10.09.2013 Views

Analysis of an orthotropic lamina

Analysis of an orthotropic lamina

Analysis of an orthotropic lamina

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Analysis</strong> <strong>of</strong> <strong>an</strong> <strong>orthotropic</strong> <strong>lamina</strong><br />

1


Convention<br />

Equilibrium:<br />

Stress tensor<br />

dA 2=dA.n 2<br />

dA 3=dA.n 3<br />

t = n<br />

dA 1=dA.n 1<br />

2


Principal stresses<br />

St Stress invari<strong>an</strong>ts: i i t<br />

The principal directions are solutions <strong>of</strong><br />

In a coordinate system oriented along the principal directions directions,<br />

the stress tensor is diagonal:<br />

Stress invari<strong>an</strong>ts in principal coordinates<br />

3


Generalized Hooke’s law<br />

Because <strong>of</strong> the symmetry<br />

<strong>of</strong> the strain tensor<br />

4 th ordertensor<strong>of</strong> elastic const<strong>an</strong>ts<br />

Because <strong>of</strong> the symmetry<br />

<strong>of</strong> the stress tensor<br />

Because <strong>of</strong> the 3 symmetry relationships, the number<br />

<strong>of</strong> independent elastic const<strong>an</strong>ts is reduced<br />

from 3 4 =81 to 21 in the most general <strong>an</strong>isotropic material<br />

Constitutive<br />

Equation:<br />

The order <strong>of</strong> partial differentiation<br />

May be ch<strong>an</strong>ged<br />

4


Ch<strong>an</strong>ge <strong>of</strong> coordinates in the elastic const<strong>an</strong>ts<br />

Let two coordinate systems x <strong>an</strong>d x’ related by the rotation matrix A=a ij<br />

Ch<strong>an</strong>ge g <strong>of</strong> coordinates <strong>of</strong> the stress tensor:<br />

Applies to <strong>an</strong>y second order tensor<br />

(same rule for the strain tensor)<br />

5


Tensor <strong>of</strong> elastic const<strong>an</strong>t:<br />

6


Oth Orthotropic t i composite: it 3 axes <strong>of</strong> f symmetry t<br />

The elastic const<strong>an</strong>ts do not ch<strong>an</strong>ge under coordinate tr<strong>an</strong>sformations that preserve symmetry<br />

(x ( 1,x 1, 2)pl<strong>an</strong>e 2)p<br />

<strong>of</strong> symmetry<br />

One finds finds:<br />

Similarly, 8 const<strong>an</strong>ts must be equal to 0:<br />

Direction cosines:<br />

Must be = 0<br />

7


(x 2,x 3)pl<strong>an</strong>e<br />

<strong>of</strong> symmetry<br />

The following cont<strong>an</strong>ts<br />

Must also be equal to 0:<br />

Direction cosines:<br />

There is no additional condition coming from the third pl<strong>an</strong>e <strong>of</strong> symmetry (x (x1,xx 3). )<br />

Overall, there are 21‐12= 9 independent elastic const<strong>an</strong>ts for <strong>an</strong> <strong>orthotropic</strong> material.<br />

8


Orthotropic materials: 9 independent elastic const<strong>an</strong>ts<br />

Hooke’s law may be written in matrix form<br />

Vector <strong>of</strong> engineering g g<br />

Engineering g g<br />

stress components strain components<br />

Stiffness matrix<br />

[the axes 1,2,3 coincide with the natural (orthotropy) axes <strong>of</strong> the material]<br />

9


In two dimensions:<br />

Stiffness matrix<br />

Compli<strong>an</strong>ce matrix<br />

10


Stress‐strain relations <strong>an</strong>d engineering const<strong>an</strong>ts for <strong>orthotropic</strong> <strong>lamina</strong><br />

1.<br />

The compli<strong>an</strong>ce matrix may be constructed<br />

column by column by considering 3 load cases:<br />

One gets the first column<br />

<strong>of</strong> the compli<strong>an</strong>ce matrix<br />

11


2.<br />

3.<br />

2 nd column <strong>of</strong> the<br />

Compli<strong>an</strong>ce matrix<br />

3rd column <strong>of</strong> the<br />

CCompli<strong>an</strong>ce li matrix i<br />

12


Orthotropic p <strong>lamina</strong> in natural axes<br />

1. Compli<strong>an</strong>ce matrix<br />

For <strong>an</strong> isotropic <strong>lamina</strong>,<br />

E L=E T , G=E/2(1+)<br />

2. Stiffness matrix<br />

13


Ch<strong>an</strong>ge <strong>of</strong> coordinates<br />

For a 2 nd order tensor:<br />

[T] is not a<br />

rotation matrix !!<br />

Ch<strong>an</strong>ge <strong>of</strong> reference frame<br />

We seek the tr<strong>an</strong>sformation matrix [T]<br />

14


In L‐T axes:<br />

In arbitrary axes:<br />

Stress‐strain relationship<br />

15


Stiffness matrix in arbitrary axes<br />

16


Compli<strong>an</strong>ce matrix in arbitrary axes:<br />

17


Example: find the strains in the <strong>lamina</strong> =60°<br />

Elastic const<strong>an</strong>ts:<br />

Stresses:<br />

Step 11: compute the stresses in orthotropy axes<br />

18


Step 2: compute the strains in natural axes:<br />

19


Step 3: compute the strains in the axes (x,y)<br />

[T(‐] [T( ]<br />

LT <br />

20


Engineering const<strong>an</strong>ts<br />

The compli<strong>an</strong>ce matrix in<br />

arbitrary bit axes may bbewritten: itt<br />

All the elastic const<strong>an</strong>ts may be expressed in<br />

terms <strong>of</strong> the 4 const<strong>an</strong>ts: EL, ET, GLT, LT. 21


Graphite‐epoxy system Boron‐epoxy system<br />

E x < E T<br />

22


Bal<strong>an</strong>ced <strong>lamina</strong>: E T=E L, LT= TL<br />

Not isotropic !!<br />

23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!