17.10.2013 Views

MMI - Flash Memory Summit

MMI - Flash Memory Summit

MMI - Flash Memory Summit

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>MMI</strong>:<br />

A General Narrow Interface for <strong>Memory</strong> Devices<br />

Judy Chen<br />

Eric Linstadt<br />

Rambus Inc.<br />

Session 106<br />

August 12, 2009<br />

Santa Clara, CA USA<br />

August 2009 1


NOR<br />

S/MDRAM<br />

What is <strong>MMI</strong>?<br />

Baseband<br />

Processor<br />

Cellular<br />

Front End<br />

WLAN BT GPS<br />

GPS<br />

Other<br />

Interfaces<br />

Camera<br />

The Rambus Mobile <strong>Memory</strong> Initiative is focused on high-bandwidth, low-power memory interface<br />

technologies for next-generation mobile memory systems<br />

It is a highly scalable, narrow bus processor-to-memory interface solution with best-in-class powerperformance<br />

• Designed for the handset architecture<br />

• It eases the challenges of having to support a growing diversity of IO’s<br />

It provides a lower risk path to easier integration and cost<br />

• Reduces pin count to avoid pad limitation and reduce cost<br />

• Provides a path to flexible packaging<br />

Apps/Media<br />

Processor<br />

Display<br />

Mobile TV<br />

NAND<br />

MDRAM<br />

In Feb, test silicon demonstrated 4.3Gbps per link with low power and fast power mode transitions<br />

Santa Clara, CA USA<br />

August 2009 2


Future-proof your mobile memory<br />

roadmap with <strong>MMI</strong><br />

<strong>MMI</strong> is an ideal follow-on interface to LPDDR2<br />

• 60% less pin count at equivalent device BW<br />

• Scalable interface across DRAM, NOR, and NAND devices<br />

• 67% less interconnect power at equivalent device BW<br />

Santa Clara, CA USA<br />

August 2009 3


LPDDR2<br />

<strong>MMI</strong><br />

<strong>MMI</strong> Interface Link Innovations<br />

1.2V 0.1V<br />

0.8V/ns 2.4V/ns<br />

Higher BW and Lower Power are achieved by minimizing the effects of ISI, Crosstalk, EMI,<br />

SSO, High-Z Power Distribution Networks and Vref distribution with:<br />

•Bidirectional, very low voltage swing differential signaling<br />

•Series-source termination (transmitter)<br />

•Differential termination (receiver)<br />

•Low C i<br />

Santa Clara, CA USA<br />

August 2009 4


Processor and <strong>Memory</strong> Technologies<br />

are Asymmetric<br />

Faster transistors<br />

Lower Vth<br />

Higher leakage<br />

Lower Vdd<br />

Many metal layers<br />

<strong>Memory</strong> Queue<br />

Data/Cntrl<br />

Slower transistors<br />

Higher Vth<br />

Lower leakage<br />

Higher Vdd<br />

Fewer metal layers<br />

CPHY (interface) MPHY (interface)<br />

Processor <strong>Memory</strong><br />

Santa Clara, CA USA<br />

August 2009 5<br />

CK<br />

Core


<strong>Memory</strong> Queue<br />

<strong>MMI</strong> Optimizes Cost, Complexity, Power-<br />

Performance With An Asymmetric Architecture<br />

All Tx and Rx timing<br />

control is performed<br />

on the<br />

ASIC side<br />

PLL<br />

Ser<br />

Slow-speed<br />

Wider bus<br />

Deser<br />

CA (x2)<br />

DQ (x8)<br />

DM<br />

DRAM or <strong>Flash</strong> side<br />

is kept simple<br />

– no timing<br />

control<br />

CPHY (interface) MPHY (interface)<br />

Processor <strong>Memory</strong><br />

Santa Clara, CA USA<br />

August 2009 6<br />

CK<br />

Ser<br />

Deser<br />

Core


2 CA<br />

16 DQ<br />

2 DM<br />

1 CK<br />

System Configuration Options:<br />

DRAM + A Single <strong>Flash</strong> Device<br />

Option 1<br />

1 x16 DRAM<br />

~6400MB/s DRAM BW<br />

<strong>MMI</strong> – enabled<br />

DRAM<br />

DRAM<br />

PHY<br />

ctrl PHY<br />

<strong>Memory</strong><br />

ctrl<br />

<strong>MMI</strong> – enabled Processor<br />

Option 2<br />

~6400MB/s DRAM BW<br />

~700MB/s NOR/NAND <strong>Flash</strong> BW<br />

2 CA<br />

16 DQ<br />

2 DM<br />

1 CK<br />

<strong>MMI</strong> – enabled<br />

NOR <strong>Flash</strong><br />

NOR<br />

PHY<br />

DRAM<br />

PHY<br />

ctrl PHY<br />

<strong>Memory</strong><br />

ctrl<br />

<strong>MMI</strong> – enabled Processor<br />

2 CA as CA/DQ<br />

1 CK<br />

* x16 PHY Includes 3 redundant links (2 CA and 1 CK)<br />

that are available to support a second DRAM or<br />

Santa Clara, CA USA<br />

additional <strong>Flash</strong> devices<br />

August 2009 7


Option 1<br />

~700MB/s <strong>Flash</strong> BW<br />

~6400MB/s DRAM BW<br />

2 CA<br />

16 DQ<br />

2 DM<br />

1 CK<br />

<strong>MMI</strong> – enabled<br />

NOR <strong>Flash</strong><br />

NOR<br />

PHY<br />

DRAM<br />

PHY<br />

ctrl PHY<br />

<strong>Memory</strong><br />

ctrl<br />

<strong>MMI</strong> – enabled Processor<br />

System Configuration Options:<br />

DRAM + NOR/NAND <strong>Flash</strong> Package<br />

2 CA/DQ<br />

1 CK<br />

Option 2<br />

~3200MB/s <strong>Flash</strong> BW<br />

~3200MB/s DRAM BW<br />

2 CA<br />

8 DQ<br />

1 DM<br />

1 CK<br />

<strong>MMI</strong> – enabled<br />

<strong>Flash</strong> SiP<br />

DRAM<br />

PHY<br />

ctrl PHY<br />

<strong>Memory</strong><br />

ctrl<br />

<strong>MMI</strong> – enabled Processor<br />

Option 3<br />

~2800MB/s <strong>Flash</strong> BW<br />

~3200MB/s DRAM BW<br />

Santa Clara, CA USA<br />

August 2009 8<br />

<strong>Flash</strong><br />

PHY<br />

2 CA<br />

8 DQ<br />

1 DM<br />

1 CK<br />

2 CA<br />

8 DQ<br />

1 DM<br />

1 CK<br />

<strong>MMI</strong> – enabled<br />

Device or SiP<br />

<strong>MMI</strong> – enabled<br />

NOR <strong>Flash</strong><br />

<strong>MMI</strong> – enabled<br />

NOR <strong>Flash</strong><br />

<strong>MMI</strong> – enabled<br />

NOR <strong>Flash</strong><br />

<strong>Flash</strong><br />

PHY<br />

<strong>Flash</strong><br />

PHY<br />

<strong>Flash</strong><br />

PHY<br />

<strong>Flash</strong><br />

PHY<br />

DRAM<br />

PHY<br />

ctrl PHY<br />

<strong>Memory</strong><br />

ctrl<br />

<strong>MMI</strong> – enabled Processor<br />

4<br />

x3 links


<strong>MMI</strong> Matches Native Device Core<br />

and Interface BW<br />

<strong>MMI</strong>’s asymmetric timing easily operates with Low Core BW<br />

or Low Interface Speed <strong>Memory</strong> Devices<br />

SDR, ½DR, ¼DR, etc. Clock and Data streams are created by<br />

bit replication at the controller PHY serializer interface<br />

DM as CK<br />

@ 0.8Gbps<br />

DQ as CA/DQ<br />

@ 0.8Gbps<br />

Santa Clara, CA USA<br />

August 2009 9


High Level Summary<br />

Growing number of different IO’s, processors reaching pad limitations,<br />

lack of BW scalability, higher active power, package design & SI<br />

challenges all hinder current roadmap<br />

<strong>MMI</strong> is ideally suited to extend the mobile memory roadmap<br />

• Scalable general memory interface for all memory devices in the handset<br />

• Fewer pins: 60% less pins than equivalent LPDDR2 solution<br />

• High Bandwidth: 88MB/s-12.8GB/s per <strong>Memory</strong><br />

• Low Power: 67% less active power than equivalent LPDDR2 solution<br />

• Reduced board complexity with much easier PoP design<br />

• Lower cost and lower risk solution than other alternatives<br />

<strong>MMI</strong> can support NOR and NAND <strong>Flash</strong> with no change to the controller<br />

PHY design or pin out<br />

• <strong>MMI</strong> can provide high scalable peak <strong>Flash</strong> BW: 88MB/s to 3.2+GB/s<br />

• <strong>MMI</strong> can support lower <strong>Flash</strong> Device BW at better power efficiency through clock<br />

synthesis<br />

• <strong>MMI</strong> can support high <strong>Flash</strong> capacity: 1 – 4 devices or controllers<br />

Santa Clara, CA USA<br />

August 2009 10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!