30.08.2013 Views

Iron and nickel carbonyl formation in steel pipes and its - Oak Ridge ...

Iron and nickel carbonyl formation in steel pipes and its - Oak Ridge ...

Iron and nickel carbonyl formation in steel pipes and its - Oak Ridge ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Contract No. W-7405-eng-26<br />

METALS AND CERAMICS DIVISION<br />

IRON AND NICKEL CARBONYL FORMATION<br />

IN STEEL PIPES AND ITS PREVENTION -<br />

LITERATURE SURVEY<br />

J. Brynestad<br />

Date Published: September 1976<br />

NOTICE This document conta<strong>in</strong>s <strong>in</strong><strong>formation</strong> of e prelim<strong>in</strong>ary nature<br />

<strong>and</strong> was prepared primerlly for <strong>in</strong>ternal use at the <strong>Oak</strong> <strong>Ridge</strong> National<br />

Laboratory. It is subject to revision or correction <strong>and</strong> therefore does<br />

not represent a f<strong>in</strong>al report.<br />

OAK RIDGE NATIONAL LABORATORY<br />

<strong>Oak</strong> <strong>Ridge</strong>, Tennessee 37830<br />

operated by<br />

UNION CARBIDE CORPORATION<br />

for the<br />

ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION<br />

ORNL/TM-5499<br />

Distribution<br />

Category UC-4Qd


CONTENTS<br />

ABSTRACT ............................. 1<br />

1. INTRODUCTION ......................... 1.<br />

2. THERMODYNAMIC DATA ...................... 2<br />

2.1. IKON PENTACARBONn .................. 2<br />

2.1.1. Vapor Pressure ................. 3<br />

2.1.2. Thermodynamic Functions ............ 3<br />

2.2. NICKEL TETMCARBONYL ................. 4<br />

2.2.1. Vapor Pressure . ................ 4<br />

2.2.2. Thermodynamic Functions ............ 5<br />

3. KINETICDATA ......................... 6<br />

4. QUANTITATIVE ANALYTICAL METHODS FOR THE DETERMINATION<br />

OF SMALL AMOUNTS OF IRON AND NICKEL CARBONTL IN GASES .... 11<br />

5. PREVENTION METHODS ..................... 13<br />

6. CONCLUSIONS ......................... 14<br />

REFEKENCES . .......................... 1 5<br />

iii


IKON AND NICKEL CARBONYL FORMATION<br />

IN STEEL PIPES AND ITS PREVENTION --<br />

LITERATURE SURVEY<br />

3. Brynestad<br />

AUSTRACT<br />

Data were compiled on the stability <strong>and</strong> <strong>formation</strong><br />

rates of iron <strong>and</strong> <strong>nickel</strong> <strong>carbonyl</strong>s. The data demonstrate<br />

that <strong>carbonyl</strong> <strong>formation</strong> <strong>in</strong> <strong>steel</strong> <strong>pipes</strong> is governed largely<br />

by k<strong>in</strong>etics. The rate of <strong>carbonyl</strong> <strong>formation</strong> is a function<br />

of several factors: temperature, pressure, gas flow<br />

rate, gas composition, impurities <strong>in</strong> the gas, alloy compo-<br />

sition, surface conditions, <strong>and</strong> pretreatment of the surfaces.<br />

An evaluation of techniques for detect<strong>in</strong>g iron <strong>and</strong> <strong>nickel</strong><br />

<strong>carbonyl</strong>s <strong>in</strong> gases showed atomic absorption spectroscopy<br />

to be a highly effective (Q 1 ppb), almost <strong>in</strong>stantaneous<br />

analytical technique. Carbonyl <strong>formation</strong> <strong>in</strong> pipe <strong>steel</strong>s<br />

seems to be prevented ma<strong>in</strong>ly by the use of <strong>steel</strong>s with<br />

high chromium contents, by l<strong>in</strong><strong>in</strong>g the tub<strong>in</strong>g with copper,<br />

or by use of any stable coat<strong>in</strong>g that prevents the carbon<br />

monoxide from directly contact<strong>in</strong>g the metal.<br />

1. INTRODUCTION<br />

A project is under way to determ<strong>in</strong>e the k<strong>in</strong>etics of the <strong>formation</strong><br />

of iron <strong>and</strong> <strong>nickel</strong> <strong>carbonyl</strong>s when carbon monoxide gas, In itlie presence<br />

of hydrogen, contacts structural <strong>steel</strong>s at 100-500°F (4O-26O0C), The<br />

first step <strong>in</strong> the project is a survey of pert<strong>in</strong>ent literature on<br />

related thermodynamics, k<strong>in</strong>etics, <strong>and</strong> analytical chemistry. This is<br />

the report of that survey.<br />

<strong>Iron</strong> <strong>and</strong> <strong>nickel</strong> <strong>carbonyl</strong>s are formed by the action of carbon<br />

monoxide gas upon alloys <strong>and</strong> ores that contaln iron <strong>and</strong> <strong>nickel</strong>.<br />

presence of iron <strong>and</strong>/or <strong>nickel</strong> <strong>carbonyl</strong> <strong>in</strong> process gases may have<br />

serious consequences. Apart from their toxicity, these <strong>carbonyl</strong>s<br />

may cause problems by the deposition of metal oxides <strong>in</strong> gas burners,<br />

1<br />

The


y plat<strong>in</strong>g out metal at higher temperatures by decomposition, or by<br />

the <strong>formation</strong> of depos<strong>its</strong> of reaction products between the <strong>carbonyl</strong>s<br />

<strong>and</strong> other impurities <strong>in</strong> the gases.<br />

Rather little is known <strong>in</strong> detail about the rate of <strong>carbonyl</strong>.<br />

<strong>formation</strong> under various conditions. It seems to be well established,<br />

however, that unless special steps are taken to <strong>in</strong>crease the rate of<br />

<strong>carbonyl</strong> <strong>formation</strong>, the rate of iron <strong>carbonyl</strong> <strong>formation</strong> <strong>in</strong> most cases<br />

is so low that thermodynamic equi.l.ibrium is not reached.<br />

2<br />

In<strong>formation</strong> found <strong>in</strong> the literature pert<strong>in</strong>ent to the <strong>formation</strong><br />

of iron arid <strong>nickel</strong> <strong>carbonyl</strong> from pipe <strong>steel</strong>s is surveyed <strong>in</strong> the<br />

follow<strong>in</strong>g chapters:<br />

2. Thermodynamic data,<br />

3. K<strong>in</strong>etic <strong>in</strong><strong>formation</strong>,<br />

4. Analytical techniques <strong>in</strong>clud<strong>in</strong>g our own. observations,<br />

5. Possible methods for the prevention of <strong>carbonyl</strong> <strong>formation</strong>,<br />

6 a Conclusions.<br />

The compilation of literature references is not exhaustive, as<br />

this would imply a collection of hundreds of pu1d.i-cations that are<br />

only mi2rgiriall.y <strong>in</strong>formative for tliis project, Rather, we have tried<br />

to m<strong>in</strong>imize the number of publications by <strong>in</strong>clud<strong>in</strong>g only those wtth<br />

<strong>in</strong><strong>formation</strong> directly pert<strong>in</strong>ent to the project. By do<strong>in</strong>g this one ad-<br />

mittedly rims the risk of omitt<strong>in</strong>g <strong>in</strong>aterial that the <strong>in</strong>dividual reader<br />

might consider relevant. For example, the preponderance of references<br />

to analytical methods for iron <strong>and</strong> <strong>nickel</strong> <strong>carbonyl</strong> has been om.i.tted<br />

because they are not sensitive enough for this project. However, ChemkaZ<br />

Abstracts <strong>and</strong> Chemical T7:tles have been screened up to mid-April 1976.<br />

2.1. IRON PENTACARBONY'L<br />

2. THERMODYNAMIC DATA<br />

<strong>Iron</strong> penta<strong>carbonyl</strong> at room temperature 5s a viscous, pale yellow<br />

liquid. It crystallizes at about --2OoC, <strong>and</strong> at atmospheric pressure<br />

boils about 102OC.<br />

2<br />

It is very toxic.


2.1.1. Vapor Pressure<br />

3<br />

The data by Trautz <strong>and</strong> Badst6ber3 <strong>and</strong> by Gilbert <strong>and</strong> Sulzmann4<br />

are <strong>in</strong> very good agreement. Gilbert <strong>and</strong> Sulzmann's results for<br />

temperatures between -19 <strong>and</strong> 31'C may be expressed as<br />

where T is <strong>in</strong> Kelv<strong>in</strong>s.<br />

log [p (Pa)] = -2096.7/7'+ 10.6208,<br />

between 0 <strong>and</strong> 104°C may be expressed as<br />

log [p (torr)] = --2096.7/IT -t- 8.4959 ,<br />

Results by 'L'rautz <strong>and</strong> Badstiiber for temperatures<br />

log [p (Pa)] = -2050.7/T +- 10.4347 ,<br />

log [p (torr)] = -2050.7/5!' + 8.3098 .<br />

The critical pojnt is about 285°C at about 29.6 atm, (3.0 Wa).<br />

2.1.2. Thermodynamic Functions<br />

The thermodynamic equilibrium constant for the equilibrium<br />

Fe(s) + SCO(g) Pe(CO)5(g) (3)<br />

has been calculated by Ross et a1.,5 Syrk<strong>in</strong>,<br />

by Ross et al. give for the equilibrium above [Eq. (3)lr<br />

log K = 8940/T- 30.09<br />

<strong>in</strong> terms of pressures <strong>in</strong> atmospheres.<br />

(also <strong>in</strong> atmospheres) for the equilibrium (3) above.<br />

log K = 10204/T - 30.42 .<br />

<strong>and</strong> others. Calculations<br />

Syrk<strong>in</strong>'s data can be written<br />

(4)


4<br />

Pichler <strong>and</strong> Walenda7 also calculated equilibrium constants for<br />

Eq. (3). However, their calculations were based on raLher <strong>in</strong>accurate<br />

data; their values for K arc about two orders of niagnitude larger<br />

than those calculated from (lata of Ross et al.* The same applies to<br />

the values given by Brief et al. :<br />

which was based on estimates by Cooper et al.'<br />

are presumably the most re1iahl.e.<br />

log K = I.Q9QQ/T - 32.672 , (4)<br />

The data of Ross et al.<br />

As will be discussed <strong>in</strong> Chap. 3, an accurate knowl.edge of the<br />

equilibrium constant does not give any <strong>in</strong><strong>formation</strong> as to the rate of<br />

<strong>formation</strong> of iron or <strong>nickel</strong> <strong>carbonyl</strong>. TI: should also be taken <strong>in</strong>to<br />

consideration that gas mixtures contaiaiiig large concentrations of<br />

iron or <strong>nickel</strong> <strong>carbonyl</strong> brill be quite nonideal, so that additional.<br />

<strong>in</strong><strong>formation</strong> (or estimates) must be <strong>in</strong>voked to calcul.ate reliable<br />

equilibrium concentrations from thermodynamic data.<br />

2.2. NICKEL TETRACARBONYL<br />

Nickel <strong>carbonyl</strong> at room temperature is a colorless, volatile<br />

liquid with extreme toxicity.2<br />

at atm0spheri.c. pressure. '<br />

2.2 1. Vapor Pressure<br />

It melts at -17.2OC <strong>and</strong> boils at 42.2'C<br />

Walsh's data" for the vapor pressure over liquid <strong>nickel</strong> tetra-<br />

<strong>carbonyl</strong> <strong>in</strong> the temperature range O to 35.I'C give<br />

log p (Pa) = 10.0092 - 1..578/T .<br />

*Note that the way of present<strong>in</strong>g equilibrium constants used by<br />

Pichler <strong>and</strong> Walenda is the <strong>in</strong>verse of the coriventional presentation.


5<br />

This is <strong>in</strong> good agreement with Sug<strong>in</strong>uma <strong>and</strong> Satozaki's data' *'<br />

<strong>in</strong> the temperature range 0 to 25°C:<br />

log p (torr) = 7.878 - 1574.49/!i"<br />

log p (Pa) = 90.003 - l574.49/T .<br />

The experime.nta1 value of the critical temperature'* lies between'<br />

191 <strong>and</strong> :L95"C.<br />

2.2.2. Thermodynamic Functions<br />

The thermodynamic functions for the equilibrium<br />

Ni(s) + 4CO(g) Ni(CO)b(g) (9 1<br />

have been evaluated by a number of authors, the most recent be<strong>in</strong>g Kipnis<br />

<strong>and</strong> Mikhailova, who f<strong>in</strong>d the most probable values to be:<br />

Ah''29~ = --142.3 kJ/mole = -34.0 kcalt'mole<br />

If one assumes AC to be zero these values give for the equilibrium<br />

P<br />

constant:<br />

Ross et al? obta<strong>in</strong>ed<br />

log K 7430/T - 21.90<br />

log K 8546/T- 21.64<br />

Equations (10) <strong>and</strong> (11) imply pressures measured <strong>in</strong> atmospheres.<br />

(11.)


The discrepancy is due to a difference <strong>in</strong> the assumed value of AH0298.<br />

Experimentally obta<strong>in</strong>ed values for A?l0298 arc. strongly dependent upon<br />

the physical state of the <strong>nickel</strong> metal used <strong>in</strong> t.he experiment, as f<strong>in</strong>ely<br />

divided <strong>nickel</strong>. uniformly gives higher (absolute) values than co<strong>in</strong>pact<br />

<strong>nickel</strong>. Thus Kipnis <strong>and</strong> Mikhailova's data at present seem to be the<br />

most reliable e<br />

3. KINETIC DATA<br />

As early as 1891 Roscoe <strong>and</strong> Scudder14 had reported that water gas<br />

at room temperature <strong>and</strong> 0.8 MPa (8 atm.) pressure <strong>in</strong> a carbon <strong>steel</strong><br />

cyl<strong>in</strong>der reacted with the cyl<strong>in</strong>der walls to form i.ron <strong>carbonyl</strong>. With<strong>in</strong><br />

about a month the gas conta<strong>in</strong>ed about 2,4 mg/l (Q960 ppm*) of iron as<br />

iron <strong>carbonyl</strong>. Stoffel' (1914) <strong>in</strong>vestigated the reaction between<br />

carbon monoxide <strong>and</strong> f<strong>in</strong>ely divided iron (pyrophoric) at gas pressures<br />

of 0.5-2 atm (50 to 200 kPa) <strong>and</strong> <strong>in</strong> the temperature range 20 to 80°C.<br />

He found that adsorbed iron <strong>carbonyl</strong> on the metal surface lowered<br />

the reaction rate drastically, <strong>and</strong> that the reaction rate was approxi-<br />

mately proportional to the square of the carbon monoxide pressure.<br />

Mond <strong>and</strong> Wallis16 (1922) reacted pyrophoric iron with carbon<br />

monoxide <strong>in</strong> the pressure range 100--300 atm (10 to 30 MPa) <strong>and</strong> <strong>in</strong> the<br />

temperature range 130 to 260°C, with a reaction time of 2 hr,<br />

obta<strong>in</strong>ed optimum yields at 200°C at all pressures.<br />

Mitlraschl (1928) reported that even small amc:,unts of oxygen<br />

They<br />

strongly repress iron <strong>carbonyl</strong> formatton, whereas hydrogen <strong>and</strong> ammonia<br />

<strong>in</strong>crease the reaction rate. Pichler <strong>and</strong> Walenda7 (1940) <strong>in</strong>vestigated<br />

<strong>in</strong> some detail the reaction between carbon monoxide <strong>and</strong> various alloyed<br />

<strong>steel</strong>s, as well as unalloyed carbon <strong>steel</strong> <strong>and</strong> cast iron. They worked<br />

<strong>in</strong> the pressure range 150-1000 atm (15 to 100 MPa). The extent of <strong>carbonyl</strong><br />

*p.p.m. will be understood as (volume fraction x lo6) of the gas<br />

<strong>in</strong> question.


~ magnitude<br />

<strong>formation</strong> was determ<strong>in</strong>ed by measur<strong>in</strong>g the welght loss af the metal<br />

samples under both static <strong>and</strong> flow<strong>in</strong>g gas conditions.<br />

7<br />

Their results are <strong>in</strong>terest<strong>in</strong>g <strong>and</strong> wlll be discussed <strong>in</strong> some detail:<br />

1. In agreement with Mond <strong>and</strong> Wallis16 they found that the<br />

reaction rate reached a maximum at 200°C.<br />

used granulated, unalloyed, H g<br />

samples of low-carbon <strong>steel</strong> with a<br />

gra<strong>in</strong> size of 0,15 to 0.30 mm <strong>in</strong> a static atmosphere of CQ) with 10%<br />

N2, at a start<strong>in</strong>g pressure of 300 atm. (30 MPa) <strong>in</strong> a 100-ml autoclave.<br />

The reaction time was 48 hr.<br />

In these experiments they<br />

It: is important to note that equilibrium was not reached under<br />

these conditions except possibly at 250°C.<br />

The authors did not<br />

measure the surface areas of the samples, but one can make an order-of-<br />

estimate by assum<strong>in</strong>g that the granules were all shaped as<br />

cubes of the same size.<br />

metal (%7.8g) a surface area of 2 m2 for a granule edge size of 0.3 mm<br />

<strong>and</strong> G m2 for a granule size of 0.1 nnn.<br />

area/volume for an "average" gra<strong>in</strong> is somewhat larger than for a cube,<br />

so that one may assume that the surface areas of their samples were<br />

<strong>in</strong> the range from 5 to 10 m2,, This implies, that for a weight loss<br />

of about 30% of an 8-g sample, the weight loss per unit surface area<br />

would be of the carder of 0.5g/m2 <strong>in</strong> 48 hr.<br />

This gives for a 1 cm3 net volume of sample<br />

Presumably, the ratio surface<br />

2. A most important observation was that the reaction rate<br />

depended upon the gas flow rate.<br />

Us<strong>in</strong>g a 14-m-ID pressure tube as a<br />

reaction chamber at 150 atm (15 MPa) gas pressure <strong>and</strong> 200"C, they<br />

observed that the attack <strong>in</strong>creased by a factor of 5.3 for untreated<br />

low-carban <strong>steel</strong>, <strong>and</strong> by a factor of 11.2 for "pretreated" samples (i.e.,<br />

heated to a "yellow glow" <strong>and</strong> quenched <strong>in</strong> water), by <strong>in</strong>creas<strong>in</strong>g the gas<br />

flow rate from 2 liters/hr up to 100 liters/hr [referred to 1 a tm<br />

(0.101 MPa) gas pressure]. S<strong>in</strong>ce the cross section of the reaction tube<br />

was l.54 em2 <strong>and</strong> the pressure 150 atm (15 MPa), these flow rates corre-<br />

spond to l<strong>in</strong>ear flow rates of 2.5 to 125 m/m<strong>in</strong> at 150 <strong>and</strong> 200°C,<br />

not count<strong>in</strong>g the reduction <strong>in</strong> the cross section caused by the sample.<br />

Figure 1 shows a plot of their results <strong>in</strong> their Tables 4 <strong>and</strong> 5, <strong>in</strong><br />

terms of iron loss per hour versus l<strong>in</strong>ear flow rate.


R<br />

L<br />

II<br />

\<br />

v<br />

0<br />

70<br />

60<br />

50<br />

40<br />

cn<br />

0<br />

IJ 30<br />

z<br />

0<br />

E<br />

- 20<br />

16<br />

Q<br />

1<br />

G<br />

i<br />

0<br />

8<br />

I<br />

UNTREATED<br />

I<br />

ORNL-DWG 76-8264<br />

4- t<br />

~ .................<br />

- ..........<br />

- ..........<br />

0 2 4 6 8 IO 12 i4<br />

FLOW RAPE (crn/m<strong>in</strong>)<br />

Fig. 1. Attack of Low-Carbon Steel as n Function of Flow Rate.


9<br />

These results show that tests on <strong>carbonyl</strong> <strong>formation</strong> <strong>in</strong> static<br />

atmospheres will not give <strong>in</strong><strong>formation</strong> pert<strong>in</strong>enr. to cond-itions with<br />

flow<strong>in</strong>g gas. Rather, one must keep flow rates high enough to be sure<br />

to be located on the plateau, where the rate of <strong>carbonyl</strong> <strong>formation</strong> is<br />

<strong>in</strong>variant wlth respect to the flow rate. S<strong>in</strong>ce the nature of the<br />

surface may change with the extent of the (corrosive) attack, thus<br />

chang<strong>in</strong>g the <strong>formation</strong> rate, it seems important also to study the<br />

time dependence of the <strong>carbonyl</strong> <strong>formation</strong> under constant external<br />

conditions.<br />

3. There is implicit <strong>in</strong><strong>formation</strong> <strong>in</strong> their data that the reaction<br />

rate depends on pressure. Their Tables 6 <strong>and</strong> 7 give the resul ts for<br />

the attack by (static) CO, at 200'C for four days duration upon various<br />

allayed <strong>steel</strong>s at 300 atm (30 MPa) (Table 6) <strong>and</strong> 450 atm (46 MPa)<br />

(Table 7). A <strong>steel</strong> conta<strong>in</strong>Jtng 1.22% Nb, 0.15% C (test 5, Table 6; test 16,<br />

Table 7) was tested at both pressures.<br />

had the same ratio of surface area to weight, <strong>and</strong> that the surfaces<br />

of the samples were <strong>in</strong> the same "state", the attack (weight<br />

loss/sur€ace area) was 2.04 times larger at 450 atm (46 MPa) than at<br />

300 atm (30 MF'a). This corresponds to a carbon monoxlde pressure<br />

dependence of p e 76 . This is <strong>in</strong> reasonable agreement with Stoffel15<br />

C 0<br />

who found a pressure dependency of about p& <strong>in</strong> the 0.5-2 atm<br />

(50-200 ea) range.<br />

Assum<strong>in</strong>g that the respective samples<br />

4. By chemical analysis of the <strong>carbonyl</strong>s from an alloy wit11 5%<br />

<strong>nickel</strong>, they obta<strong>in</strong>ed the ratio Fe(CQ)S/Ni(C0)4 = 95.4J4.6 (Le., the<br />

<strong>formation</strong> of <strong>nickel</strong> <strong>carbonyl</strong> is not preferred).<br />

5. By compar<strong>in</strong>g their 200°C data of Tables 2 <strong>and</strong> 3 with their<br />

data <strong>in</strong> Tables 6 <strong>and</strong> 7, one arrives at the conclusion that all alloyed<br />

<strong>steel</strong>s tested were much more resjs tant than the "reference" low-carbQn<br />

<strong>steel</strong> they used.<br />

6. The results given <strong>in</strong> their Table 10 for differ<strong>in</strong>g gas<br />

campositions are quite <strong>in</strong>terest<strong>in</strong>g. These experiments were conducted<br />

with rods 6 mm diam <strong>and</strong> 40 mm long (total surface area 8.1 m2), at<br />

1000 atm (100 MPa) <strong>and</strong> 200°C, with a L<strong>in</strong>ear gas flow rate of &out<br />

2.5 mm/m<strong>in</strong> (at 1000 atm, ZOS"C>,


<strong>and</strong> for a 400-hr duration. Two different gas mixtures were used,<br />

10<br />

90% CO, 10% N2 <strong>and</strong> 60% F1zP 30% CO, 10% N2.<br />

One conclusion that can be drawn from these resul-ts ts that the<br />

<strong>carbonyl</strong> <strong>formation</strong> depends upon the nature of the gas mixture. Although<br />

the carbon monoxide partial pressure <strong>in</strong> the EI2-CO-N2 mixture is only<br />

one-third that <strong>in</strong> the CC-N;! mixture, some of the alloys were considerably<br />

more attacked by the H2-CO-Nz-mixture due to a catalytic effect by the<br />

hydrogen, However, no uniform trend can be detected.<br />

The results also <strong>in</strong>dicate that high-.chromium alloys are quite<br />

resistant toward attack <strong>in</strong> both cases.<br />

If one assumes that the rate of <strong>carbonyl</strong> <strong>formation</strong> is proportional<br />

to p1'76, one may extrapolate these data to the conditions of 1000 psi<br />

(7 ma), 200°C. This gives an attack rate of 8.8 x times the rate<br />

at 1.000 atm. Tak<strong>in</strong>g the surface areas of the samples <strong>in</strong>to consideration,<br />

<strong>and</strong> assum<strong>in</strong>g that the system ~7as <strong>in</strong> "steady state'' dur<strong>in</strong>g the e-xperiment,<br />

this gives a calcul.ated iron loss at 1000 psi <strong>and</strong> 200°C:<br />

where A# is the weight loss <strong>in</strong> their Table 10. In the worst case reported,<br />

this would mean a loss of about 64 g m-' year-', for a 0.5% Mo, 0.15% <strong>steel</strong>.<br />

If one assumes that the system was i-n steady state dur<strong>in</strong>g the experiment,<br />

the weight losses AW listed <strong>in</strong> their Table 10 expressed as ppm iron<br />

<strong>carbonyl</strong> <strong>in</strong> the gas, will be<br />

ppm =Z 167 b ( g )<br />

In the ''worst'' case <strong>in</strong> their Table 10, AW = 0.268 g, so that the <strong>carbonyl</strong><br />

content <strong>in</strong> the gas mixture was about 55 ppm. Lf the same experiment had<br />

been run at 1000 psi (7 MPa) <strong>in</strong>stead of at 1000 atm (100 ma), the gas<br />

mixture would have conta<strong>in</strong>ed about 0.5 ppm <strong>carbonyl</strong>.


11<br />

These somewhat speculative extrapolations <strong>in</strong>dicate that <strong>in</strong><br />

order to conduct mean<strong>in</strong>gful k<strong>in</strong>etic experiments at 1000 psi or less,<br />

one must be able to determ<strong>in</strong>e <strong>carbonyl</strong> contents <strong>in</strong> the gas on the<br />

parts-per-billion level with a reasonable accuracy. Moreover, it<br />

seems to be desirable to keep the ratio (metal surface area)/(gas volume)<br />

as large as possible, depend<strong>in</strong>g upon the sensitivity of the analytical<br />

techniques employed.<br />

Hieber <strong>and</strong> Geisenberger” (1950) observed that small amounts of<br />

sulfur, selenium, or tellurium, especially HzS, <strong>in</strong> the gas enhance the<br />

reaction rate between carbon monoxide <strong>and</strong> iron. In their experiments<br />

they used pyrophoric iron at 200°C <strong>and</strong> 200 atm (20 MPa) (<strong>in</strong>itial. pressure).<br />

Ludkum <strong>and</strong> Eischensl’ (1973) reported that the <strong>formation</strong> of<br />

<strong>carbonyl</strong> by the reaction of carbon monoxide with the components of<br />

sta<strong>in</strong>less <strong>steel</strong> (type 304) poses a special problem <strong>in</strong> the Tnfrared<br />

study of adsorbed carbon monoxide because the b<strong>and</strong>s due to <strong>carbonyl</strong>s<br />

are found <strong>in</strong> the same spectral. regions as those due to carbon monoxide<br />

adsorbed on metals. Dur<strong>in</strong>g 1-hr exposure to carbon monoxide at<br />

700 torr (93 kPa) <strong>and</strong> room temperature, about 200 cm2 surEace area<br />

formed about 0.3 mg of adsorbed <strong>carbonyl</strong>s of <strong>nickel</strong>, iron, <strong>and</strong><br />

(presumably) chromium. The <strong>carbonyl</strong>s were easily removed by evacuation<br />

at 25°C.<br />

4. QUANTITATIVE ANALYTICAL METHODS FOR THE<br />

DETEIZMLNATION OF SMALL ANOUNTS OF<br />

IKON AND NICKEL CAKBONYI, IN GASES<br />

A number of analytical methods are reported <strong>in</strong> the literature<br />

for the quantitative determ<strong>in</strong>ation of small amounts o€ iron <strong>and</strong> <strong>nickel</strong><br />

<strong>carbonyl</strong>s <strong>in</strong> gases. Nickel <strong>carbonyl</strong> <strong>and</strong> iron <strong>carbonyl</strong> are extremely<br />

toxic. The maximum allowable exposure to <strong>nickel</strong> <strong>carbonyl</strong>, Xi (GO) I,,<br />

determ<strong>in</strong>ed by an 8-hr weighted average, has been set by the Occupational<br />

Safety <strong>and</strong> Health Adm<strong>in</strong>istration (OSHA)2o at 1 ppb or 7 11g Ni(C0)~+/rn~ air<br />

(2,5 pg Ni/m3 air), <strong>and</strong> for the iron <strong>carbonyl</strong> at ’1.0 ppb or 90 ilg<br />

Pe(C0)5/m3 air (25 l.rg Fe/m3 air).


12<br />

To be useful <strong>in</strong> monitorihg these low concentrations the analytical<br />

method used must respond to much I.ower concen1:rations than the maximum<br />

allowable value, <strong>and</strong> be usable even <strong>in</strong> the presence of other chemicals.<br />

It also iiiust have a short response time, especially if the levels of<br />

<strong>carbonyl</strong> change appreciably with time. S<strong>in</strong>ce <strong>nickel</strong> <strong>carbonyl</strong> is the<br />

more common hazard of these two, auld also by far the most toxic, the<br />

ma<strong>in</strong> effort has been put <strong>in</strong>to develop<strong>in</strong>g monitor<strong>in</strong>g methods for <strong>nickel</strong><br />

carhonyl <strong>in</strong> air.<br />

Wernlund <strong>and</strong> Cohen2 (1975) report that Fourier Transform Infrared<br />

Spectroscopy <strong>and</strong> Pl.asiiia Chromatography show promise for monitor<strong>in</strong>g <strong>nickel</strong><br />

carllonyl. Their plasma chro~rratograph monitor has a m<strong>in</strong>imum detectable<br />

concentration of <strong>nickel</strong> <strong>carbonyl</strong> <strong>in</strong> air of 0.022 ppb, lower than the<br />

OSHA Ihit by a fac.tor of 45. 'The system time constant bras reported<br />

to be 2 sec. Presumably, their technique should be easily adaptable to<br />

iron <strong>carbonyl</strong> as well.<br />

McDowel12' (1971.) described a method for determ<strong>in</strong><strong>in</strong>g <strong>nickel</strong> <strong>carbonyl</strong><br />

vapors by <strong>in</strong>frared spectrophotometry <strong>and</strong> claims that detectabilities<br />

<strong>in</strong> the range of 1 to 10 ppb should be achievable without great difficulty.<br />

However, higli partial pressures of CO can <strong>in</strong>terfere with accurate<br />

measurements.<br />

Brief, et alm8,22 (1965, 1967) evaluatied exist<strong>in</strong>g wet chemical<br />

methods for determ<strong>in</strong><strong>in</strong>g very low levels O€ <strong>nickel</strong> <strong>and</strong> iron <strong>carbonyl</strong>s<br />

<strong>in</strong> gases <strong>and</strong> found it desirable to develop more sensitive <strong>and</strong> reliable<br />

metiliods. We have tested their methods as descr-i-bed, <strong>and</strong> found that<br />

they are as sensitive <strong>and</strong> reliable as reported,<br />

Densham et al. 23 (1963) revi.ewed different tests then available<br />

for determ<strong>in</strong><strong>in</strong>g <strong>nickel</strong> <strong>and</strong> iron <strong>carbonyl</strong>s <strong>in</strong> gas streams, ma<strong>in</strong>ly aimed<br />

at the determ<strong>in</strong>ation of <strong>nickel</strong> aad iron <strong>carbonyl</strong>s <strong>in</strong> town gas, <strong>and</strong><br />

they also described new methods that they had developed. Among these,<br />

atomic absorption spectroscopy seems to be of special <strong>in</strong>terest to this<br />

project, because this method, if applicable, would perrni.t an on-l<strong>in</strong>e,<br />

practically <strong>in</strong>stantaneous monitor<strong>in</strong>g of iron <strong>and</strong> <strong>nickel</strong> <strong>carbonyl</strong> contents<br />

<strong>in</strong> the gas. Consider<strong>in</strong>g that the state of the art <strong>in</strong> atomic absorption.<br />

spectroscopy has been greatly .improved s<strong>in</strong>ce 1963, one would assume


13<br />

that the sensitivity <strong>and</strong> accuracy of modern <strong>in</strong>struments are about an<br />

order of magnitude better than that used by Densham et al.<br />

reported detection lim<strong>its</strong> are 2 ppb for <strong>nickel</strong> <strong>carbonyl</strong> <strong>and</strong> 10 ppb<br />

for iron <strong>carbonyl</strong>.<br />

Their<br />

We have tested the atomic absorption spectroscopy method with<br />

carbon monoxide conta<strong>in</strong><strong>in</strong>g 44 ppb iron <strong>carbonyl</strong>, us<strong>in</strong>g a Perk<strong>in</strong>-Elmer<br />

303 spectrophotometer. The results was encourag<strong>in</strong>g with an estrimated<br />

detection limit of about 0.5 ppb. By optimiz<strong>in</strong>g the conditions, it<br />

should be possible to obta<strong>in</strong> a detection limit of about 0.1 ppb of<br />

iron <strong>carbonyl</strong> <strong>and</strong> similar or lower lim<strong>its</strong> for <strong>nickel</strong> <strong>carbonyl</strong>.<br />

method is ideally suited to carb~nyl reaction ratio studies, s<strong>in</strong>ce it<br />

affords an immediate response to changes <strong>in</strong> the concentration of metals<br />

<strong>in</strong> the gas. This is not possible for wet chemical methods, where one<br />

must collect rather large gas volumes per analysis (" 50 1 gas for a<br />

40 ppb iron <strong>carbonyl</strong> level, <strong>and</strong> correspond<strong>in</strong>gly larger volumes tor<br />

lower levels).<br />

Plasma chromatography probably is a much more sensitive method<br />

for the analysis of iron <strong>carbonyl</strong> than atomic absorption spectros-<br />

copy. However good atomic absorption spectrophotometers are com-<br />

This<br />

merclally readily available <strong>and</strong> require little time to put <strong>in</strong>to operation,<br />

whereas it would require a substantially longer time to establish<br />

plasma chromatography as an operative method for this project.<br />

Fourier transform <strong>in</strong>frared spectroscopy is not feasible for this<br />

project, both from the viewpo<strong>in</strong>t of time as well as cost. In addition,<br />

the method may not be suitable <strong>in</strong> this case because of <strong>in</strong>terference<br />

by the carbon monoxide.<br />

5. PREVENTION METHODS<br />

Very little direct <strong>in</strong><strong>formation</strong> exists <strong>in</strong> the literature about<br />

methods for prevent<strong>in</strong>g the <strong>formation</strong> of iron or <strong>nickel</strong> <strong>carbonyl</strong> from<br />

pipe <strong>steel</strong>s. The usual eng<strong>in</strong>eer<strong>in</strong>g solutions to the problem seem to


e either to use high-chromium <strong>steel</strong>s or to l<strong>in</strong>e the pip<strong>in</strong>g with a<br />

material that is <strong>in</strong>ert to the gas mixture <strong>and</strong> preveritis contact of<br />

CO with the metal.<br />

14<br />

Pichler <strong>and</strong> Walenda' mention the use of copper as l<strong>in</strong>ers. Perhaps<br />

more <strong>in</strong>teresti-mg is their observation that the attack oE carbon monoxide<br />

upon the <strong>steel</strong> see<strong>in</strong>s to be a pure surface area effect, with no special<br />

preference to gra<strong>in</strong> boundaries orientation of the gra<strong>in</strong>s, etc. This<br />

suggests that even a relatively noncoherent coat<strong>in</strong>g of a gas-resistant<br />

<strong>in</strong>aterial may substantially suppress the <strong>carbonyl</strong> <strong>formation</strong>, as the <strong>carbonyl</strong><br />

<strong>formation</strong> would be directlly proportional. to the area of the exTosed<br />

<strong>steel</strong> surface. For example, a chemi-cal treatment of the <strong>steel</strong> surface<br />

with a copper solution, say copper acetate, might cover the <strong>steel</strong>.<br />

surface to 99.9% os better with copper. In the case of a high--chromium<br />

<strong>steel</strong>, oxidation of the surface to form a coherent chromium oxide 1.ayer<br />

might prove very effective <strong>in</strong> prevent<strong>in</strong>g even trace 1.evels of <strong>carbonyl</strong>s<br />

from be<strong>in</strong>g formed.<br />

Clearly a nmiber of effective coat<strong>in</strong>gs can be envisioned, so<br />

that the deci-d<strong>in</strong>g factors presumably will be those of cost <strong>and</strong> lifetime.<br />

6. CONCLUSIONS<br />

Literature data demonstrate that the attack upon pipe <strong>steel</strong>s by<br />

carbon monoxide <strong>in</strong> gas mi-xtures at moderate pressures [l---lOOO atrm (0.1-100<br />

MPa)] <strong>and</strong> moderate temperatures (100-300°C) to form iron <strong>and</strong> <strong>nickel</strong><br />

<strong>carbonyl</strong>s are largely governed by k<strong>in</strong>etics <strong>and</strong> not by equilibrium<br />

thermodynamics. The rate of attack is a function of alloy cumposition,<br />

the surface condition of the metal surface, the gas composition, the<br />

gas flow rate, the gas pressure, <strong>and</strong> the temperature with a maximum at<br />

about 200°C<br />

Modern analytical <strong>in</strong>strumental techniques, such as plasma<br />

chromatography, Fourier transform <strong>in</strong>frared spectroscopy, <strong>and</strong> atomic<br />

absorption spectroscopy are all applicable for fast analysis of trace<br />

amounts of cnrlJonyls <strong>in</strong> gases. The most practical method for this project<br />

appears to be atomic absorption spectroscopy.


15<br />

7. REFERENCES<br />

1. GmeZ<strong>in</strong>s I~uusczbuch Der Anorganhehan Chemic?, Vol. 59, Fe [ B] , p. 490<br />

Verlag Chemic. GMBH. We<strong>in</strong>heimiBergstr.<br />

2. N. Irv<strong>in</strong>g Sax, Dangerous Frtipsrtz'es of Industria?, Materiu%s, 4th 2d.<br />

Van Nostr<strong>and</strong>-Re<strong>in</strong>hold, New York, (1975).<br />

3, M, Trautz <strong>and</strong> W. Radst.uber, Z. Eleefiroehem. 35: 799(1929) (In<br />

Crrman)<br />

4. A. G. Gilbert <strong>and</strong> K,G.P. Sulzmann, J. EZectr.ochem. Soe. 121: 832<br />

( 19 7 4.)<br />

5. L. Id, Ross, F. H. Haynie, i%nd R. F. Hochman J. Chem. Erg. Datcx<br />

9: 339 (1964).<br />

6. V. 6. Syrk<strong>in</strong>, liuss. J. Phys. Chm. 48(12): 1718 (1974) [Englifih<br />

translation from Zh. Fiz. Khim. 48: 2927 (1974).<br />

7. 1-1. Picliler <strong>and</strong> H. Wal-enda, Brenlzst;. lShern., 21: 133 (1940).<br />

(English translation: The John Crerar Library Photoduplicatlon<br />

Service.) 35 W. 33rd St., Chicago, IL 60616.<br />

8. R. S,, Brief, R. S. Ajemian, <strong>and</strong> K, C. Confer Am. Twit. flyg. Ass. J.<br />

28: 21 (1967).<br />

9. I,. S. Cooper, A. B. Densham, <strong>and</strong> M. W. Tanner, Inst. Gas .Zngr. J.<br />

4: 183 (March 1964).<br />

10 ~ Gmel<strong>in</strong>s<br />

Hcndbueh Der Anorganischen Chemie, Vol. 57, Ni [ R] p .794<br />

Verlag Chemic. GHBH. We-<strong>in</strong>heim/Bergstr, 1966.<br />

11. I(. A. Walsh, Physieul, Properties of nr-iekez Carbony?,, U,S. Atom-ic<br />

Energy Commission, Fubl. LA-1649 [1953/58].<br />

12. B. Sug<strong>in</strong>uma arid K. Satozaki, Bull. Inst. Phys. Chm. Res- T'O~ZJO<br />

21: 432 (1942).<br />

13. A. Ya Kipiiis <strong>and</strong> N. F. Mikhailova Zh. PKkZ. Kh-im. 45:1450 (1972)<br />

(English translation: UDC 546. 745: 541. 124.16, 1972 Consultants<br />

Bureau).<br />

14. B. E. Roscoe <strong>and</strong> F. Scudder, Rer. Dtsch. Ckm. Gas. 24: 3843 (1891)-<br />

15. A. Stoffel, Z. Anorg. Allgem. C"nem. 84: 56 (1914).<br />

1.6. R. L. Mond <strong>and</strong> A. E. Wallis, J. Chmz. SOC,, London, 121.: 29 (1922).<br />

17. A. Mittasch, z. Angeld. &?m. 41: 827 (1928).


18. W. IIieber <strong>and</strong> 0. Geisenberger, Z. Anorg. Cl&rn~ 262: 1.5 (1950).<br />

(In German).<br />

19. K. H. Ludlum <strong>and</strong> R. P. Eischens sur, sei. 40: 397 (1973).<br />

20. R. %. Wernlund <strong>and</strong> M. J. Cohen Res./Dev. 26(7): 32--35 (1975).<br />

21.. R. S. McDowell, Am. Id. fltjg. Ass. J. 32: 621 (1971).<br />

16<br />

22. R. S. Brief, %. S. Venable, <strong>and</strong> R. S. Ajenian, <strong>in</strong>d. Hyg. J.<br />

26: 72 (1965).<br />

23. A. B. Densham, P.A.A. Bea1.e <strong>and</strong> R. Palmer, J. AppZ. Cherfl. (London)<br />

13: 576 (1963).


1-2 "<br />

3.<br />

44.<br />

9.<br />

EO.<br />

11.<br />

12 1<br />

13.<br />

E4 *<br />

15 *<br />

16-20,<br />

21 I/<br />

22 D<br />

23.<br />

24<br />

25"<br />

26 a<br />

27 I<br />

28,<br />

29 a<br />

38<br />

31<br />

32"<br />

33 I)<br />

34"<br />

35.<br />

36<br />

37 0<br />

38 "<br />

39-41 w<br />

42 ,<br />

Central. Research Library<br />

Document Reference Section<br />

Laboratory Records Department<br />

Laboratory Records, ORNL RC<br />

OfzNL Patent Office<br />

G, M. Adamson<br />

S. I. Auerbach<br />

R. 3. Beaver<br />

W. E. Bolton<br />

6. R. Br<strong>in</strong>kman<br />

J. Brynestad<br />

D. A. Canonico<br />

J. V. Cathcart<br />

H. D. Cochran, Jr.<br />

R. A. Cooper<br />

R. H. Cooper, Jr.<br />

J. E. Cunn<strong>in</strong>gham<br />

J. H. DeVan<br />

J. R. DiStefano<br />

R. G. Donnelly<br />

W. P. Eatherly<br />

M. S. Edwards<br />

D. E. Ferguson<br />

L. It. Ferris<br />

R. C. Forrester 111<br />

A. P. Fraas<br />

W. Fulkersan<br />

J. C. Griess, Jr.<br />

R. L. Heest<strong>and</strong><br />

M. K. Hill<br />

J. 61. Holmes<br />

75-90. ERDA, Wash<strong>in</strong>gton, DC 20545<br />

W. Baker, FER<br />

J. D. Batchelor, CCU<br />

E. L. Clark, CCU<br />

N. P. Cochran, FDP<br />

T. Cox, FER<br />

S. J. Dapkunas, FER<br />

J. Forst, FE<br />

H. Frankel, FE<br />

INTERNAL DISTRIBTJTION<br />

EXTERNAL DISTRIBUTION<br />

43. H. Inouye<br />

44. J. R. Keiser<br />

45. R. T. K<strong>in</strong>g<br />

46. W. R. La<strong>in</strong>g<br />

47. C. T. Liu<br />

48. W. R. Mart<strong>in</strong><br />

49. H. E. McCoy<br />

50. R. W. McClung<br />

51. D. L. McEEroy<br />

52. C. J. McHargue<br />

53. J. R. McWherter<br />

54. R. K. Nanstad<br />

55. J. P. Nichols<br />

56. R. E. Pawel<br />

57. T. W. Pickel<br />

58. W. W. Pitt<br />

59. H. Postma<br />

60. T. K. Roche<br />

61. M. W. Rosenthal<br />

62. Royes Salmon<br />

63. A. C. Schaffhauser<br />

64. C. D. Scott<br />

65. J. E. Selle<br />

66. W. I). Shults<br />

67. G. M. Slaughter<br />

68. J. 0. Stiegler<br />

69. D. B. Trauger<br />

70. 3. R. Weir, Jr.<br />

71. J. C. White<br />

72. R. 0. Williams<br />

73. H. L. Yakel<br />

74. c. s. Yust<br />

TI. Garret, FDP<br />

s. w. Gouse, FE<br />

W. S. Harmon, FDP<br />

I,. K<strong>in</strong>dley, PER<br />

C, Knudsen, FER<br />

T. K. Lau, FDP<br />

J. Smith, FE<br />

D. K. Stevens, DPR<br />

OWL/ im-5 4 9 9<br />

Distribution<br />

Category UC-90d


18<br />

EXTERNAL DISTRIBUTION (Contitiued)<br />

91-95. Morgatitown Energy Research Center, P.O. Box 800, MorgantoTm, W 26506<br />

Director<br />

96-98. ERDA Pittsburgh Energy Research Center, 4800 Forbes Avenue, Pittsburgh,<br />

PA 15213<br />

W. J. McMichaels<br />

W. I?. Haynes<br />

J. P. Strakey<br />

99. EKIM Fossile Energy Analyst, Office of Congressional Relations,<br />

Wash<strong>in</strong>gton, DC 20545<br />

David 0. Webb<br />

100. EIiDA OAK RIDGE OPERATIONS OFFICE, P.O. Box E, <strong>Oak</strong> <strong>Ridge</strong>, TN 37830<br />

Research <strong>and</strong> Technical Support Division<br />

101-323. ERDA TECHNICAL INFORMATION CEN'TER, Office of In<strong>formation</strong> Services,<br />

P.O. Box 62, <strong>Oak</strong> <strong>Ridge</strong>, TN 37830<br />

For distribution as shown <strong>in</strong> TTD-4500 Distribution Category,<br />

UC-90d (Coal Conversion <strong>and</strong> Utilization --- Liquefaction)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!