<br />

ω2 3<br />

FRF(ω3)<br />

ω 2 N<br />

FRF(ωN)<br />

<br />

<br />

<br />

<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

(84)<br />

=⇒ A · x = b (85)<br />

x = A T · A −1 · A T · b (86)<br />

⎡<br />

⎢<br />

⎣<br />

ω1<br />

ω2<br />

ω3<br />

...<br />

ωN<br />

⎤<br />

⎧<br />

<br />

IMAG<br />

<br />

IMAG<br />

⎥ ⎪⎨ ⎥<br />

<br />

⎥ d = IMAG<br />

⎦<br />

<br />

...<br />

⎪⎩ IMAG<br />

ω2 1<br />

FRF(ω1)<br />

ω2 2<br />

FRF(ω2)<br />

ω2 3<br />

FRF(ω3)<br />

ω 2 N<br />

FRF(ωN)<br />

<br />

<br />

<br />

<br />

⎫<br />

⎪⎬<br />

⎪⎭<br />

=⇒ Ā · ¯x = ¯ b (87)<br />

¯x = Ā T · Ā −1 · Ā T · ¯ b (88)<br />

Implement the identification procedure using MAPLE, or MATHEMATICA or MATLAB or<br />

MATCAD or another s<strong>of</strong>tware. Use H1(ω) as well as H2(ω) for identifying the coefficients<br />

<strong>of</strong> mass m [kg], stiffness k [N/m] and damping d [N/(m/s)].<br />

4. Find theoretical and experimental ways <strong>of</strong> checking the identified values <strong>of</strong> mass, stiffness<br />

and damping, in order to assure that such values are really the correct mass, stiffness and<br />

damping coefficients <strong>of</strong> the real system. The more ”checking procedures” you can find, the<br />

better! Explain them all in details.<br />

5. Model application – On the platform top a rotating machine is mounted, as it can be seen in<br />

figure.36(b). Its characteristics are delivered by the manufacturer. The maximum angular<br />

velocity is 1, 200 [rpm] (20 [Hz]). It is also known that the machine unbalance (m unb · ε) is<br />

0.00012 [Kg · m]. By using your mathematical model, plot the vibration amplitude <strong>of</strong> the<br />

platform as a function <strong>of</strong> the machine angular velocity. Determine the maximum vibration<br />

amplitude <strong>of</strong> the platform.<br />

1 It is important to notice that the values <strong>of</strong> H1(ω) and H2(ω) presented in table 6 are −H1(ω) and −H2(ω).<br />

When using the values <strong>of</strong> such functions to identify the model parameters, they have to be multiplied by -1.<br />

64


6. Model application – As explained in the last item, the motor characteristics are delivered<br />

by the manufacturer. The maximum angular velocity is 1, 200 [rpm] (20 [Hz]). It is also<br />

known that the machine unbalance (m unb · ε) is 0.00012 [Kg · m]. Based on the dynamic<br />

equilibrium between motor torque, and torques associated to inertia, losses and external<br />

loading, the motor start-up curve shows a linear variation <strong>of</strong> angular velocity from 0 to<br />

1, 200 [rpm] in a period <strong>of</strong> 40 [s]. Based on your mathematical model, please simulate<br />

computationally the vibration behavior <strong>of</strong> the platform during the period <strong>of</strong> 40 [s], knowing<br />

that, when the motor starts, the platform is already deformed due to a constant lateral<br />

wind. The platform static deformation is 0.001 [m]. Plot the platform displacement in<br />

the time domain, considering two cases: (a) considering the static wind force acting on<br />

the platform the whole time; (b) considering the lateral wind force suddenly disappears 30<br />

[s] after the motor start-up. Analyze and discuss the behavior <strong>of</strong> the plots. What is the<br />

maximum vibration amplitude <strong>of</strong> the platform in both cases?<br />

7. Question – Explain why the test rig can be modelled as an one-degree-<strong>of</strong>-freedom system in<br />

the range <strong>of</strong> 0 to 10 Hz, if one knows that a rigid body in the space (platform mass <strong>of</strong> the<br />

test rig) should be represented by a mechanical model <strong>of</strong> six-degrees-<strong>of</strong>-freedom, i.e. three<br />

linear and three angular displacements.<br />

8. Write your final conclusions.<br />

(No Technical report!)<br />

65


1.11 Project 1 – Modal Analysis & Validation <strong>of</strong> Models<br />

GOAL – To get familiar with the dynamic interaction between machine and structure, the elaboration<br />

<strong>of</strong> mechanical and mathematical models for representing rotor-structure vibrations in<br />

2D, implementation and vibration analysis using Matlab, visualization <strong>of</strong> natural frequencies and<br />

mode shapes. To test the accuracy <strong>of</strong> an analytical mathematical model proposed for describing<br />

the system dynamic behavior, i.e. natural frequencies and mode shapes. Remember, if the measured<br />

frequencies and mode shapes agree with those predicted by the analytical mathematical<br />

model, the model is verified and can be useful for design proposes and vibration predictions with<br />

some confidence. Otherwise, the analytical models are useless.<br />

(a) (b)<br />

Figure 38: Machine-structure dynamical interaction – (a) Offshore platform http :<br />

//www.oil−gas.uwa.edu.au/Troll−A−Graphics.htm; (b) Equivalent laboratory prototype composed<br />

<strong>of</strong> four concentrated masses attached to four flexible beams: 1- mass on the first floor, 2mass<br />

on the second floor, 3- mass on the third floor, 4- mass on the fourth floor, 5- motor-disk<br />

with unbalanced masses for simulating a rotating machine with unbalance problems, 6- acceleration<br />

sensor attached to the second mass, 7- acceleration sensor attached to the third mass,<br />

8- magnetic actuator for simulating wave excitation, 9- magnetic actuator for simulating waves<br />

excitation.<br />

Figures 38(a) and (b) illustrate an <strong>of</strong>fshore platform and an equivalent laboratory prototype,<br />

where the students can carry on measurements and vibration analyzes. The laboratory prototype<br />

is composed <strong>of</strong> four concentrated masses attached to four flexible beams. Elements 1,2,3 and<br />

4 are the four masses connected by means <strong>of</strong> flexible beams. Element 5 is a motor-disk with a<br />

66


changeable unbalanced mass for simulating rotating machines (for example compressors, turbines<br />

or pumps) with an unbalance problem. Elements 6 and 7 are two acceleration sensors attached<br />

to the second and third masses. Elements 8 and 9 are magnetic actuators built to apply forces<br />

with different dynamic characteristics (oscillatory, random, pulse etc.) to the structure (first<br />

floor). In that way it is possible to simulate the wave forces coming from the ocean by means<br />

<strong>of</strong> the magnetic actuators.<br />

The motor-disk with unbalanced masses is mounted at the top <strong>of</strong> the platform (fourth floor). The<br />

motor has variable angular velocity from 0 to 40 Hz (2400 rpm). Due to the unbalanced masses<br />

strong vibration amplitudes can be detected on the second and third floor <strong>of</strong> the platform.<br />

To represent the dynamical behavior <strong>of</strong> the system a mechanical model has to be created.<br />

Considering the range <strong>of</strong> frequencies between 0 and 40 Hz, all rotor-structure movements happen<br />

in a vertical plane (2D motion), and an appropriate mechanical model would be the one presented<br />

in figure 39(b). For the suggested mechanical model:<br />

(a) (b)<br />

Figure 39: Machine-structure dynamical interaction – (a) Laboratory prototype; (b) Mechanical<br />

model composed <strong>of</strong> four lumped masses attached to four flexible beams, an equivalent model <strong>of</strong> a<br />

4 D.O.F. system for analyzing the linear vibrations <strong>of</strong> the platform in the horizontal direction<br />

due to the interaction with a machine and ocean waves.<br />

1. MODELLING – The main information about the geometric properties <strong>of</strong> the structure<br />

presented in figure 39(b) is given below:<br />

67


% Lumped Masses<br />

m1 = 1.95 % [kg] lowest mass<br />

m2 = 1.72 % [kg] above lowest mass<br />

m3 = 1.95 % [kg] below highest mass<br />

m4 = 3.04 % [kg] highest mass with motor<br />

% Beam Properties<br />

E=2.0e11 % [N/m^2] elasticity modulus<br />

b=0.0291 % [m] width<br />

h=0.0011 % [m] thickness<br />

I=(b*h^3)/12 % [m^4] area moment <strong>of</strong> inertia<br />

% Position <strong>of</strong> the Platforms<br />

L1=0.122 % [m] Length to Platform 1<br />

L2=0.123 % [m] Length from Platform 1 to Platform 2<br />

L3=0.149 % [m] Length from Platform 2 to Platform 3<br />

L4=0.127 % [m] Length from Platform 3 to Platform 4<br />

• Write the mathematical model (equations <strong>of</strong> motion) based on Newton’s laws, achieving<br />

the mass M, stiffness K and damping D matrices.<br />

• How is the structure <strong>of</strong> the mass matrix M? How to properly calculate the mass<br />

coefficients?<br />

• How is the structure <strong>of</strong> the stiffness matrix K? Find two different ways <strong>of</strong> obtaining<br />

the stiffness coefficients.<br />

• How is the structure <strong>of</strong> the damping matrix D? Find three different ways <strong>of</strong> obtaining<br />

the damping coefficients, using proportional damping,<br />

D1 = α · M.<br />

D2 = β · K.<br />

D3 = α · M + β · K.<br />

Remember that when you do not know how to exactly model and achieve the damping<br />

coefficients <strong>of</strong> the matrix D, assumptions have to be made. A realistic approximation<br />

<strong>of</strong> the structural damping factor ξ is 0.005, according to the experimental results<br />

obtained in equation (46). Try to adjust the proportionality factors α and β so that<br />

the damping factor ξ1 related to the first mode shape <strong>of</strong> the structure is 0.005. Feel<br />

free to do your own assumptions regarding damping, if you want!<br />

2. NUMERICAL IMPLEMENTATION – Write a program in Matlab d<strong>of</strong>4-integration.m, or<br />

use the program <strong>of</strong> your preference. Use as reference the d<strong>of</strong>2-integration.m, if you want.<br />

Calculate the natural frequencies ωi (i = 1, ...,4) <strong>of</strong> the mechanical model and the damping<br />

ratios ξi (i = 1, ...,4) related to the 4 modes shapes, considering the three different damping<br />

matrices D1, D2 and D3.<br />

%State Matrices A and B<br />

A= [ M D ;<br />

zeros(size(M)) M ] ;<br />

B= [ zeros(size(M)) K ;<br />

-M zeros(size(M))];<br />

68


%Modal Matrix u with mode shapes<br />

%Matrix w with damping factors and damped natural frequencies<br />

[u,w]=eig(-B,A);<br />

3. ANALYSIS – Neglecting the damping, write the modal matrix with help <strong>of</strong> your program<br />

d<strong>of</strong>4-integration.m. Based on the information contained in such a matrix describe the mode<br />

shapes <strong>of</strong> the structure with some drawings;<br />

4. ANALYSIS – Without neglecting the damping, write the modal matrix with help <strong>of</strong> your<br />

program d<strong>of</strong>4-integration.m. Based on the information contained in such a matrix describe<br />

the mode shapes <strong>of</strong> the structure and try to explain the physical meaning <strong>of</strong> the complex<br />

numbers in the modal matrix.<br />

5. EXPERIMENTAL – Try to predominately excite the first mode shape <strong>of</strong> the building using<br />

an appropriate initial condition <strong>of</strong> displacement. Capture the acceleration signal in time<br />

domain and plot it. Based on the logarithmic decrement try to establish the damping<br />

factor ξ1 associated to the first mode shape <strong>of</strong> the building. Please, download the file<br />

yyy4−trans.txt from campus net in order to rebuild figure 40. After obtaining the damping<br />

ratio ξ1, compare with your assumption <strong>of</strong> 0.005.<br />

acc [m/s 2 ]<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

Acceleration <strong>of</strong> Mass 4<br />

−4<br />

0 1 2 3 4<br />

time [s]<br />

5 6 7 8<br />

Figure 40: Experimental transient vibration response (acceleration) <strong>of</strong> mass 4 after initial condition<br />

<strong>of</strong> displacement, which excites only the first mode shape <strong>of</strong> the structure.<br />

6. EXPERIMENTAL – Obtain 4 frequency response functions in the range <strong>of</strong> 0 − 40 Hz,<br />

when the building is excited on the first mass by magnetic forces. Please, download the<br />

files: frf−general.m, xxx1.txt, xxx2.txt, xxx3.txt, xxx4.txt, yyy1.txt, yyy2.txt, yyy3.txt,<br />

yyy4.txt (campus net)<br />

7. EXPERIMENTAL – Experimental Modal Analysis (EMA) deals with the determination <strong>of</strong><br />

natural frequencies, modes shapes, and damping ratios from experimental measurements.<br />

The fundamental idea behind modal testing is the resonance. If a structure is excited at<br />

resonance, its response exhibits two distinct phenomena: (a) as the excitation frequency<br />

69


approaches the natural frequency <strong>of</strong> the structure, the magnitude at resonance rapidly<br />

approaches a sharp maximum value, provided that the damping ratio is less than about<br />

0.5; (b) the phase <strong>of</strong> the response between excitation force and displacement shift by 180 o<br />

as the frequency sweeps through resonance, with the value <strong>of</strong> the phase at resonance being<br />

90 o . This physical phenomenon is used to determine the natural frequency <strong>of</strong> a structure<br />

from measurements <strong>of</strong> the magnitude and phase <strong>of</strong> the force response <strong>of</strong> the structure as<br />

the driving frequency is swept through a wide range <strong>of</strong> values.<br />

Identify 4 different 1-DOF systems around each one <strong>of</strong> the 4 natural frequencies <strong>of</strong> the<br />

building. Use your frequency domain identification procedure, which was already developed<br />

in the project 1 and is based on the Least Square Method, and obtain the experimental<br />

natural frequencies and the experimental damping factors <strong>of</strong> each one <strong>of</strong> the 4 mode shapes<br />

<strong>of</strong> the building.<br />

8. MODEL VALIDATION (VERIFICATION) – Compare the theoretical and experimental<br />

frequency response functions <strong>of</strong> the first, second, third and fourth floors, when the structure<br />

is excited by the magnetic forces on the first floor. Justify the discrepancies between<br />

theoretical and experimental results.<br />

9. APPLICATION OF THE MODEL – The values <strong>of</strong> the unbalance mass and eccentricity<br />

are:<br />

% Disk Unbalance<br />

m=0.045 % [kg] unbalance mass<br />

e=0.040 % [m] eccentricity<br />

Consider the 5 different angular velocities, close to the resonances <strong>of</strong> the building and among<br />

them, as following:<br />

• 225 rpm (3,75 Hz),<br />

• 495 rpm (8,25 Hz),<br />

• 615 rpm (10,25 Hz),<br />

• 900 rpm (15,00 Hz) and<br />

• 975 rpm (16,25 Hz).<br />

Use your mathematical model to predict the vibration amplitude <strong>of</strong> the top mass,<br />

i.e. acceleration <strong>of</strong> the top mass, when the rotor-disk operates unbalanced at<br />

the 5 different angular velocities. Check your results comparing with the experimental<br />

results. Explain the discrepancies between the results obtained with<br />

help <strong>of</strong> your mathematical model and the experiments. Please, download the<br />

files yyy4−unbal−3−75−HZ.txt, yyy4−unbal−8−25−HZ.txt, yyy4−unbal−10−25−HZ.txt,<br />

yyy4−unbal−15−00−HZ.txt, yyy4−unbal−16−25−HZ.txt and acc−in−time−domain.m to<br />

rebuild figure 41.<br />

10. MODEL ADJUSTMENT – Try to adjust the natural frequencies ωi (i = 1, ...,4) <strong>of</strong> the<br />

analytical model using the experimental natural frequencies obtained via Experimental<br />

Modal Analysis. Remember that the parameter<br />

% Beam Properties<br />

E=(2.0 +- 0.1)e11 % [N/m^2] elasticity modulus<br />

70


acc [m/s 2 ]<br />

acc [m/s 2 ]<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

−0.2<br />

−0.4<br />

−0.6<br />

−0.8<br />

0 1 2 3 4<br />

time [s]<br />

5 6 7 8<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

−4<br />

1<br />

0<br />

(b) Acceleration <strong>of</strong> Mass 4<br />

(d) Acceleration <strong>of</strong> Mass 4<br />

−5<br />

0 1 2 3 4<br />

time [s]<br />

5 6 7 8<br />

acc [m/s 2 ]<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

−0.5<br />

−1<br />

−1.5<br />

−2<br />

(a) Acceleration <strong>of</strong> Mass 4<br />

−2.5<br />

0 1 2 3 4<br />

time [s]<br />

5 6 7 8<br />

acc [m/s 2 ]<br />

acc [m/s 2 ]<br />

6<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

(c) Acceleration <strong>of</strong> Mass 4<br />

−6<br />

0 1 2 3 4<br />

time [s]<br />

5 6 7 8<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

−2<br />

−4<br />

−6<br />

−8<br />

(e) Acceleration <strong>of</strong> Mass 4<br />

−10<br />

0 1 2 3 4<br />

time [s]<br />

5 6 7 8<br />

Figure 41: Experimental forced vibration response (acceleration) <strong>of</strong> mass 4 due to a disk operating<br />

with an unbalance mass m = 0.045 Kg with an eccentricity radius e = 0.040 m at 5 rotational<br />

speeds: (a) 225 rpm (3,75 Hz); (b) 495 rpm (8,25 Hz); (c) 615 rpm (10,25 Hz); (d) 900 rpm<br />

(15,00 Hz) and (e) 975 rpm (16,25 Hz).<br />

71


=(0.0291 +- 0.0001) % [m] width<br />

h=(0.0011 +- 0.0001) % [m] thickness<br />

I=(b*h^3)/12 % [m^4] area moment <strong>of</strong> inertia<br />

% Position <strong>of</strong> the Platforms<br />

L1=(0.122 +- 0.001) % [m] Length to Platform 1<br />

L2=(0.123 +- 0.001) % [m] Length from Platform 1 to Platform 2<br />

L3=(0.149 +- 0.001) % [m] Length from Platform 2 to Platform 3<br />

L4=(0.127 +- 0.001) % [m] Length from Platform 3 to Platform 4<br />

can be varied based on the geometry and assembly tolerances, as well as on material properties.<br />

Changes <strong>of</strong> such parameters lead to changes in the stiffness matrix K.<br />

11. MODEL ADJUSTMENT – After adjustment <strong>of</strong> the natural frequencies, try to adjust the<br />

damping ratios ξi (i = 1, ...,4) <strong>of</strong> the analytical model using the experimental damping<br />

ratios obtained via Experimental Modal Analysis. Remember that alpna and β are the<br />

parameters to be varied, if you have proportional damping matrices D1, D2 and D3.<br />

12. APPLICATION OF THE ADJUSTED MODEL – Consider the 5 different angular velocities,<br />

close to the resonances <strong>of</strong> the building and among them, as following:<br />

• 225 rpm (3,75 Hz),<br />

• 495 rpm (8,25 Hz),<br />

• 615 rpm (10,25 Hz),<br />

• 900 rpm (15,00 Hz) and<br />

• 975 rpm (16,25 Hz).<br />

Use your adjusted analytical model to predict the vibration amplitude <strong>of</strong> the top mass, i.e.<br />

acceleration <strong>of</strong> the top mass, when the rotor-disk operates unbalanced at the 5 different<br />

angular velocities. Check your theoretical results comparing with the experimental results.<br />

Explain the discrepancies between the results obtained with help <strong>of</strong> your mathematical<br />

model and the experiments.<br />

13. Write about your conclusions!<br />

(Technical report until 01/04/2005)<br />

72

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!