23.10.2012 Views

Advanced polymer nanocomposites: novel properties and applications

Advanced polymer nanocomposites: novel properties and applications

Advanced polymer nanocomposites: novel properties and applications

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Advanced</strong> Polymer<br />

Nanocomposites:<br />

Novel Properties <strong>and</strong> Applications<br />

Ramanan Krishnamoorti<br />

Department of Chemical & Biomolecular<br />

Engineering<br />

University of Houston<br />

ramanan@uh.edu


State of the Art: Aerospace<br />

Applications of Nano<br />

Thanks to Rich Vaia, AFRL


Outline<br />

What are Polymer Nanocomposites? Uniqueness?<br />

Length Scale, Interface, Number Density, Critical Concentration<br />

How are They Made? Options?<br />

Nanofillers, Nanoparticles, Synthesis, Interface Modification<br />

Application Examples:<br />

Automotive – Maintaining Performance to Provide Added Value<br />

Barrier - Nano Filler as Part of Formulation<br />

Flame Retardants - NanoFiller‟s Latent Role: Self-Passivation & Reinforcement<br />

CFRF - Approach to “Engineered Materials”<br />

Shape Memory - Impacting the “Dominant” Attribute of the Polymer<br />

“DC” Electrical - NanoParticle Network <strong>and</strong> “Critical Junctions”<br />

Dynamic Electrical - Network Responsivity<br />

Dielectric – Field Distribution, Interfaces <strong>and</strong> Charge Trapping<br />

Next Step: Single Phase PNCs<br />

Summary <strong>and</strong> Conclusions


What is a Polymer Nanocomposite?<br />

• Distinguishing Attributes?<br />

• Perspectives<br />

• Material Constituents?<br />

• Property?<br />

• Dominate Structural Motif?<br />

• Application?


Definition<br />

• IUPAC – Nanocomposite<br />

• Composite in which at least one of the phases has at least one dimension of the order of<br />

nanometers (PAC, 2004, 76, 1985, Definition of terms related to <strong>polymer</strong> blends,<br />

composites, <strong>and</strong> multiphase <strong>polymer</strong>ic, doi:10.1351/pac200476111985)<br />

• Wikipedia – Nanocomposite<br />

• Multiphase solid materials where one of the phases has one, two or three dimensions of<br />

less than 100 nanometers (nm), or structures having nano-scale repeat distances<br />

between the different phases that make up the material.<br />

• In the broadest sense this definition can include porous media, colloids, gels <strong>and</strong><br />

co<strong>polymer</strong>s, but is more usually taken to mean the solid combination of a bulk matrix <strong>and</strong><br />

nano-dimensional phase(s) differing in <strong>properties</strong> due to dissimilarities in structure <strong>and</strong><br />

chemistry.<br />

• The mechanical, electrical, thermal, optical, electrochemical, catalytic <strong>properties</strong> of the<br />

nanocomposite will differ markedly from that of the component materials.<br />

• Size limits for these effects have been proposed,


Operational: Polymer<br />

Nanocomposites<br />

• Introduce small amounts of Nanoparticles to achieve dramatic<br />

changes in<br />

– Mechanical, Thermal, Physical, Electrical <strong>and</strong> / or Chemical Properties<br />

– Introduce Multifunctionality (Structural + Electric; Structural +<br />

ElectroMechanical; Structural + Permeability; Structural +<br />

Biocompatibility)<br />

– Minimal change in density of the <strong>polymer</strong><br />

– Possibly Inexpensive<br />

• Challenges:<br />

– Dispersion (Equilibrium; Kinetics; Processing)<br />

– Interface Control<br />

– Optimization & Pricing


► Nanoparticles<br />

► Silica Nanoparticles<br />

► Silsequioxanes<br />

► Carbon nanotubes<br />

► Layered silicates<br />

► Isotropic or Anisotropic<br />

Nanoparticles<br />

► Usually possess Hierarchy of Structure<br />

► Functionalized or Pristine<br />

► Controls Thermodynamics<br />

► Might Compromise Properties<br />

1 nm<br />

R<br />

O<br />

X<br />

R<br />

Si<br />

O O<br />

Si<br />

O<br />

Si<br />

Si<br />

O<br />

R<br />

O<br />

O<br />

Si<br />

R<br />

R<br />

Si<br />

O<br />

O<br />

O<br />

Si<br />

O<br />

Si<br />

O<br />

R<br />

R<br />

100 nm


MRS Bulletin, April 2007<br />

Occurrences per year<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

NC<br />

PNC<br />

PNC with "Clay"<br />

PNC with "Nanotube"<br />

1985 1990 1995 2000 2005<br />

PNC Trends<br />

Fraction<br />

0.60<br />

0.55<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

0.00<br />

PNC:NC<br />

PNC Patents:PNC<br />

PNC with "clay":PNC<br />

PNC with "nanotube":PNC<br />

1996 1998 2000 2002 2004 2006<br />

Growth trends of the Polymer Nanocomposite enterprise based on yearly publications cataloged in<br />

the CAPLUS <strong>and</strong> MEDLINE databases of the American Chemical Society 15 . a) Number of<br />

occurrences per year of the term “Nanocomposite” (NC, �) <strong>and</strong> “Nanocomposite” with “Polymer”<br />

(PNC, �). “Polymer Nanocomposites” is further refined to those discussing “clay” PNCs (�) <strong>and</strong><br />

“nanotube” PNCs (�). b) Analysis of the yearly number of citations showing the total fraction of<br />

“Nanocomposite” occurrences that discuss “Polymer Nanocomposite” (PNC:NC, �) as well as the<br />

total fraction of “Polymer Nanocomposite” occurrences that are patents (PNC Patents, �), discuss<br />

clay based PNCs (PNC “clay”, �), <strong>and</strong> discuss “nanotube” containing PNCs (PNC “nanotube”, �).


Unique issues due to Nanoparticles<br />

• Contrast a spherical particle with diameter 1 mm with<br />

one with diameter 10 nm:<br />

– At 10 vol % particles:<br />

Particle diameter 10 nm 1 mm<br />

# particles/ cc 1.9 x 10 17 1.9 x 10 11<br />

Internal surface area / cc 60 m 2 0.6 m 2<br />

Average Interparticle distance 8.5 nm 850 nm<br />

Polystyrene: M w = 100,000 � R g(melt) = 8.5 nm


Reinforcement<br />

�<br />

10 mm �� 1<br />

h<br />

10 nm<br />

Filled Polymer<br />

l = 1 mm<br />

Nanocomposite<br />

l = 1 nm<br />

Interfacial Region<br />

� z �<br />

Vaia, Materials Today, 2006;<br />

Chemistry of Materials, 2007;<br />

Science (Perspective), 2008<br />

0<br />

Critical Feature<br />

R<br />

g<br />

Bulk<br />

z �<br />

R<br />

g<br />

Material of Interfaces<br />

~700-800 m 2 /g (10 3 x )<br />

Material of Fillers<br />

~1 x 10 5 particles/mm (10 5 x)<br />

Material of Associating Units<br />

f C ~ 10 -3 – 10 -4<br />

~ 10 nm @ 5-7 vol%<br />

Opportunities<br />

• Interface-to-volume ratio<br />

• Unique Nanoparticle Prop.<br />

• Heterogeneity less than ‘critical<br />

flaw size’<br />

• Emergent Behavior: associative<br />

network of nanoelements


Caveats<br />

Issues are not new Issues are not unique<br />

Critical Aspects:<br />

• Polymer NanoComposites?<br />

Is this a „reinvention‟ of filled <strong>polymer</strong>s?<br />

• Hierarchical morphology – property correlations?<br />

When is this not an issue?<br />

• Confined <strong>polymer</strong> behavior?<br />

Different from thin film <strong>and</strong> coating technology?<br />

• Filler impact <strong>polymer</strong> meso phase?<br />

Crystallization aids & process dependent crystal fraction?<br />

Preponderance of interface 700 m 2 /g<br />

Diminishing small volume fraction of „bulk‟ d ~ Rg<br />

Aspect ratio of constituents a > 100<br />

Dissimilar mechanical <strong>properties</strong> Ef/Em ~ 10 3<br />

Hierarchical morphology has one more scale CF(nm-mm; q)


First Commercial Nanocomposite<br />

Nylon 6 from Toyota Central RD<br />

Property Changes<br />

NCH (5wt%) Nylon-6<br />

Tensile Modulus (GPa) 2.1 1.1<br />

Tensile Strength (MPa) 107 69<br />

Heat Distortion Temp. ( o C) 145 65<br />

Impact Strength (kJ/m 2 ) 2.8 2.3<br />

Water Adsorption (%) 0.51 0.87<br />

CTE (x,y) 6.3 x 10 -5<br />

13 x 10 -5<br />

Peak Heat Release Rate (kW/m 2 ) 378 1011<br />

Okada et al. Mat. Sci. Eng. 1995, C3, 109.<br />

Gilman et al. SAMPE, May 1998<br />

The clays are 1 nm in thickness <strong>and</strong> 100-500 nm in diameter


Review Articles (I)<br />

• “Polymer/layered silicate <strong>nanocomposites</strong>: a review from preparation to processing” Ray, S. S.;<br />

Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539-1641.<br />

• “Polymer nanocomposite foams” Lee, L. J.; Zeng, C.; Cao, X.; Han, X.; Shen, J.; Xu, G. Composites<br />

Science <strong>and</strong> Technology 2005, 65, 2344-2364.<br />

• “Polymer Nanocomposites Containing Carbon Nanotubes” Moniruzzaman, M.; Winey, K. I.<br />

Macromolecules 2006, 39, 5194-5205.<br />

• “Polymer/montmorillonite <strong>nanocomposites</strong> with improved thermal <strong>properties</strong> Part I. Factors<br />

influencing thermal stability <strong>and</strong> mechanisms of thermal stability improvement” Leszczynska, A.;<br />

Njuguna, J.; Pielichowski, K.; Banerjee, J. R. Thermochimca Acta 2007, 435, 75-96.<br />

• “Synthetic, layered nanoparticles for <strong>polymer</strong>ic <strong>nanocomposites</strong> (PNCs)” Utracki, L. A.; Sepehr, M.;<br />

Boccaleri, E. Polym. Adv. Technol. 2007, 18, 1-37.<br />

• “Bio<strong>nanocomposites</strong>: A New Concept of Ecological, Bioinspired, <strong>and</strong> Functional Hybrid Materials”<br />

Darder, M.; Ar<strong>and</strong>a, P.; Ruiz-Hitzky, E. Adv. Mater. 2007, 19, 1309-1319.<br />

• “Twenty Years of Polymer-Clay Nanocomposites” Okada, A.; Usuki, A. Macromol. Mater. Eng. 2007,<br />

291, 1449-1476.<br />

• “Polymer Nanocomposites with Prescribed Morphology: Going beyond Nanoparticle-Filled<br />

Polymers” Vaia, R. A.; Maguire, J. F. Chem. Mater. 2007, 19, 2736-2751.<br />

• “Applications of hybrid organic-inorganic <strong>nanocomposites</strong>” Sanchez, C.; Julian, B.; Belleville, P.;<br />

Popall, M. J. Mater. Chem. 2005, 15, 3559-3592.<br />

• “How Nano are Nanocomposites?” Schaefer, D. W.; Justice, R. S. Macromolecules 2007, 40, 8501-<br />

8517.<br />

Alex Morgan, University of Dayton


Review Articles (II)<br />

• “Features, Questions, <strong>and</strong> Future Challenges in Layered Silicates Clay Nanocomposites with Semicrystalline<br />

Polymer Matrices” Harrats, C.; Groeninckx, G. Macromol. Rapid Commun. 2008, 29, 14-26.<br />

• “From carbon nanotube coatings to high-performance <strong>polymer</strong> <strong>nanocomposites</strong>” Bredeau, S.; Peeterbroeck, S.;<br />

Bonduel, D.; Alex<strong>and</strong>re, M.; Dubois, P. Polym. Intl. 2008, 57, 547-553.<br />

• “Polymer Nanocomposites” Krishnamoorti, R.; Vaia, R. A. J. Polym. Sci: Part B: Polym. Phys. 2007, 45, 3252-3256.<br />

• “Nanocomposites based on polyolefins <strong>and</strong> functional thermoplastic materials” Ciardelli, F.; Coiai, S.; Passaglia,<br />

E.; Pucci, A.; Ruggeri, G. Polym. Int. 2008, 57, 805-836.<br />

• “Flame retarded <strong>polymer</strong> layered silicate <strong>nanocomposites</strong>: a review of commercial <strong>and</strong> open literature systems”<br />

Morgan, A. B. Polym. Adv. Technol. 2006, 17, 206-217.<br />

• “Polymer nanotechnology: Nanocomposites” Paul, D. R.; Robeson, L. M. Polymer 2008, 49, 3187-3204.<br />

• “Processing of nanographene platelets (NGPs) <strong>and</strong> NGP <strong>nanocomposites</strong>: a review” Jang, B. Z.; Zhamu, A. J.<br />

Mater. Sci. 2008, 43, 5092-5101.<br />

• “Colloidal nanocomposite particles: quo vadis?” Balmer, Jennifer A.; Schmid, Andreas; Armes, Steven P. J. Mater.<br />

Chem. 2008, 44, 5722 – 5730<br />

• “Toxicity Evaluation for Safer Use of Nanomaterials: Recent Achievements <strong>and</strong> Technical Challenges” Hussain, S.<br />

M.; Braydich-Stolle, L. K.; Schr<strong>and</strong>, A. M.; Murdock, R. C.; Yu, K. O.; Mattie, D. M.; Schlager, J. J.; Terrones, M. Adv.<br />

Mater. 2009, 21, 1549-1559.<br />

Alex Morgan, University of Dayton


Outline<br />

What are Polymer Nanocomposites? Uniqueness?<br />

Length Scale, Interface, Number Density, Critical Concentration<br />

How are They Made? Options?<br />

Nanofillers, Nanoparticles, Synthesis, Interface Modification<br />

Application Examples:<br />

Automotive – Maintaining Performance to Provide Added Value<br />

Barrier - Nano Filler as Part of Formulation<br />

Flame Retardants - NanoFiller‟s Latent Role: Self-Passivation & Reinforcement<br />

CFRF - Approach to “Engineered Materials”<br />

Shape Memory - Impacting the “Dominate” Attribute of the Polymer<br />

“DC” Electrical - NanoParticle Network <strong>and</strong> “Critical Junctions”<br />

Dynamic Electrical - Network Responsivity<br />

Dielectric – Field Distribution, Interfaces <strong>and</strong> Charge Trapping<br />

Next Step: Single Phase PNCs<br />

Summary <strong>and</strong> Conclusions


Nanocomposite<br />

Hybrid<br />

Lane UMich, Lichetenhan<br />

Hybrid<br />

Approaches: Organic-Inorganic<br />

Nanostructured Materials<br />

A. Exfoliation<br />

Nanocomposites<br />

B. In-situ formation (templating)<br />

IPNs, mesoporus hybrids<br />

C. Molecular incorporation<br />

POSS, CERAMERs<br />

Peng, et al. Science.<br />

2000, 1802. Kramer, Hawker, etal<br />

Wiesner et al Cornell<br />

Matyjaszewski, K.., CMU


Traditional Fillers<br />

Carbon Black<br />

Carbon Fiber Rods<br />

Approximate<br />

Shape*<br />

Agglomerate of<br />

Spheres<br />

Smallest<br />

Dimension<br />

(nm)*<br />

Aspect<br />

Ratio**<br />

Elastic<br />

Modulus<br />

(GPa)<br />

Electrical<br />

Conductivity<br />

(S/cm)<br />

Thermal<br />

Conductivity<br />

(W / mK)<br />

Commercial Uses<br />

10-100 1 - 5 na 10-100 0.1-0.4 tires, hoses, shoes, elastomers<br />

5,000-<br />

20,000<br />

10-50 300-800 0.1-10 100-1000<br />

aerospace, automotive, marine, sporting,<br />

medical<br />

Carbon Graphite Plate 250-500 15-50 500-600 1-10 100-500 gaskets, seals<br />

E-Glass Rod<br />

Mineral: CaCO 3<br />

Mineral: Silica<br />

Mineral: Talc, China<br />

Clay<br />

Nanoscale Fillers<br />

Sphere Platelet<br />

Agglomerate of<br />

Spheres<br />

Platelet<br />

10,000-<br />

20,000<br />

45-70<br />

600-4,000<br />

8,000-<br />

30,000<br />

5,000-<br />

20,000<br />

20-30 75 na na marine, automotive, construction, filtration<br />

~1<br />

1-30<br />

35 na 3-5 paper, paint, rubber, plastics<br />

5-10 30-200 na 1-10<br />

reinforced plastics, thermal insulator, paint,<br />

rubber reinforcing agent<br />

5-10 1-70 na 1-10 paper, consumer goods, construction<br />

Carbon NanoFiber Rod 50-100 50-200 500 700-1000 10-20<br />

Carbon MWNT Rod 5-50<br />

Carbon SWNT Rod 0.6 - 1.8<br />

NanoGraphite /<br />

Graphene<br />

Aluminosilicate<br />

Nano-Clay<br />

100-<br />

10000<br />

100 -<br />

10,000<br />

hoses, aerospace, ESD/EMI shielding,<br />

adhesives<br />

1,000 500-10,000 100-1000 automotive, sporting, ESD/EMI shielding<br />

1,500 1000-10,000 1000 filters, ESD/EMI shielding<br />

Plate 0.4-10 100-1000 1,000 1000-10000 1000 ESD/EMI shielding<br />

Plate 1-10 50-1000 200-250 na 1-10<br />

automotive, packaging, sporting, tires,<br />

aerospace<br />

Nano TiO2 Sphere 10-40 ~1 230,000 10-11-10-12 12 photocatalysis, gas sensors, paint<br />

Nano Al2O3 Sphere 300 ~1 50 10-14 20-30<br />

seal rings, furnace liner tube, gas laser<br />

tube, wear pads<br />

Nano-Cellulose<br />

Common Fillers <strong>and</strong> Nanoparticles:<br />

Rod 10-100 ~100 100-200 10 -12 1-10<br />

construction, automotive, commercial<br />

Winey & Vaia, MRS Bulletin, 2007


Equilibrium States<br />

d<br />

Unmixed<br />

D<br />

Intercalated<br />

Exfoliated


SWNT Rope<br />

Synthesis Approaches<br />

►Melt Intercalation: Co-Extrusion<br />

► Functionalization of the NPs*<br />

SWNT<br />

�Tailoring the modifier to the <strong>polymer</strong> promotes favorable interactions<br />

O<br />

O<br />

Organic Modifier<br />

► In-Situ <strong>polymer</strong>ization with pristine** or functionalized NPs<br />

� or hn<br />

► Surfactant assisted dispersion of NPs***<br />

O H<br />

* Mitchell, C.A., Bahr, J. L., Arepalli, S., Tour, J., Krishnamoorti, R. Macro. 2002, 35, 8825-8830<br />

**Putz K., Mitchell C. A., Krishnamoorti R., Green P. F. J. Polym. Sci. Part B: Polym. Phys., 42, 2286 – 2293 (2004).<br />

**Parekh, B. , Tangonan A., Newaz, S. S., S<strong>and</strong>uja, S. K., Ashraf A. Q., Krishnamoorti, R. , Lee, T. R., Macro, 2004.<br />

***Yurekli K., Mitchell C. A., Krishnamoorti R., J. Am. Chem. Soc.,, 2004, 126(32), 9902-9903.<br />

n


Synthesis Approaches<br />

References Restricted to Clays<br />

Melt Intercalation:<br />

Polystyrene (PS) [Macromolecules 30 (1997) 8000; Chem. Mater. 5 (1993) 1694]<br />

Nylon-6. [J. Appl. Polym. Sci. 71 (1999) 1133]<br />

Polypropylene with maleic anhydride (PP-MA) or hydroxyl (PP-OH) [J. Appl. Polym. Sci 66 (1997) 1781;<br />

Macromolecules 30 (1997) 6333; J. Appl. Polym. Sci 67 (1998) 87]<br />

Poly(styrene-b-butadiene) co<strong>polymer</strong> (SBS) [J. Mater. Res. 12 (1997) 3134]<br />

Poly(dimethylsiloxane) (PDMS) [Chem. Mater. 7 (1995) 1597; J. Appl. Polym. Sci. 69 (1998) 1557]<br />

Nitrile rubber (NBR) [Mater. Sci. Eng. C3 (1995) 109]<br />

Poly(ethylene oxide) (PEO) [Adv. Mater. 7 (1995) 154]<br />

Solution Intercalation:<br />

poly(vinyl alcohol) (PVOH) [J. Colloid Sci 18 (1963) 647; J. Appl. Polym. Sci. 66 (1997) 573],<br />

poly(ethylene oxide) (PEO) [Clay Mineral 8 (1970)305. Colloid Polym. Sci 267 (1989) 899, Adv.Mater. 7 (1995)]<br />

poly(lactide) (PLA) [J. Polym. Sci.: Part B: Polym. Phys. 35 (1997) 389]<br />

poly(e-caprolactone) (PCL) [J. Appl. Polym. Sci 64 (1997) 2211]<br />

poly(imide) (PI) [J. Polym. Sci.: Part A: Polym. Chem. 31 (1993) 2493, ibid 35 (1997) 2289]<br />

In-Situ Polymerization:<br />

Interlayer <strong>polymer</strong>izations: Appl. Clay Sci. 15 (1999) 109.<br />

Nylon-6 [ Clay Mineral, 23 (1988) 27; J. Mater. Res. 8 (1993) 1179; J. Mater. Res. 8 (1993) 1174; J. Polym. Sci.<br />

Part A: 31 (1993) 983;J. Polym. Sci Part A: 31 (1993) 1755]<br />

poly(e-caprolactone) (PCL). [J. Polym. Sci.: Part A 33 (1995) 1047. Adv. Polym. Sci. 147 (1999) 1; J. Macromol.<br />

Sci.-Rev. Macromol. Chem. Phys. C35 (1995) 379]<br />

Polystyrene (PS) [J. Am. Chem. Soc. 121 (1999) 1615]<br />

HDPE [WO Patent WO9947598A1 (1999); J. Macromol. Sci.: Rev. Macromol. Chem. Phys. C38 (1998) 511]<br />

(Co)polyolefin [Macromol. Rapid Commun. 20 (1999) 423]<br />

Poly(ethylene terephtalate) (PET) [J. Appl. Polym. Sci. 71 (1999) 1139]


Outline<br />

What are Polymer Nanocomposites? Uniqueness?<br />

Length Scale, Interface, Number Density, Critical Concentration<br />

How are They Made? Options?<br />

Nanofillers, Nanoparticles, Synthesis, Interface Modification<br />

Application Examples:<br />

Automotive – Maintaining Performance to Provide Added Value<br />

Barrier - Nano Filler as Part of Formulation<br />

Flame Retardants - NanoFiller‟s Latent Role: Self-Passivation & Reinforcement<br />

CFRF - Approach to “Engineered Materials”<br />

Shape Memory - Impacting the “Dominate” Attribute of the Polymer<br />

“DC” Electrical - NanoParticle Network <strong>and</strong> “Critical Junctions”<br />

Dynamic Electrical - Network Responsivity<br />

Dielectric – Field Distribution, Interfaces <strong>and</strong> Charge Trapping<br />

Next Step: Single Phase PNCs<br />

Summary <strong>and</strong> Conclusions


UBE Nylon 6 Toyota timing belt cover; engine manifold cover<br />

Nylon 6 Film for packaging<br />

Nylon 6/66, 12 Fuel system components<br />

Bayer Nylon 6 Film for meat packaging<br />

Nylon 6 coating for paper board juice container<br />

PC/ABS Flame retardant computer <strong>and</strong> monitor housings<br />

Foster Corp. Nylon 12 <strong>nanocomposites</strong> used in catheter tubing<br />

GM Polyolefin TPO for step on Astro vans to replace talc filled material.<br />

Will be integrating into other parts in near future.<br />

Unitika Nylon 6 automotive parts (Mitsubishi engine cover)<br />

EVOH, Polylactic acid<br />

Wilson Sporting Tennis balls (nanoclay/butyl rubber coating from InMat)<br />

Honeywell Nylon 6 for food packaging<br />

US Army MRE food tray (EVOH)<br />

Example Commercial Ventures:<br />

Polymer-Clay Nanocomposites<br />

Kablewerk Eupen EVA flame retardant cable coating<br />

TNO polyurethane binding system for ceramic molds<br />

RTP Various polyamides <strong>and</strong> polyolefin concentrates<br />

Triton Systems Polyurethane bladder for athletic shoe<br />

Polyolefin packaging films for food <strong>and</strong> pharmaceutical packaging<br />

Nanocor MXD-6 Nylon for barrier food packaging<br />

Beall, 2002


August 01<br />

Feb 04<br />

• Side trim modeling Impala<br />

• Trim <strong>and</strong> panel <strong>applications</strong><br />

Hummer H2<br />

MRS Bulletin, 2007, vol 32<br />

First Commercial Nano TPO<br />

Step Assist on Astro <strong>and</strong> Safari Van<br />

GM/Basell/Southern Clay Products/Blackhawk<br />

Commercialization Factors:<br />

• Mass savings<br />

• Lower specific gravity<br />

• Lighter weight reduces cost <strong>and</strong> requires less<br />

adhesive for attachment<br />

• Large processing window<br />

• Consistent physical <strong>and</strong> mechanical <strong>properties</strong><br />

• Elimination/reduction of tiger striping<br />

• Improved appearance<br />

• Improved knit line appearance<br />

• Improved colorability <strong>and</strong> painting<br />

• Sharper feature lines <strong>and</strong> grain patterns<br />

• Improved scratch/mar resistance<br />

• Low temperature ductility<br />

• Improved recyclability


Polymer Nanocomposites: Automotive<br />

Reducing weight improves gas mileage, which also reduces emissions – 25 kilograms means a<br />

one percent increase in fuel Economy…”<br />

Timothy P. McCann, Vice President Sales & Marketing, DuPont Engineering Polymers, DuPont press conference, Pre-K 2007 in<br />

Prague, DuPont Engineering Polymers’ vision 2010<br />

“Nanocomposites provide a means to achieving equivalent <strong>properties</strong> at lower glass loadings<br />

which opens the way for reducing the weight of parts with comparable <strong>properties</strong> while<br />

providing other attributes, such as improvements in surface appearance.”<br />

N<strong>and</strong>an Rao, Technology Director for DuPont Performance Materials DuPont press conference, Pre-K 2007 in Prague, Shaping the Future of<br />

Plastics: New Technology Platforms<br />

“Thermoplastic olefin - clay hybrids (TPO-CH), e.g.<br />

the composite based on approx. 5 weight-%<br />

montmorrillonite (MMT) dispersed in flakes of the<br />

smallest structural level in TPO, have the potential of<br />

being a suitable material for automotive composite<br />

body panels. Commercial such materials have been<br />

investigated at Volvo Cars “<br />

Magnus Oldenbo, Volvo car Company, <strong>and</strong> Xavier Kornmann, Luleå University<br />

of Technology, Sweden


Permeability Reduction<br />

How do Anisotropic Nanoparticles Influence the<br />

Permeability of Gases through a Polymer?<br />

What are the appropriate issues to consider?<br />

What are potential complications?<br />

The Converse All-Star<br />

He:01<br />

Converse Basketball Shoe<br />

Triton Systems Developed<br />

Nanocomposites<br />

Triton’s NanoFilament<br />

Cushioning Device<br />

Nanocomposite Pouch filled with Helium


Nanocomposites for Enhanced<br />

Influence of Layered Silicate on Permeability<br />

Impermeability<br />

Layered<br />

Impermeable<br />

aspect ratio a<br />

Relative Permeability P/P 0<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

500<br />

a = 100<br />

a = 25<br />

a = 10<br />

0.0<br />

0 0.04 0.08 0.12<br />

Volume Fraction f<br />

Cussler et al. J. Memb Sci., 1998


Why O 2 Permeability through An<br />

Elastomer<br />

Replacement of Traditional Inner-liners with Nanocomposite Inner-liners (50 %<br />

reduction in permeability) would result in a decrease of ~ 4 lbs per truck tire<br />

(conservative estimate)<br />

� 2 % Fuel Efficiency improvement.


Structure of as-prepared Layered-<br />

Silicate Nanocomposite


P / P o (oxygen flux)<br />

Role of Nanocomposite Structure<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

a ~ 100<br />

on O 2 Permeability<br />

Steady – State Flux<br />

Intercalated 2C18M<br />

Exfoliated / Disordered<br />

Exfoliated<br />

0.00 0.02 0.04 0.06 0.08 0.10<br />

wt. fn Montmorillonite<br />

Isobutylene Co<strong>polymer</strong><br />

Oxygen Permeability at 25<br />

o C<br />

No – Crosslinking<br />

Intercalated<br />

Exfoliated<br />

D


P / P o (oxygen flux)<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

Effect of Orientation on<br />

Permeability: Exfoliated System<br />

0.0 0.2 0.4 0.6 0.8 1.0<br />

R<strong>and</strong>om Aligned<br />

Anisotropy Factor<br />

PIB Based Co<strong>polymer</strong><br />

Organically Modified<br />

Montmorillonite –<br />

Exfoliated<br />

Nanocomposite<br />

5 wt. % Montmorillonite<br />

a is ~ 100, Not 500!<br />

5 fold decrease in the permeabiilty of O 2 through the inner-liner material


Outline<br />

What are Polymer Nanocomposites? Uniqueness?<br />

Length Scale, Interface, Number Density, Critical Concentration<br />

How are They Made? Options?<br />

Nanofillers, Nanoparticles, Synthesis, Interface Modification<br />

Calibrating Expectations – e.g. Mechanical <strong>and</strong> ViscoElastic<br />

Application Examples:<br />

Automotive – Maintaining Performance to Provide Added Value<br />

Barrier - Nano Filler as Part of Formulation<br />

Flame Retardants - NanoFiller‟s Latent Role: Self-Passivation & Reinforcement<br />

CFRC - Approach to “Engineered Materials”<br />

Shape Memory - Impacting the “Dominate” Attribute of the Polymer<br />

“DC” Electrical - NanoParticle Network <strong>and</strong> “Critical Junctions”<br />

Dynamic Electrical - Network Responsivity<br />

Dielectric – Field Distribution, Interfaces <strong>and</strong> Charge Trapping<br />

Next Step: Single Phase PNCs<br />

Summary <strong>and</strong> Conclusions


Nano-Enabled Carbon Fibre Reinforced Carbon (CFRC)<br />

Composites


Delivery of the NanoElement<br />

•Resin<br />

•Infusion<br />

•Fiber Interface (Sizing)<br />

•Interlamellar<br />

•Individual Ply<br />

•Veil<br />

•Resin Film<br />

•Fiber<br />

•Adhesive<br />

NanoComposites in CFRC?<br />

37<br />

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.<br />

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.<br />

Figure 16.13 A three-dimensional weave for fiberreinforced<br />

composites.


©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.<br />

Figure 16.23 Producing composite shapes by filament winding.<br />

51<br />

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.<br />

Figure 16.24 Producing composite shapes by pultrusion.<br />

NanoComposites in CFRC?<br />

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.<br />

Figure 16.21 Production of fiber tapes by encasing fibers<br />

between metal cover sheets by diffusion bonding.<br />

49<br />

©2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning is a trademark used herein under license.<br />

Figure 16.22 Producing composite shapes in dies by (a)<br />

h<strong>and</strong> lay-up, (b) pressure bag molding, <strong>and</strong> (c) matched die<br />

molding.


Table 1<br />

Nano-Enabled CFRC<br />

Property Common Nanocomposite Approach Potential Application<br />

Physical/Chemical<br />

Permeability Inclusion of impermeable, high aspect ratio silicate or graphite Cryogenic tanks, durability to<br />

flake in resin<br />

diffusion species<br />

Outgassing Inclusion of impermeable, high aspect ratio silicate or Optical benches, interferometer,<br />

graphene in resin<br />

antenna truss structures<br />

Oxidative Incorporate high temperature, oxidative resistant fillers Thermal protective systems,<br />

Resistance<br />

Electrical<br />

(silicate, CNT,POSS, etc.) that form passivating layers or slow atomic oxygen resistance<br />

oxidative erosion in resin or as coating<br />

ESD Incorporate high aspect ratio conductive particles such as<br />

CNT, graphite flake, metals, etc as percolated network in<br />

resin between conductive fibers<br />

Adhesives, coatings, gap fillers<br />

EMI Create films of highly percolated network of conductive Bus compartment enclosure,<br />

nanofillers (nickel nanostr<strong>and</strong> veil, SWNT buckypaper, etc.)<br />

that can both absorb <strong>and</strong> dissipate broadb<strong>and</strong> frequencies<br />

electronic enclosures<br />

Lightning Incorporate conductive nanofillers (nickel nanostr<strong>and</strong>s, CNT, Composite aircraft exterior<br />

Strike etc.) as highly percolated coatings, appliqués, resins, or veils<br />

that can carry large currents <strong>and</strong> have controlled failure modes


Property Common Nanocomposite Approach Potential Application<br />

Thermal<br />

Thermal<br />

Conductivity<br />

Thermal<br />

Protection<br />

Systems<br />

Coefficient of<br />

Thermal<br />

Expansion<br />

Incorporate highly thermal conductive particles (CNT’s, metals,<br />

etc.) into resin <strong>and</strong> optimize structure for heat transfer along<br />

continuous path to heat sink<br />

Use thermally conductive <strong>and</strong> insulating nanofillers within resin<br />

to assist larger structure components to direct heat away from<br />

protected systems<br />

Incorporate nanofillers with low expansion coefficients <strong>and</strong> good<br />

matrix bonding such as (functionalized CNT, CNF, silicates, etc.)<br />

into resin or as fiber sizing to reduce CTE mismatch with fiber by<br />

composite effect <strong>and</strong> restriction of <strong>polymer</strong> motion<br />

Mechanical<br />

Toughness Incorporate nanofillers like CNT into resin to increase energy<br />

dissipation on failure through deformation, pull-out, crack<br />

bridging, etc. at needed plies<br />

Modulus Incorporate high modulus nanoparticles like continuous CNT<br />

yarns/sheets as reinforcement or grow reinforcements between<br />

plies to increase out of plane modulus<br />

Compression Incorporate high strength nanoparticles such as functionalized<br />

Strength carbon nanotubes into the resin<br />

Interfacial Shear Grow high strength nanoparticles such as CNT from fiber to tailor<br />

Stress<br />

Interlaminar<br />

Shear Strength<br />

Nano-Enabled CFRC<br />

the interfacial <strong>properties</strong> as a smart sizing<br />

Incorporate nanofillers like CNT that can increase energy<br />

dissipation on failure through deformation, pull-out, crack<br />

bridging, etc. into resin at mid plies via coating or prepregging<br />

Adhesives, gaskets, radiators,<br />

doublers, electronics board, solid<br />

state laser heat removal<br />

Aircraft brakes, re-entry vehicles,<br />

missiles<br />

Adhesives, space apertures<br />

Membrane structures, damage<br />

tolerant structures<br />

Precision stable structures<br />

Propulsion tanks, fittings<br />

High temperature composites,<br />

vehicle health monitoring<br />

Tubular structures


Composite With Nanostr<strong>and</strong>s<br />

One typical lay-up, here a veil is used in conjunction with Ni coated carbon fiber layer<br />

Alex<strong>and</strong>er et al., Air Force Research Lab<br />

Nanostr<strong>and</strong> veil<br />

X ply<br />

Ni coated cloth<br />

Y ply<br />

Base composite


Composite With Nanostr<strong>and</strong>s


www.boedeker.com<br />

Conductive NanoComposite<br />

Elastomers<br />

Volume Resistivity (W-cm) = 1 / Volume Conductivity (S cm -1 )<br />

• Broad range of conductivity lead to<br />

broad range of <strong>applications</strong> (EMI,<br />

ESD, electrostatic painting,<br />

transparent electrodes, etc..)<br />

• Methodology:<br />

– Multi-Phase Systems (Blends)<br />

– Cond. Phase relatively rigid<br />

– Percolation, Directed Morphology<br />

• Lower volume fraction conductive<br />

phase, enhances<br />

– processing<br />

– mechanical (elasticity)<br />

– optical (clarity/absorption)<br />

– cost<br />

– stability<br />

• Conductivity(external variable)<br />

– mechanoreceptor<br />

– induced polarization for actuator<br />

– electrically stimulate shape memory


Stress (Psi)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

SWNT Elastomer Nanocomposites<br />

Dispersed SWNTs in Silicone Elastomer <strong>and</strong> subsequently Cross-linked w/Tour<br />

Both functionalized <strong>and</strong> non-functionalized Elastomers<br />

PDMS - SWNT Networks<br />

T = 25 o C<br />

Control (0 wt % SWNT)<br />

Nanocomposite<br />

(0.7 wt % SWNT)<br />

0 200 400 600 800<br />

Strain<br />

Conductivity (s/cm)<br />

10 -3<br />

10 -4<br />

10 -5<br />

10 -6<br />

10 -7<br />

10 -8<br />

RK<br />

Normalized Tensile Modulus<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

T = 25 o C<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

0<br />

3.5<br />

Elongation (e)<br />

0.7<br />

Elongation at Break<br />

Normalized Tensile Modulus<br />

0.6<br />

1<br />

0 1 2 3<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Herman's Orientation Parameter<br />

wt % SWNT<br />

9<br />

7<br />

5<br />

3<br />

Strain at Break


SWNT based Elastomer<br />

Nanocomposites<br />

� Fractal structure of SWNTs leads to interpenetrating<br />

networks <strong>and</strong> extraordinary <strong>properties</strong><br />

� Unfunctionalized SWNT <strong>nanocomposites</strong> exhibit<br />

multifunctionality (self-sensing)<br />

�Broad-range of <strong>applications</strong> are possible:<br />

�Nanocomposites Inc. with Hydril: Use of reinforced<br />

elastomers (nitrile) for oil <strong>and</strong> gas production in Blow<br />

Out Protectors.


Bulk Bulk DC DC Conductivity Conductivity (S/cm) (S/cm)<br />

Conductive NanoTube-filled Elastomer<br />

10 1<br />

10 1<br />

10 -1<br />

10 -1<br />

10 -3<br />

10 -3<br />

10 -5<br />

10 -5<br />

Effective EMI Shielding Level<br />

Treated Nanotube #2<br />

in Morthane (one data point)<br />

Carbon Nanotube #1<br />

Morthane TPU<br />

Carbon Nanotube #2<br />

Estane<br />

0 2 4 6 8 10 12 14 16 18 20 22<br />

M. Alex<strong>and</strong>er, Koerner, et al.<br />

s = s o |f-f c| t<br />

Volume % Carbon Nanotubes<br />

f c = 0.005<br />

s 0 = 6.3 kS/cm<br />

t = 3.1<br />

“Nanocomposites”<br />

f c ~ 0.5-1%<br />

s ~ 0-100 S/cm


Shape Memory Polymers<br />

Reversible „Phase‟ or Morphology Change<br />

1) alters volume (or rigidity),<br />

•Order-Disorder Transition<br />

•Nematic – Isotropic<br />

•Miscible-Immiscible<br />

2) „traps‟ strain energy by retarding<br />

recovery<br />

•Glass Transition<br />

•Strain-induced crystallization<br />

e(T �); T�<br />

T�<br />

e<br />

T�<br />

Cornerstone<br />

Research<br />

Group, Inc.<br />

*Gall, K., Kreiner,<br />

P., Turner, D., <strong>and</strong><br />

Hulse, M.,<br />

Journal of<br />

MicroElectro<br />

Mechanical<br />

Systems, 2003


Heat ~50 o C<br />

1% CNT/elastomer<br />

composite<br />

Shape-Recovery<br />

l = 3<br />

l = 8<br />

t movie = 2*t


Shape-Recovery<br />

IR Light Current<br />

1% CNT/elastomer composite<br />

Internal Heat<br />

Generation<br />

Thermal Initiated<br />

Chemistry<br />

Out-of-autoclave cure<br />

Microfabrication<br />

Machining<br />

Joining<br />

Core-shell formation<br />

Koerner, Vaia, Nat. Material 2004


% Shape Fixity<br />

(e x 100/e )<br />

set max<br />

% Recovery<br />

([e -e ]100/e )<br />

set recov max<br />

100<br />

98<br />

96<br />

94<br />

92<br />

80<br />

75<br />

70<br />

65<br />

60<br />

SMP: Thermoset (epoxy-base*), Tg-Strain Set<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

Volume Fraction (%)<br />

D. Powers et al 2007<br />

Composite<br />

Flat Panel<br />

Steve Arzberger et al<br />

Antenna Stiffener<br />

Stowed Coupon<br />

Deployed<br />

Coupon<br />

TEMBO ® Popout<br />

Stiffener


‘Active’ Electro-Mechanical<br />

Nanocomposites<br />

Nanoparticle Network: „Topology‟<br />

Log Conductivity<br />

Actuation Sensors<br />

fc Critical Filler<br />

Concentration<br />

Compliant<br />

Electrodes<br />

s = s o |f-f c| t for<br />

f>f c<br />

0 Filler Volume Percent 100<br />

Opportunities:<br />

Extensive Surface Area<br />

• Control crystallization<br />

• Improved processibility<br />

Mechanical Reinforcement<br />

• Low volume addition<br />

• Improved output stress<br />

Increased Dielectric Response<br />

• Reduced actuation voltage<br />

„Nano-Capacitor‟<br />

Extended electrodes<br />

Local-field effects<br />

• Highly polarizable units<br />

• Match resonance frequency<br />

Novel actuation mechanisms<br />

• Optical triggers<br />

• Volume change<br />

• Tunability


Current Smart Materials: SOA<br />

Various sources: DARPA,Madden etc.


Current Smart Materials: Limitations<br />

Polymeric Advantages<br />

•Form, Shape, Processing<br />

•Large deformation<br />

•Multiple Processes<br />

Polymeric Challenges<br />

•Inadequate recovery force <strong>and</strong><br />

work density<br />

•High activation voltages & Small<br />

stress (low dielectric)<br />

•Stimuli nominal restricted<br />

(voltage or external heating)<br />

•Restricted operation<br />

temperatures <strong>and</strong> frequencies<br />

•Limited development of<br />

additional ‘functionality’<br />

EAP<br />

Polyurethane (Deerfield)<br />

Silicone(Dow Corning)<br />

PVDF-based<br />

electrostrictors<br />

PVDF <strong>and</strong> co<strong>polymer</strong>s<br />

Achieved<br />

strains<br />

(%)<br />

11<br />

100<br />

5<br />

10<br />

>10<br />

~0.1 1<br />

Madden et al. 2004, 2007


I(2q) (au)<br />

Electromechanical Nanocomposites<br />

X-ray Diffraction<br />

--> � Phase formation Sensor<br />

(020/100)<br />

(110)<br />

0.003<br />

0.0025 (021)<br />

PVDF<br />

0.25clay<br />

0.5clay<br />

0.25 clay-0.25 SWNT<br />

10 15 20 25 30 35<br />

100 nm<br />

With Ounaies, <strong>and</strong> Vaia<br />

Strain<br />

V<br />

2q (l = 1.371 Å)<br />

0.002<br />

0.0015<br />

0.001<br />

0.0005<br />

0<br />

1<br />

Δt<br />

t<br />

2<br />

3<br />

PVDF<br />

Nanocomposites<br />

SWNT +<br />

Montmorillonite clay<br />

Storage Modulus (Mpa)<br />

0 0.02 0.04 0.06 0.08 0.1 1000 0.12 0.14 0.16 0.18<br />

0.0 0.5 1.0 1.5 2.0<br />

Electric field (MV/m)<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

Stress (MPa)<br />

V<br />

100<br />

80<br />

60<br />

40<br />

w<br />

20<br />

t<br />

L<br />

Mechanical Properties<br />

2<br />

1<br />

3<br />

0<br />

0 25 50 75 100 125 150<br />

SWNT vol%<br />

PVDF<br />

PVDF +<br />

0.5 wt % SWNT<br />

Strain (%)


Conductive NanoParticle Soft-Matter<br />

Conductive Lubricants<br />

for MEMs (current<br />

program with BT, LDF<br />

06)<br />

Conductive, Solventfree<br />

Inks for Flex-<br />

Electronic Fab.; RF ID<br />

tags <strong>and</strong> Antennas<br />

Compliant<br />

Electrodes<br />

Contacts<br />

RF in RF out<br />

Contact<br />

RF in RF out<br />

Others: Medical Devices; Nastic / Vascular Material Concepts – functional fluid; Active Nano/Micro Fluidics – active<br />

fluid; Net-Shape Ceramic Processing – particle deliever <strong>and</strong> green-body mechanics; Nano-Energetics –<br />

processing, green-body mech, reactivity; Memory devices (single np charging); etc..


Pure CNT Materials


SWNT, surfactant,<br />

PVA<br />

SWNT, „LiC12SO4‟, PVA<br />

1 cm/min<br />

SWNT Fibers<br />

Coagulate<br />

Remove PVA<br />

Vigolo, B. et al. Science 290, 1331–1334 (2000)<br />

Partial<br />

Coagulate<br />

Gel<br />

70 cm/min Acetone,<br />

Dalton, A.B. Nature, 423, 703.<br />

Also: GaTech/Rice, Windle, Team: S. Kumar et al. 2002-<br />

Dry<br />

Dalton, A.B. Nature, 423, 703.


Tensile Strength [ksi]<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

SWNT Fibers<br />

Phase I<br />

Target<br />

Phase II<br />

Targets<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140<br />

Tensile Modulus [Msi]<br />

Hexcel<br />

Japanese PAN<br />

LargeTow<br />

Pitch-Based


Bottom Line: Polymer Nanocomposites<br />

• PNCs are a “unifying bridge” concept<br />

• Underst<strong>and</strong>ing enriched when placed in context<br />

• Utilization determined by:<br />

• Value add to application -- not maximum property<br />

• property suite – processing – uniformity – cost<br />

• Today: Mechanical & Plus<br />

• Future: Plus & Mechanical<br />

• Challenge:<br />

• Inadequate quantification limits underst<strong>and</strong>ing (classic &<br />

continuum v. “nano-effect”)<br />

• What is ultimately possible?<br />

• What is primary determining factor?<br />

• Uniformity + Predictability = Manufacturability

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!