12.10.2013 Views

CMB Angular Power Spectrum estimation

CMB Angular Power Spectrum estimation

CMB Angular Power Spectrum estimation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong><br />

Simona Donzelli<br />

University of Milan<br />

PhD School XXI cicle<br />

2D IDAPP meeting<br />

Ferrara, may 3-4 2007<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


Outline<br />

The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

1 The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Main features<br />

The angular power spectrum<br />

2 Bias of the power spectrum <strong>estimation</strong><br />

Instrumental effects<br />

Incomplete sky coverage<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Main features<br />

The angular power spectrum<br />

The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Figure: The timeline of the Universe<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Main features<br />

The angular power spectrum<br />

The Cosmic Microwave Background (<strong>CMB</strong>)<br />

main features<br />

photons coming from the “last scattering surface” (zR ∼ 1000, i.e. t<br />

∼ 400.000 yrs after the Big Bang)<br />

black body spectrum at T = 2.725 ± 0.001 K<br />

homogeneity and isotropy<br />

anisotropy of the order ∆T/T = 10 −5<br />

linearly polarized at a 10% level<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Statistics of the <strong>CMB</strong> sky<br />

spherical harmonic expansion<br />

Main features<br />

The angular power spectrum<br />

temperature T(^n) = <br />

aℓmYℓm(^n)<br />

ℓm<br />

polarization Q(^n) ± iU(^n) = <br />

ℓm<br />

a∓2,ℓm ∓2Yℓm(^n)<br />

where a±2,ℓm = Eℓm ± iBℓm, (E, B grad and curl component)<br />

angular power spectrum<br />

〈a Y ℓm〉 = 0, 〈a Y ′<br />

∗Y<br />

ℓmaℓ ′ ′<br />

m ′〉 = δℓℓ ′δmm ′〈CYY ℓ 〉, where Y, Y ′ can be T, E or B<br />

if the anisotropies obey Gaussian statistics then the spectra C TT<br />

ℓ , C EE<br />

ℓ , C BB<br />

ℓ , C TE<br />

ℓ<br />

′<br />

YY<br />

describe all the statistical properties, where Cℓ = 1 ℓ 2ℓ+1 m=−ℓ (aY ′<br />

∗Y<br />

ℓmaℓ ′ m ′ + c.c)<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Statistics of the <strong>CMB</strong> sky<br />

spherical harmonic expansion<br />

Main features<br />

The angular power spectrum<br />

temperature T(^n) = <br />

aℓmYℓm(^n)<br />

ℓm<br />

polarization Q(^n) ± iU(^n) = <br />

ℓm<br />

a∓2,ℓm ∓2Yℓm(^n)<br />

where a±2,ℓm = Eℓm ± iBℓm, (E, B grad and curl component)<br />

angular power spectrum<br />

〈a Y ℓm〉 = 0, 〈a Y ′<br />

∗Y<br />

ℓmaℓ ′ ′<br />

m ′〉 = δℓℓ ′δmm ′〈CYY ℓ 〉, where Y, Y ′ can be T, E or B<br />

if the anisotropies obey Gaussian statistics then the spectra C TT<br />

ℓ , C EE<br />

ℓ , C BB<br />

ℓ , C TE<br />

ℓ<br />

′<br />

YY<br />

describe all the statistical properties, where Cℓ = 1 ℓ 2ℓ+1 m=−ℓ (aY ′<br />

∗Y<br />

ℓmaℓ ′ m ′ + c.c)<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Main features<br />

The angular power spectrum<br />

<strong>Power</strong> <strong>Spectrum</strong> & High Precision Cosmology<br />

what can you learn from the spectrum?<br />

constrains on <strong>CMB</strong> power spectrum ⇒ constrains on cosmological parameters<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Main features<br />

The angular power spectrum<br />

<strong>Power</strong> <strong>Spectrum</strong> & High Precision Cosmology<br />

state of the art: temperature<br />

Figure: The WMAP 3yr power spectrum<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Main features<br />

The angular power spectrum<br />

<strong>Power</strong> <strong>Spectrum</strong> & High Precision Cosmology<br />

state of the art: temperature & polarization<br />

Figure: Plots of signal for TT (black), TE (red), EE (green) for the best fit model. The<br />

dashed line for TE indicates areas of anticorrelation<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Bias of the power spectrum <strong>estimation</strong><br />

in a real experiment<br />

the pseudo power spectrum eCℓ<br />

Instrumental effects<br />

Incomplete sky coverage<br />

the direct spherical harmonics transform eCℓ of an anisotropies map is biased<br />

by:<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Bias of the power spectrum <strong>estimation</strong><br />

in a real experiment<br />

the pseudo power spectrum eCℓ<br />

Instrumental effects<br />

Incomplete sky coverage<br />

the direct spherical harmonics transform eCℓ of an anisotropies map is biased<br />

by:<br />

instrumental effects<br />

beam function of the antenna<br />

observation and data analysis processing<br />

instrumental noise<br />

incomplete sky coverage<br />

mode-mode coupling of the spherical harmonics<br />

E − B polarizations mode mixing<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Bias of the power spectrum <strong>estimation</strong><br />

in a real experiment<br />

the pseudo power spectrum eCℓ<br />

Instrumental effects<br />

Incomplete sky coverage<br />

the direct spherical harmonics transform eCℓ of an anisotropies map is biased<br />

by:<br />

instrumental effects<br />

beam function of the antenna<br />

observation and data analysis processing<br />

instrumental noise<br />

incomplete sky coverage<br />

mode-mode coupling of the spherical harmonics<br />

E − B polarizations mode mixing<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Bias of the power spectrum <strong>estimation</strong><br />

in a real experiment<br />

the pseudo power spectrum eCℓ<br />

Instrumental effects<br />

Incomplete sky coverage<br />

the direct spherical harmonics transform eCℓ of an anisotropies map is biased<br />

by:<br />

instrumental effects<br />

beam function of the antenna<br />

observation and data analysis processing<br />

instrumental noise<br />

incomplete sky coverage<br />

mode-mode coupling of the spherical harmonics<br />

E − B polarizations mode mixing<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Bias of the power spectrum <strong>estimation</strong><br />

in a real experiment<br />

the pseudo power spectrum eCℓ<br />

Instrumental effects<br />

Incomplete sky coverage<br />

the direct spherical harmonics transform eCℓ of an anisotropies map is biased<br />

by:<br />

instrumental effects<br />

beam function of the antenna<br />

observation and data analysis processing<br />

instrumental noise<br />

incomplete sky coverage<br />

mode-mode coupling of the spherical harmonics<br />

E − B polarizations mode mixing<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Bias of the power spectrum <strong>estimation</strong><br />

in a real experiment<br />

the pseudo power spectrum eCℓ<br />

Instrumental effects<br />

Incomplete sky coverage<br />

the direct spherical harmonics transform eCℓ of an anisotropies map is biased<br />

by:<br />

instrumental effects<br />

beam function of the antenna<br />

observation and data analysis processing<br />

instrumental noise<br />

incomplete sky coverage<br />

mode-mode coupling of the spherical harmonics<br />

E − B polarizations mode mixing<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Debiasing from the instrumental effects<br />

the model<br />

In a full-sky hypothesis:<br />

contributions<br />

Instrumental effects<br />

Incomplete sky coverage<br />

〈eCℓ〉 = FℓB 2 ℓ〈Cℓ〉 + 〈eNℓ〉<br />

window function B 2 ℓ: beam and pixelization smoothing effects<br />

transfer function Fℓ: effects of the data analysis (filtering, scanning<br />

strategy, etc.)<br />

instrumental noise 〈Nℓ〉: average noise power spectrum<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Debiasing from the instrumental effects<br />

the model<br />

In a full-sky hypothesis:<br />

contributions<br />

Instrumental effects<br />

Incomplete sky coverage<br />

〈eCℓ〉 = FℓB 2 ℓ〈Cℓ〉 + 〈eNℓ〉<br />

window function B 2 ℓ: beam and pixelization smoothing effects<br />

transfer function Fℓ: effects of the data analysis (filtering, scanning<br />

strategy, etc.)<br />

instrumental noise 〈Nℓ〉: average noise power spectrum<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Debiasing from the instrumental effects<br />

the model<br />

<strong>estimation</strong> of the contributions<br />

Instrumental effects<br />

Incomplete sky coverage<br />

〈eCℓ〉 = FℓB 2 ℓ〈Cℓ〉 + 〈eNℓ〉 (full-sky)<br />

window function B 2 ℓ: study of the antenna beam pattern<br />

calibrations with Monte Carlo (MC) simulations:<br />

transfer function Fℓ = 〈eCℓs〉〈C th<br />

ℓ 〉 −1 (B 2 ℓ) −1 , where C th<br />

ℓ is an arbitrary<br />

theoretical p.s. and 〈eCℓs〉 is obtained from “observations” of N MC full-sky<br />

and noise-free theoretical sky realizations.<br />

instrumental noise 〈eNℓ〉MC: N MC simulations of the noise cointained in the<br />

data<br />

⇒ an accurate knowledge on the noise characteristics is required!<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Debiasing from the instrumental effects<br />

the model<br />

<strong>estimation</strong> of the contributions<br />

Instrumental effects<br />

Incomplete sky coverage<br />

〈eCℓ〉 = FℓB 2 ℓ〈Cℓ〉 + 〈eNℓ〉 (full-sky)<br />

window function B 2 ℓ: study of the antenna beam pattern<br />

calibrations with Monte Carlo (MC) simulations:<br />

transfer function Fℓ = 〈eCℓs〉〈C th<br />

ℓ 〉 −1 (B 2 ℓ) −1 , where C th<br />

ℓ is an arbitrary<br />

theoretical p.s. and 〈eCℓs〉 is obtained from “observations” of N MC full-sky<br />

and noise-free theoretical sky realizations.<br />

instrumental noise 〈eNℓ〉MC: N MC simulations of the noise cointained in the<br />

data<br />

⇒ an accurate knowledge on the noise characteristics is required!<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Debiasing from the instrumental effects<br />

the model<br />

<strong>estimation</strong> of the contributions<br />

Instrumental effects<br />

Incomplete sky coverage<br />

〈eCℓ〉 = FℓB 2 ℓ〈Cℓ〉 + 〈eNℓ〉 (full-sky)<br />

window function B 2 ℓ: study of the antenna beam pattern<br />

calibrations with Monte Carlo (MC) simulations:<br />

transfer function Fℓ = 〈eCℓs〉〈C th<br />

ℓ 〉 −1 (B 2 ℓ) −1 , where C th<br />

ℓ is an arbitrary<br />

theoretical p.s. and 〈eCℓs〉 is obtained from “observations” of N MC full-sky<br />

and noise-free theoretical sky realizations.<br />

instrumental noise 〈eNℓ〉MC: N MC simulations of the noise cointained in the<br />

data<br />

⇒ an accurate knowledge on the noise characteristics is required!<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Debiasing from the instrumental effects<br />

the model<br />

<strong>estimation</strong> of the contributions<br />

Instrumental effects<br />

Incomplete sky coverage<br />

〈eCℓ〉 = FℓB 2 ℓ〈Cℓ〉 + 〈eNℓ〉 (full-sky)<br />

window function B 2 ℓ: study of the antenna beam pattern<br />

calibrations with Monte Carlo (MC) simulations:<br />

transfer function Fℓ = 〈eCℓs〉〈C th<br />

ℓ 〉 −1 (B 2 ℓ) −1 , where C th<br />

ℓ is an arbitrary<br />

theoretical p.s. and 〈eCℓs〉 is obtained from “observations” of N MC full-sky<br />

and noise-free theoretical sky realizations.<br />

instrumental noise 〈eNℓ〉MC: N MC simulations of the noise cointained in the<br />

data<br />

⇒ an accurate knowledge on the noise characteristics is required!<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Debiasing from the instrumental effects<br />

the model<br />

<strong>estimation</strong> of the contributions<br />

Instrumental effects<br />

Incomplete sky coverage<br />

〈eCℓ〉 = FℓB 2 ℓ〈Cℓ〉 + 〈eNℓ〉 (full-sky)<br />

window function B 2 ℓ: study of the antenna beam pattern<br />

calibrations with Monte Carlo (MC) simulations:<br />

transfer function Fℓ = 〈eCℓs〉〈C th<br />

ℓ 〉 −1 (B 2 ℓ) −1 , where C th<br />

ℓ is an arbitrary<br />

theoretical p.s. and 〈eCℓs〉 is obtained from “observations” of N MC full-sky<br />

and noise-free theoretical sky realizations.<br />

instrumental noise 〈eNℓ〉MC: N MC simulations of the noise cointained in the<br />

data<br />

⇒ an accurate knowledge on the noise characteristics is required!<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Instrumental effects<br />

Incomplete sky coverage<br />

A new approach: cross power spectrum (CrossSpect)<br />

the idea<br />

I consider the maps of two independent detectors A e B<br />

gC AB<br />

ℓ<br />

=<br />

<strong>estimation</strong> of the contributions<br />

1<br />

2ℓ + 1<br />

ℓ<br />

m=−ℓ<br />

a A B ∗<br />

ℓm aℓm ⇒ g C AB<br />

ℓ = B A ℓ B B ℓ F AB<br />

ℓ 〈Cℓ AB 〉 + 〈 g N AB<br />

ℓ 〉<br />

window function B A ℓ e B B ℓ<br />

transfer function F AB<br />

ℓ = p FA ℓ FB ℓ<br />

instrumental noise → is not correlated: 〈n A ℓmn<br />

B ∗<br />

ℓ ′ m<br />

′〉 = 0<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Instrumental effects<br />

Incomplete sky coverage<br />

A new approach: cross power spectrum (CrossSpect)<br />

the idea<br />

I consider the maps of two independent detectors A e B<br />

gC AB<br />

ℓ<br />

=<br />

<strong>estimation</strong> of the contributions<br />

1<br />

2ℓ + 1<br />

ℓ<br />

m=−ℓ<br />

a A B ∗<br />

ℓm aℓm ⇒ g C AB<br />

ℓ = B A ℓ B B ℓ F AB<br />

ℓ 〈Cℓ AB 〉 + 〈 g N AB<br />

ℓ 〉<br />

window function B A ℓ e B B ℓ<br />

transfer function F AB<br />

ℓ = p FA ℓ FB ℓ<br />

instrumental noise → is not correlated: 〈n A ℓmn<br />

B ∗<br />

ℓ ′ m<br />

′〉 = 0<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Instrumental effects<br />

Incomplete sky coverage<br />

A new approach: cross power spectrum (CrossSpect)<br />

the idea<br />

I consider the maps of two independent detectors A e B<br />

gC AB<br />

ℓ<br />

=<br />

<strong>estimation</strong> of the contributions<br />

1<br />

2ℓ + 1<br />

ℓ<br />

m=−ℓ<br />

a A B ∗<br />

ℓm aℓm ⇒ g C AB<br />

ℓ = B A ℓ B B ℓ F AB<br />

ℓ 〈Cℓ AB 〉 + 〈 g N AB<br />

ℓ 〉<br />

window function B A ℓ e B B ℓ<br />

transfer function F AB<br />

ℓ = p FA ℓ FB ℓ<br />

instrumental noise → is not correlated: 〈n A ℓmn<br />

B ∗<br />

ℓ ′ m<br />

′〉 = 0<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Instrumental effects<br />

Incomplete sky coverage<br />

A new approach: cross power spectrum (CrossSpect)<br />

the idea<br />

I consider the maps of two independent detectors A e B<br />

gC AB<br />

ℓ<br />

=<br />

<strong>estimation</strong> of the contributions<br />

1<br />

2ℓ + 1<br />

ℓ<br />

m=−ℓ<br />

a A B ∗<br />

ℓm aℓm ⇒ g C AB<br />

ℓ = B A ℓ B B ℓ F AB<br />

ℓ 〈Cℓ AB 〉 + 〈 g N AB<br />

ℓ 〉<br />

window function B A ℓ e B B ℓ<br />

transfer function F AB<br />

ℓ = p FA ℓ FB ℓ<br />

instrumental noise → is not correlated: 〈n A ℓmn<br />

B ∗<br />

ℓ ′ m<br />

′〉 = 0<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Instrumental effects<br />

Incomplete sky coverage<br />

A new approach: cross power spectrum (CrossSpect)<br />

the idea<br />

I consider the maps of two independent detectors A e B<br />

gC AB<br />

ℓ<br />

=<br />

<strong>estimation</strong> of the contributions<br />

1<br />

2ℓ + 1<br />

ℓ<br />

m=−ℓ<br />

a A B ∗<br />

ℓm aℓm ⇒ g C AB<br />

ℓ = B A ℓ B B ℓ F AB<br />

ℓ 〈Cℓ AB 〉 + 〈 g N AB<br />

ℓ 〉<br />

window function B A ℓ e B B ℓ<br />

transfer function F AB<br />

ℓ = p FA ℓ FB ℓ<br />

instrumental noise → is not correlated: 〈n A ℓmn<br />

B ∗<br />

ℓ ′ m<br />

′〉 = 0<br />

⇒ ADVANTAGE: 〈 g NAB ℓ 〉 = 0 !<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

CrossSpect: fullsky results<br />

Instrumental effects<br />

Incomplete sky coverage<br />

Figure: PLANCK 70 GHz - white noise – auto vs cross spectrum<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

CrossSpect: fullsky results<br />

Instrumental effects<br />

Incomplete sky coverage<br />

Figure: PLANCK 70 GHz - white noise<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


Outline<br />

The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Instrumental effects<br />

Incomplete sky coverage<br />

1 The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Main features<br />

The angular power spectrum<br />

2 Bias of the power spectrum <strong>estimation</strong><br />

Instrumental effects<br />

Incomplete sky coverage<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


mode-mode coupling<br />

the problem<br />

The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Instrumental effects<br />

Incomplete sky coverage<br />

T(^n) = <br />

almYlm(^n)<br />

lm<br />

Q(^n) ± iU(^n) = <br />

a∓2,lm ∓2Ylm(^n)<br />

where a±2,lm = Elm ± iBlm<br />

if I introduce a weight function w(^n)<br />

<br />

˜Tlm = d^n w T (^n) T(^n)Y ∗<br />

lm (^n)<br />

˜Elm = 1<br />

<br />

d^n w<br />

2<br />

P (^n) ˆ Q(^n) ` 2Y ∗<br />

lm (^n) + −2Y∗ lm (^n)´<br />

−iU(^n) ` 2Y ∗<br />

lm (^n) − −2Y∗ lm (^n)´˜<br />

˜Blm = − 1<br />

<br />

d^n w<br />

2<br />

P (^n) ˆ U(^n) ` 2Y ∗<br />

lm (^n) + −2Y∗ lm (^n)´<br />

+iQ(^n) ` 2Y ∗<br />

lm (^n) − −2Y∗ lm (^n)´˜ .<br />

lm<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


mode-mode coupling<br />

The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Instrumental effects<br />

Incomplete sky coverage<br />

the problem<br />

espanding w: w(^n) = <br />

ℓm wlmYℓm(^n)<br />

˜Tlm = <br />

l ′ m ′ l ′′ m ′′<br />

w T<br />

l ′′ m ′′ Tl ′ m ′<br />

<br />

d^n Yl ′ m ′ (^n)Yl ′′ m ′′ (^n)Y ∗<br />

lm (^n)<br />

˜Elm = 1 <br />

2<br />

l ′ m ′ l ′′ m ′′<br />

w P<br />

l ′′ m ′′<br />

» <br />

El ′ m ′ d^n Yl ′′ m ′′ (^n) ` 2Yl ′ m ′ (^n) 2Y ∗<br />

lm (^n) + −2Yl ′ m ′ (^n) −2Y∗ lm (^n)´<br />

<br />

+iBlm d^n Yl ′′ m ′′ (^n) ` 2Yl ′ m ′ (^n) 2Y ∗<br />

lm (^n) − −2Yl ′ m ′ (^n) −2Y∗ lm (^n)´–<br />

˜Blm = 1 <br />

2<br />

l ′ m ′ l ′′ m ′′<br />

w P<br />

l ′′ m ′′<br />

» <br />

Bl ′ m ′ d^n Yl ′′ m ′′ (^n) ` 2Yl ′ m ′ (^n) 2Y ∗<br />

lm (^n) + −2Yl ′ m ′ (^n) −2Y∗ lm (^n)´<br />

<br />

−iElm d^n Yl ′′ m ′′ (^n) ` 2Yl ′ m ′ (^n) 2Y ∗<br />

lm (^n) − −2Yl ′ m ′ (^n) −2Y∗ lm (^n)´– .<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


mode-mode coupling<br />

the coupling term<br />

The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Instrumental effects<br />

Incomplete sky coverage<br />

we have <br />

d^n NY ∗<br />

lm (^n) N ′ Yl ′ m ′ (^n) N ′′ Yl ′′ m ′′ (^n) =<br />

(−1) N+m<br />

» ′ ′′ – 1/2 „<br />

(2l + 1)(2l + 1)(2l + 1)<br />

4π<br />

l<br />

′<br />

l l ′′<br />

−N N ′<br />

N ′′<br />

« „<br />

l<br />

−m<br />

′<br />

l<br />

m ′<br />

we can compute<br />

0<br />

B<br />

@<br />

˜c TT<br />

l<br />

˜c EE<br />

l<br />

˜c BB<br />

l<br />

˜c TE<br />

l<br />

˜c TB<br />

l<br />

˜c EB<br />

l<br />

1 0<br />

C B<br />

C B<br />

C B<br />

C = B<br />

C B<br />

A @<br />

M TT,TT<br />

ll ′<br />

M EE,EE<br />

ll ′ M EE,BB<br />

ll ′<br />

M BB,EE<br />

ll ′ M BB,BB<br />

ll ′<br />

M TE,TE<br />

ll ′<br />

M TB,TB<br />

ll ′<br />

M EB,EB<br />

ll ′<br />

1 0<br />

C B<br />

C B<br />

C B<br />

C B<br />

C B<br />

C B<br />

A @<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong><br />

l ′′<br />

m ′′<br />

«<br />

c TT<br />

l ′<br />

c EE<br />

l ′<br />

c BB<br />

l ′<br />

c TE<br />

l ′<br />

c TB<br />

l ′<br />

c EB<br />

l ′<br />

1<br />

C .<br />

C<br />

A


mode-mode coupling<br />

The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

mode-mode coupling kernel<br />

M TT,TT<br />

ll ′ = (2l ′ + 1)<br />

4π<br />

M TE,TE<br />

ll ′ = MTB,TB<br />

ll ′<br />

=<br />

(2l ′ + 1)<br />

8π<br />

M EE,EE<br />

ll ′ = MBB,BB<br />

ll ′<br />

=<br />

(2l ′ + 1)<br />

16π<br />

M EE,BB<br />

ll ′ = MBB,EE<br />

ll ′<br />

=<br />

(2l ′ + 1)<br />

16π<br />

<br />

l ′′<br />

<br />

l ′′<br />

W TT<br />

l ′′<br />

„ ′<br />

l l l ′′<br />

0 0 0<br />

W TP<br />

l ′′<br />

„ ′<br />

l l l ′′<br />

0 0 0<br />

Instrumental effects<br />

Incomplete sky coverage<br />

« 2<br />

<br />

l ′′<br />

W PP<br />

l ′′<br />

»„ ′<br />

l l l ′′<br />

−2 2 0<br />

»„ ′<br />

l l l<br />

×<br />

′′ « „ ′<br />

l l<br />

+<br />

−2 2 0<br />

« »„<br />

l<br />

′<br />

l l ′′<br />

−2 2 0<br />

l ′′<br />

2 −2 0<br />

<br />

l ′′<br />

W PP<br />

l ′′<br />

»„<br />

l<br />

′<br />

l l ′′<br />

»„<br />

×<br />

−2<br />

′<br />

l l l<br />

2 0<br />

′′ « „<br />

−<br />

−2 2 0<br />

l<br />

′<br />

l<br />

<br />

=<br />

l ′′<br />

2 −2 0<br />

« „ ′<br />

l l l<br />

+<br />

′′<br />

2 −2 0<br />

«–<br />

« „ ′<br />

l l l<br />

−<br />

′′<br />

2 −2 0<br />

«–<br />

« „ ′<br />

l l l<br />

+<br />

′′<br />

2 −2 0<br />

«–<br />

«–<br />

where W ab<br />

l w<br />

m<br />

a<br />

lmwb∗ lm<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong><br />

«–


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Kernel Mℓℓ ′ computation<br />

Wigner 3-j symbol<br />

it’s not null only if (triangle condition):<br />

Instrumental effects<br />

Incomplete sky coverage<br />

„ «<br />

l1 l2 l3<br />

having<br />

m1 m2 m3<br />

|l1 − l2| ≤ l3 ≤ l1 + l2 e m1 + m2 + m3 = 0<br />

simmetry property:<br />

(−1) l1 +l2 +l „<br />

3<br />

l1<br />

m1<br />

l2<br />

m2<br />

l3<br />

m3<br />

« „<br />

l2 l1 l3<br />

=<br />

m2 m1 m3<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong><br />

«


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Kernel Mℓℓ ′ computation<br />

the code<br />

Instrumental effects<br />

Incomplete sky coverage<br />

for l1 = 2, lmax<br />

for l2 = 2, l1<br />

for l3 = |l1 − l2|, l1 + l2<br />

if l1 + l2 + l3 =even<br />

M TT<br />

l1 ,l2 + = W TT<br />

„<br />

l1<br />

l3 0<br />

l2<br />

0<br />

l3<br />

0<br />

« 2<br />

M TP<br />

l1 ,l2 + = W TP<br />

„<br />

l1<br />

l 2<br />

3 0<br />

l2<br />

0<br />

l3<br />

0<br />

« „<br />

l1<br />

−2<br />

l2<br />

2<br />

l3<br />

0<br />

M PT<br />

l1 ,l2 + = W PT<br />

„<br />

l1<br />

l 2<br />

3 0<br />

l2<br />

0<br />

l3<br />

0<br />

« „<br />

l1<br />

−2<br />

l2<br />

2<br />

l3<br />

0<br />

M PP<br />

l1 ,l2 + = W PP<br />

„<br />

l 4<br />

3<br />

l1<br />

−2<br />

l2<br />

2<br />

l3<br />

0<br />

« 2<br />

if l1 + l2 + l3 =odd<br />

M PPleak<br />

l 1 ,l 2<br />

+ = W PP<br />

„<br />

l1 l2 l3<br />

l 4<br />

3 −2 2 0<br />

« 2<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong><br />

«<br />

«


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

mode-mode coupling kernel<br />

an example of kernel<br />

Instrumental effects<br />

Incomplete sky coverage<br />

Figure: Binned kernel and its inverse (absolute values, with green color indicating the<br />

negative elements) for an elliptically top hat sky window<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


Decoupling<br />

The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

Instrumental effects<br />

Incomplete sky coverage<br />

computation of the power spectrum<br />

〈eCℓ〉 = <br />

ℓ ′<br />

Mℓℓ ′ Fℓ ′ B 2<br />

ℓ 〈Cℓ ′ 〉 ,<br />

I consider Cℓ ≡ ℓ(ℓ + 1)Cℓ/2π.<br />

for a set of bins nbins, ℓ (b)<br />

min < ℓ(b) < ℓ (b+1)<br />

min , we can define the operator<br />

⎧<br />

⎨ 1 ℓ(ℓ+1)<br />

2π<br />

Pbℓ = ℓ<br />

⎩<br />

(b+1)<br />

min<br />

−ℓ(b)<br />

if 2 ≤ ℓ<br />

min<br />

(b)<br />

min ≤ ℓ < ℓ(b+1)<br />

min<br />

0 otherwise<br />

and the binned power spectrum is Cb = PbℓCℓ. The reciprocal operator is:<br />

<br />

2π se 2 ≤ ℓ<br />

Qℓb = ℓ(ℓ+1)<br />

(b)<br />

min ≤ ℓ < ℓ(b+1)<br />

min<br />

0 otherwise.<br />

Inverting we obtain:<br />

where<br />

〈Cb〉 = K −1<br />

bb ′ `<br />

Pb ′ ℓ 〈eCℓ〉 ´ ,<br />

Kbb ′ = PbℓMℓℓ ′ Fℓ ′ B 2<br />

ℓ ′ Qℓb ′ .<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

CrossSpect: cut-sky results<br />

Instrumental effects<br />

Incomplete sky coverage<br />

Figure: input vs output. Error bars evaluated from MC simulations<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

conclusions and future<br />

conclusions<br />

Instrumental effects<br />

Incomplete sky coverage<br />

the CrossSpect code is able to debiase the power spectrum from the<br />

main “observational” effects without requiring noise <strong>estimation</strong><br />

actually it’s one of the code candidated for the future PLANCK power<br />

spectrum <strong>estimation</strong>: testing ongoing on simulations with increasing<br />

numbers on biasing effects<br />

possible developing<br />

take into account the correlated component of the noise<br />

estimate the error bars analytically<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

conclusions and future<br />

conclusions<br />

Instrumental effects<br />

Incomplete sky coverage<br />

the CrossSpect code is able to debiase the power spectrum from the<br />

main “observational” effects without requiring noise <strong>estimation</strong><br />

actually it’s one of the code candidated for the future PLANCK power<br />

spectrum <strong>estimation</strong>: testing ongoing on simulations with increasing<br />

numbers on biasing effects<br />

possible developing<br />

take into account the correlated component of the noise<br />

estimate the error bars analytically<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

conclusions and future<br />

conclusions<br />

Instrumental effects<br />

Incomplete sky coverage<br />

the CrossSpect code is able to debiase the power spectrum from the<br />

main “observational” effects without requiring noise <strong>estimation</strong><br />

actually it’s one of the code candidated for the future PLANCK power<br />

spectrum <strong>estimation</strong>: testing ongoing on simulations with increasing<br />

numbers on biasing effects<br />

possible developing<br />

take into account the correlated component of the noise<br />

estimate the error bars analytically<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

conclusions and future<br />

conclusions<br />

Instrumental effects<br />

Incomplete sky coverage<br />

the CrossSpect code is able to debiase the power spectrum from the<br />

main “observational” effects without requiring noise <strong>estimation</strong><br />

actually it’s one of the code candidated for the future PLANCK power<br />

spectrum <strong>estimation</strong>: testing ongoing on simulations with increasing<br />

numbers on biasing effects<br />

possible developing<br />

take into account the correlated component of the noise<br />

estimate the error bars analytically<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

conclusions and future<br />

conclusions<br />

Instrumental effects<br />

Incomplete sky coverage<br />

the CrossSpect code is able to debiase the power spectrum from the<br />

main “observational” effects without requiring noise <strong>estimation</strong><br />

actually it’s one of the code candidated for the future PLANCK power<br />

spectrum <strong>estimation</strong>: testing ongoing on simulations with increasing<br />

numbers on biasing effects<br />

possible developing<br />

take into account the correlated component of the noise<br />

estimate the error bars analytically<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

CrossSpect: the core of the code<br />

Instrumental effects<br />

Incomplete sky coverage<br />

tt[l] + = 2(alm1T (l, m).re alm2T (l, m).re + alm1T (l, m).im alm2T (l, m).im);<br />

gg[l] + = 2(alm1 G(l, m).re alm2 G(l, m).re + alm1 G(l, m).im alm2 G(l, m).im);<br />

cc[l] + = 2(alm1 C(l, m).re alm2 C(l, m).re + alm1 C(l, m).im alm2 C(l, m).im);<br />

tg[l] + = (alm1T (l, m).re alm2 G(l, m).re + alm1T (l, m).im alm2 G(l, m).im<br />

+alm1 G(l, m).re alm2T (l, m).re + alm1 G(l, m).im alm2T (l, m).im);<br />

tc[l] + = (alm1T (l, m).re alm2 C(l, m).re + alm1T (l, m).im alm2 C(l, m).im<br />

+alm1 C(l, m).re alm2T (l, m).re + alm1 C(l, m).im alm2T (l, m).im);<br />

gc[l] + = (alm1 G(l, m).re alm2 C(l, m).re + alm1 C(l, m).re alm2 G(l, m).re<br />

+alm1 G(l, m).im alm2 C(l, m).im + alm1 C(l, m).im alm2 G(l, m).im);<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>


The Cosmic Microwave Background (<strong>CMB</strong>)<br />

Bias of the power spectrum <strong>estimation</strong><br />

CrossSpect: primi risultati<br />

Instrumental effects<br />

Incomplete sky coverage<br />

Figure: 70 GHz - white noise – distribuzione C MC<br />

ℓ<br />

Simona Donzelli <strong>CMB</strong> <strong>Angular</strong> <strong>Power</strong> <strong>Spectrum</strong> <strong>estimation</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!