23.10.2013 Views

An Analysis Of Flash And HDD Technology Trends - Flash Memory ...

An Analysis Of Flash And HDD Technology Trends - Flash Memory ...

An Analysis Of Flash And HDD Technology Trends - Flash Memory ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>An</strong> <strong>An</strong>alysis <strong>Of</strong> <strong>Flash</strong> <strong>An</strong>d <strong>HDD</strong><br />

<strong>Technology</strong> <strong>Trends</strong><br />

Edward Grochowski Robert E. Fontana, Jr.<br />

EdwGrochowski@aol.com rfontan@us.ibm.com<br />

Computer Storage Consultant Almaden Research Center<br />

San Jose, CA 95120 IBM Systems <strong>Technology</strong> Group<br />

San Jose, CA 95120<br />

Single Bit Charge Storage<br />

e -<br />

Floating Gate SLC<br />

(2 voltage levels)<br />

Control Gate<br />

Floating Gate<br />

Santa Clara, CA<br />

August 2011 1


Introduction and Topics<br />

1. <strong>An</strong>alyze Storage<strong>Technology</strong> <strong>Trends</strong> For <strong>Flash</strong> and <strong>HDD</strong><br />

2. Project To Where These Principal Storage Technologies Will Evolve<br />

3. Discuss Concerns With These Evolutions<br />

4. Project Data Densities<br />

5. Project Costs per Gbyte<br />

6. <strong>An</strong>alyze Lithography Challenges<br />

7. Future Designs for <strong>Flash</strong>/<strong>HDD</strong><br />

Santa Clara, CA<br />

August 2011 2


Free-format slide title<br />

Exabytes Shipped/Year<br />

4000.00<br />

3500.00<br />

3000.00<br />

2500.00<br />

2000.00<br />

1500.00<br />

1000.00<br />

500.00<br />

<strong>HDD</strong><br />

NAND <strong>Flash</strong><br />

0.00<br />

2000 02 04 06 08 10 12 14<br />

100 102 104 106 108 110 112 114<br />

Ed Grochowski/Tom Coughlin<br />

TB2010Y.PRZ<br />

<strong>HDD</strong> (Ref. Coughlin/Grochowski 2010 Report)<br />

NAND <strong>Flash</strong> (Ref. John Monroe, Gartner)<br />

Production Year<br />

Santa Clara, CA<br />

August 2011 3<br />

30X


2.5 inch<br />

<strong>HDD</strong> Capacity, GBytes<br />

<strong>HDD</strong> roadmap2010B.prz<br />

10000<br />

1000<br />

100<br />

10<br />

3.5 inch form factor<br />

2.5 inch<br />

8.1 GB<br />

4 GB<br />

20 GB<br />

750GB Server 10K RPM<br />

2000 GB Desktop 7200 RPM<br />

1.8 inch<br />

1.0 inch<br />

36GB Server<br />

15K RPM<br />

1 GB<br />

1<br />

98 2000 100 102 02 104 04 106 06 108 08 2010 110 112 12 114 14<br />

Availability Year<br />

<strong>HDD</strong> CapacityRoadmap<br />

Ed Grochowski/Tom Coughlin<br />

Santa Clara, CA<br />

August 2011 4<br />

12 GB<br />

1-2TB Server<br />

10K-15K RPM<br />

10TB Desktop<br />

7200 RPM<br />

300 GB Server<br />

15K RPM 1 TB<br />

5TB<br />

Desktop/Laptop<br />

300 GB 750 GB 7200 RPM<br />

250 GB


NAND Roadmap 2011X.prz<br />

Circuit Capacity Mbits<br />

Projected NAND <strong>Flash</strong> <strong>Memory</strong> Circuit Density Roadmap<br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

SLC<br />

MLC<br />

Floating Gate<br />

128 Gb 15 nm est.<br />

80 Gb 24 nm<br />

64 Gb 24 nm<br />

16 Gb 45 nm<br />

8 Gb 65 nm<br />

4 Gb 90 nm<br />

2 Gb 90 nm<br />

1 Gb 130 nm<br />

512 Mb 180 nm<br />

256 Mb 250 nm<br />

64 Mb 250 nm<br />

32 Mb 400 nm<br />

16 Mb 600 nm<br />

10<br />

1990 1995 2000 2005 2010 2015 2020<br />

Production Year<br />

Charge Trap<br />

Advanced<br />

<strong>Technology</strong><br />

Santa Clara, CA<br />

August 2011 5


Free-format slide title<br />

areal2011egA.prz<br />

Areal Density GIgabits/in2<br />

10 1E+7 104 4<br />

1E+6 103<br />

10 3<br />

1E+5 102 10 2<br />

1E+4 10<br />

10 1<br />

1E+3 1<br />

1<br />

1E+2<br />

10 -1<br />

10-1<br />

10 1E+1<br />

-2<br />

10-2<br />

<strong>HDD</strong>/<strong>Flash</strong> Areal Density Perspective<br />

1st MR Head<br />

<strong>HDD</strong><br />

Products<br />

<strong>Flash</strong><br />

Products<br />

1st GMR Head<br />

60% CGR<br />

16MB<br />

1st AFC Media<br />

100% CGR<br />

64MB<br />

Perpendicular<br />

Recording<br />

90 95 100 2000 2005 105 110 2010 115 2015<br />

Production Year<br />

TMR Head<br />

40% CGR<br />

4K Sector<br />

Region<br />

Copyright Ed Grochowski<br />

Santa Clara, CA<br />

August 2011 6<br />

256MB<br />

512MB<br />

1 GB<br />

2 GB<br />

4 GB<br />

8 GB<br />

8 GB 20nm<br />

64 GB (3 MLC ?)<br />

32 GB (2 MLC)<br />

16 GB (2 MLC)


Price/GByte, Dollars<br />

oemprc2009a.prz<br />

100000<br />

Price $/GB<br />

oemprc2011B.prz<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

Ed Grochowski<br />

DRAM/<strong>Flash</strong><br />

Enterprise <strong>HDD</strong><br />

Desktop <strong>HDD</strong><br />

Average Retail Prices of Storage<br />

Mobile <strong>HDD</strong><br />

1990 1995 2000 2005 2010 2015<br />

Year<br />

DRAM<br />

<strong>Flash</strong><br />

Desktop<br />

Mobile<br />

Enterprise<br />

1"<br />

32 GB <strong>Flash</strong><br />

Santa Clara, CA<br />

August 2011 7<br />

1 " <strong>HDD</strong><br />

750 GB Desktop<br />

1.5TB Desktop<br />

2TB Desktop<br />

3 TB Desktop<br />

300 GB/15K Server<br />

500 GB Mobile Drive


Magnetic Recording Cell<br />

• The unique attribute of the magnetic bit cell in a hard disk drive<br />

(<strong>HDD</strong>) is that the bits are unpatterned tremendous cost<br />

advantage<br />

• The bit length is “sub lithographic”<br />

• Bits are “magnetically” templated into the media using a single photo<br />

lithographically defined magnetic transducer<br />

• Bit width is determined by the lithography used to form the write<br />

transducer. The smallest lithographically defined feature in the<br />

magnetic head is the read transducer ~ ½ Track Pitch = F<br />

• Bit length is determined without lithography! It is sub lithographic! It<br />

is defined by the distance the disk rotates during the time interval<br />

that alternating current pulses are applied to the write yoke.<br />

• Bit length is limited by the resolution of the sensor, i.e. the read gap<br />

with dimensions G determined by depositions, not lithography<br />

• <strong>An</strong> <strong>HDD</strong> Product Example (635 Gbit/in² Areal Density)<br />

– Minimum Lithography 37 nm = F<br />

Santa Clara, CA<br />

August 2011 – Bit Cell 74 nm x 13 nm<br />

8<br />

– Smallest Bit Feature 13 nm ~ 33% F, ~ 50% IC F


Three Major <strong>HDD</strong> Innovations<br />

Santa Clara, CA<br />

August 2011 9


<strong>HDD</strong> Shingled Write<br />

1. Is A Band <strong>Technology</strong>, Not A Sector Or Track (Marginally)<br />

2. Ideally Suited For Streaming Applications (>>Gbyte<br />

Movies)<br />

3. Many Potential Ideas For Writing Tracks<br />

4. Requirement For Correct Choices On Buffer Tracks <strong>An</strong>d<br />

Band Sizes<br />

5. Involves Rewriting On Disk Or Buffer electronics Within<br />

Drive<br />

6. If Changes To OS Or System Electronics, Delays Are<br />

Probable, If Drop-in <strong>Technology</strong>, Applications Will Arrive<br />

Soon<br />

Santa Clara, CA<br />

August 2011 10


Surface Dimensions<br />

(Chip or Disk)<br />

Cell Size Comparison<br />

8GB NAND <strong>Flash</strong> 8GB NAND <strong>Flash</strong> 375 GB 1 surface <strong>HDD</strong><br />

16.5 mm x 10.1 mm 12.5 mm x 9.5 mm 87.0 mm disk diameter<br />

24.0 mm hub diameter<br />

1.5 mm edge exclusions<br />

<strong>Memory</strong> Surface Area 167 mm² 118 mm² 5491 mm²<br />

Active <strong>Memory</strong> Area ~ 122 mm² (73%) ~ 71 mm² (65%) ~ 4969 mm² (90%)<br />

Minimum Lithography F = 25 nm F = 20 nm F = 37 nm<br />

Active Bit Cell Area 1906 nm² = 3.0 F² 1109 nm² = 2.8 F² 981 nm² = 0.7 F²<br />

Bit Cell Dimension 44 nm x 44 nm 33 nm x 33 nm 74 nm x 13 nm<br />

Maximum Areal Density 330 Gb/in² 560 Gb/in² 635 Gb/in²<br />

Santa Clara, CA<br />

August 2011 11


Lithography and NAND <strong>Flash</strong><br />

• Typical NAND cells formed with sub 30 nm lithography with Intel-<br />

Micron providing leading edge devices at 25 nm to 20 nm<br />

• Bit cell area approaches 2.5 F² (F is the minimum lithographic feature)<br />

for Self Aligned STI multi level (2 bit per cell) designs<br />

• <strong>HDD</strong> cells formed with minimum features close to DRAM<br />

requirements<br />

• Patterned Media cells will require substantial “invention” in lithography<br />

to meet density goals<br />

Multi Level NAND Cell<br />

Santa Clara, CA<br />

August 2011 12


MTBF2011B.prz<br />

MTBF Specifications<br />

Enterprisebased<br />

<strong>Flash</strong><br />

As specified MTBF, khrs.<br />

2200<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Ed Grochowski<br />

Industry <strong>HDD</strong> MTBF Specifications<br />

0<br />

1985 1990 1995 2000 2005 2010 2015 2020<br />

Product Ship Date<br />

Consumer-based <strong>Flash</strong><br />

Santa Clara, CA<br />

August 2011 13<br />

<strong>HDD</strong>


<strong>Flash</strong> Scaling<br />

<strong>Flash</strong>chal2011B.prz<br />

No. Electrons per Vt Shift<br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

Lithography nm<br />

130 90 64 51 40 32 20 18 16 14 12<br />

FG <strong>Flash</strong> Electrical Scaling Challenges<br />

<strong>Flash</strong> Chip Capacity (GBytes)<br />

Based on Chung Lam (IBM Research)<br />

0.08 0.12 0.25 0.50 1.0 2.0 4.0 8.0 16.0 25.0 64.0 120.0<br />

2000 2005 2010 2015 2020<br />

Santa Clara, CA<br />

August 2011 14<br />

Year


New Transistor Designs<br />

Santa Clara, CA<br />

August 2011 15


<strong>Flash</strong> Scaling Challenges<br />

1. >15 nm Lithography (EUV <strong>Technology</strong> Too<br />

Expensive For <strong>Flash</strong>, Also <strong>HDD</strong>)<br />

2. Fewer Electrons >> 100 (Leakage >1 Electron<br />

Per Month)<br />

3. Electric Field Stress During Programming Too<br />

High<br />

4. Write Endurance Degrades<br />

Santa Clara, CA<br />

August 2011 16


Conclusion<br />

1. Expect Significantly Reduced Scaling <strong>An</strong>d Capacity<br />

Progress- <strong>Flash</strong> <strong>An</strong>d <strong>HDD</strong>-In Future<br />

2. New Processing <strong>An</strong>d Structural Techniques Limited<br />

By Implementation Costs<br />

3. Storage Requirements Will Continue Vigorous<br />

Demands For Both <strong>Flash</strong> <strong>An</strong>d <strong>HDD</strong> Products<br />

4. Door Is Open For Alternative Technologies (FeRam,<br />

MRAM Are Imbedded Technologies; PCM Is<br />

Crosspoint)<br />

Santa Clara, CA<br />

August 2011 17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!