25.10.2013 Views

ta_winter_college_ on_optics_and_energy_ico-ictp_award _2010.pdf

ta_winter_college_ on_optics_and_energy_ico-ictp_award _2010.pdf

ta_winter_college_ on_optics_and_energy_ico-ictp_award _2010.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Optical p n<strong>on</strong>linearities in organic g materials<br />

Prof. Cleber R. Mend<strong>on</strong>ca<br />

http://www.phot<strong>on</strong>ics.ifsc.usp.br


Sao Carlos<br />

University of Sao Paulo - Brazil<br />

students 77.000<br />

52.000 undergrad.<br />

25.000 grad.<br />

employers 15.000<br />

professors 6.000<br />

• Sao Paulo<br />

• Sao Carlos (9.000)<br />

• Ribeirao Preto


University of Sao Paulo – in Sao Carlos


University of Sao Paulo – in Sao Carlos


Professors: 80<br />

Instituto de Física de São Carlos<br />

Employers: 180<br />

(technical <strong>and</strong> administrati<strong>on</strong>)<br />

Students: 450 (undergrad)<br />

( g )<br />

100 (master)<br />

140 (phD)<br />

Several research areas in Physics<br />

<strong>and</strong> Material Sciences


Grupo de Fot<strong>on</strong>ica<br />

Phot<strong>on</strong>ics Groups<br />

The purpose of the Phot<strong>on</strong>ics Group is to<br />

develop p fundamen<str<strong>on</strong>g>ta</str<strong>on</strong>g>l science <strong>and</strong> applied pp<br />

technology in Optics <strong>and</strong> Phot<strong>on</strong>ics<br />

Some of the research areas<br />

• N<strong>on</strong>linear <strong>optics</strong><br />

• Coherent c<strong>on</strong>trol of light matter interacti<strong>on</strong><br />

• fs-laser microfabricati<strong>on</strong> <strong>and</strong> micromachining<br />

• Optical spectroscopy<br />

•Optical p storage g


Optical p n<strong>on</strong>linearities in organic g materials<br />

Prof. Cleber R. Mend<strong>on</strong>ca<br />

http://www.phot<strong>on</strong>ics.ifsc.usp.br


Outline<br />

introducti<strong>on</strong> to n<strong>on</strong>linear <strong>optics</strong><br />

n<strong>on</strong>linear <strong>optics</strong> in organic materials<br />

experimen<str<strong>on</strong>g>ta</str<strong>on</strong>g>l p methods<br />

examples of some results


N<strong>on</strong>linear <strong>optics</strong><br />

N<strong>on</strong>linear Optics<br />

N<strong>on</strong>linear Optics<br />

The branch of <strong>optics</strong> that describes optical phenomena that occur when very<br />

intense light is used


harm<strong>on</strong>ic oscillator<br />

Linear <strong>optics</strong><br />

linear resp<strong>on</strong>se<br />

P =<br />

χE<br />

E rad.


anharm<strong>on</strong>ic oscillator<br />

P<br />

=<br />

χ<br />

N<strong>on</strong>linear <strong>optics</strong><br />

n<strong>on</strong>linear polarizati<strong>on</strong> resp<strong>on</strong>se<br />

( 1<br />

)<br />

E<br />

+<br />

χ<br />

( 2 )<br />

E<br />

2<br />

+<br />

high light intensity<br />

E rad. ~ E inter.<br />

χ<br />

( 3 )<br />

E<br />

3<br />

+<br />

...


P<br />

N<strong>on</strong>linear <strong>optics</strong><br />

n<strong>on</strong>linear li expansi<strong>on</strong> i of f th the polarizati<strong>on</strong> l i ti<br />

r<br />

( 1 ) ( 2 )<br />

( 3 )<br />

= χ . E + χ : EE<br />

+ χ M<br />

r<br />

r<br />

r r r<br />

EEE<br />

+ ...<br />

linear SHG THG<br />

processes Kerr effect


Sec<strong>on</strong>d order processes<br />

N<strong>on</strong>linear Optics<br />

( 2<br />

χ<br />

Sec<strong>on</strong>d Harm<strong>on</strong>ic Generati<strong>on</strong><br />

ω 22ω<br />

)


(<br />

χ<br />

2 )<br />

=<br />

0<br />

N<strong>on</strong>linear polarizati<strong>on</strong><br />

N<strong>on</strong>linear Optics<br />

χ<br />

( 3)<br />

Third order processes


Third order processes<br />

N<strong>on</strong>linear Optics<br />

χ<br />

( 3)<br />

ω<br />

3ω<br />

NN<strong>on</strong>linear li media<br />

di<br />

ωω


Third order processes<br />

Kerr media:<br />

N<strong>on</strong>linear Optics<br />

( 3<br />

χ<br />

)<br />

n = n0<br />

+ n2I<br />

Index of refracti<strong>on</strong> depends <strong>on</strong> the light intensity<br />

n<br />

2<br />

≈<br />

χ<br />

( 3 )


Kerr media:<br />

n n0<br />

n2I<br />

+ =<br />

Self phase modulati<strong>on</strong><br />

centre symmetric:<br />

P<br />

n 2>0 Material behaves as a c<strong>on</strong>vergent lens<br />

y<br />

2<br />

x<br />

d<br />

Sample<br />

f<br />

= χ<br />

( 3) E<br />

3<br />

NL<br />

χ () 2 = 0<br />

z


ω<br />

N<strong>on</strong>linear <strong>optics</strong><br />

N<strong>on</strong>linear<br />

material<br />

• Intense light induced n<strong>on</strong>linear resp<strong>on</strong>se<br />

in the material<br />

• Material change the light in a n<strong>on</strong>linear<br />

way<br />

2ω<br />

3ω<br />

ω ?<br />

Self acti<strong>on</strong><br />

effect


χ (3) is a complex quantity<br />

N<strong>on</strong>linear Optics


Third order processes: χ (3)<br />

Refractive process:<br />

Absorptive process:<br />

n n0<br />

n2I<br />

+ = 0 2<br />

• self-phase modulati<strong>on</strong><br />

• lens-like effect<br />

α α + ββ<br />

I<br />

= 0<br />

• n<strong>on</strong>linear absorpti<strong>on</strong><br />

•two-phot<strong>on</strong> p absorpti<strong>on</strong> p


Two-phot<strong>on</strong> absorpti<strong>on</strong> (2PA) process<br />

Phenomen<strong>on</strong> does not described for the Classical Physics <strong>and</strong> does not<br />

observed until the development of the Laser.<br />

2ω<br />

Theoretical model: Maria Göppert-Mayer, 1931<br />

Two phot<strong>on</strong>s from an intense laser light beam are simul<str<strong>on</strong>g>ta</str<strong>on</strong>g>neously absorbed<br />

p g y<br />

in the same “quantum act”, leading the molecule to some excited s<str<strong>on</strong>g>ta</str<strong>on</strong>g>te with<br />

<strong>energy</strong> equivalent to the absorbed two phot<strong>on</strong>s.<br />

ω<br />

ω


applicati<strong>on</strong>s of 2PA - optical limiting<br />

low intensity high intensity<br />

To protect eye <strong>and</strong> sensors from intense laser pulses


applicati<strong>on</strong>s of 2PA - two-phot<strong>on</strong> fluorescence<br />

α α + βI<br />

= 0<br />

ω<br />

ω<br />

light emissi<strong>on</strong><br />

fl fluorescence


2PA<br />

localizati<strong>on</strong> of the exci<str<strong>on</strong>g>ta</str<strong>on</strong>g>ti<strong>on</strong> with 2PA<br />

dilute soluti<strong>on</strong> of fluorescent dye<br />

1PA<br />

spatial c<strong>on</strong>finement of exci<str<strong>on</strong>g>ta</str<strong>on</strong>g>ti<strong>on</strong>


two-phot<strong>on</strong> fluorescence microscopy<br />

microscopy by two-phot<strong>on</strong> fluorescence<br />

3D image of a cell<br />

Human chromosome<br />

Laboratory for Optics <strong>and</strong><br />

Biosciences<br />

Ecole polytechnique Fluorescent marker ⇒ fluorophores


applicati<strong>on</strong>s of 2PA - microfabricati<strong>on</strong><br />

two-phot<strong>on</strong> polymerizati<strong>on</strong><br />

Venus s<str<strong>on</strong>g>ta</str<strong>on</strong>g>tue<br />

Two-phot<strong>on</strong> Two phot<strong>on</strong> polymerizati<strong>on</strong><br />

Opt. Exp. 12, 5521-5528 (2004)<br />

oscillator<br />

NNature t 412, 412 697-698 697 698 (2001)<br />

Bull


Real applicati<strong>on</strong>s in n<strong>on</strong>linear <strong>optics</strong><br />

Very intense light: femtosec<strong>on</strong>d pulses<br />

Ti:Sapphire lasers<br />

100 fs 50 fs 20 fs 1fs= 10 -15 s<br />

Laser intensities ~ 100 GW/cm 2<br />

1 x 10 11 W/cm 2<br />

Laser pointer: 1 mW/cm 2 (1 x10 -3 W/ cm 2 )


Organic materials<br />

• Flexibility to tune the n<strong>on</strong>linear optical resp<strong>on</strong>se by manipulating the<br />

molecular structure<br />

• π-c<strong>on</strong>jugated structures<br />

σ<br />

C C C<strong>on</strong>jugati<strong>on</strong>: j g alternati<strong>on</strong> of single g <strong>and</strong> doubles b<strong>on</strong>ds<br />

π<br />

between carb<strong>on</strong> atoms


C<strong>on</strong>jugati<strong>on</strong> π-c<strong>on</strong>jugati<strong>on</strong><br />

σ b<strong>on</strong>d: forms a str<strong>on</strong>g chemical b<strong>on</strong>d; localized<br />

π b<strong>on</strong>d: weaker b<strong>on</strong>d; out of the C atoms axis<br />

π b<strong>on</strong>d in c<strong>on</strong>jugated system: delocalized electr<strong>on</strong>s<br />

high optical n<strong>on</strong>linearities<br />

χ (3)


Research<br />

• study of optical n<strong>on</strong>linearities in organic materials<br />

• fs-laser microfabricati<strong>on</strong><br />

• optical storage <strong>and</strong> surface relief gratings in azopolymers<br />

• coherent c<strong>on</strong>trol of light matter interacti<strong>on</strong>


Research<br />

• study of optical n<strong>on</strong>linearities in organic materials<br />

• fs-laser microfabricati<strong>on</strong><br />

• optical storage <strong>and</strong> surface relief gratings in azopolymers<br />

• coherent c<strong>on</strong>trol of light matter interacti<strong>on</strong>


Optical n<strong>on</strong>linearities in organic materials<br />

• Unders<str<strong>on</strong>g>ta</str<strong>on</strong>g>nding the physical principles behind two-phot<strong>on</strong> absorpti<strong>on</strong><br />

• Unders<str<strong>on</strong>g>ta</str<strong>on</strong>g>nding the relati<strong>on</strong>ship between molecular structure <strong>and</strong><br />

two-phot<strong>on</strong> absorpti<strong>on</strong><br />

• Developing molecules with high optical n<strong>on</strong>linearities that can be<br />

used for applicati<strong>on</strong> pp


norrmalized<br />

transmmit<str<strong>on</strong>g>ta</str<strong>on</strong>g>nce<br />

Normalized<br />

Transmit<str<strong>on</strong>g>ta</str<strong>on</strong>g>ce<br />

1.04 1.04<br />

1.00 1.00<br />

0.96 0.96<br />

Z-scan (n<strong>on</strong>linear absorpti<strong>on</strong>)<br />

open aperture Z-scan<br />

z0<br />

-10 -5 0 5 10<br />

Z<br />

α ( I ) = α0<br />

+ βI<br />

T ( z)<br />

Δ T ∝ ββ<br />

I<br />

∑ ∞<br />

=<br />

m=<br />

0<br />

[ − q0<br />

( z,<br />

0 ) ]<br />

3 / 2 ( m + 1)<br />

q +<br />

0 m<br />

2 2 ( z / )<br />

0( z,<br />

t ) = βI0L<br />

/ 1 z0


150 fs laser system<br />

Ti:Sapphire amplifier<br />

775 nm<br />

150 fs<br />

800 μJ


n<strong>on</strong>linear absorpti<strong>on</strong><br />

α α + ββ<br />

I<br />

= 0<br />

n<strong>on</strong>linear refracti<strong>on</strong><br />

n n0<br />

n2I<br />

+ =<br />

N<strong>on</strong>linear spectrum<br />

intense laser (ultra short pulses)<br />

discrete λ s<br />

δ(λ) ( ) n2(λ) 2( )<br />

n<strong>on</strong>linear spectrum p ???


N<strong>on</strong>linear absorpti<strong>on</strong> spectrum<br />

Optical parametric amplifier<br />

460 - 2600 nm<br />

≈ 120 ffs<br />

20-60 μJ


Azoaromatic samples<br />

HO H2C H2C HO H2C H2C HO H2C H2C HO H2C H2C HO H2C H2C H 3C H 2C<br />

HO H2C H2C H 3CH 2C<br />

N N<br />

AZO<br />

H2N N N NH2 DIAMINO<br />

H 2N<br />

H 2N<br />

N<br />

N<br />

N N<br />

N N NO 2<br />

Cl<br />

N N NO 2<br />

N N NO 2<br />

Cl<br />

p-AMINO<br />

DO3<br />

DR19Cl<br />

DR19<br />

N N N NO 2 DR13<br />

N<br />

N N NO 2<br />

DR1


Linear absorpti<strong>on</strong> of azoaromatic compounds<br />

absorbance<br />

0.9<br />

0.6<br />

0.3<br />

00 0.0<br />

AZOB<br />

PAMINO<br />

DO3<br />

DR13<br />

DR1<br />

DR19<br />

DR19Cl<br />

DIAMINO<br />

300 400 500 600<br />

wavelength (nm)


Normalizzed<br />

Transmitt<str<strong>on</strong>g>ta</str<strong>on</strong>g>nce<br />

1.00<br />

0.95<br />

0.90<br />

0.85<br />

α α = αα<br />

+ ββ<br />

I 0<br />

Two-phot<strong>on</strong> absorpti<strong>on</strong><br />

700 nm<br />

750 nm<br />

860 nm<br />

930 nm<br />

1010 nm<br />

O 2N<br />

Cl<br />

N<br />

DR13<br />

[ ( ) ]<br />

∑<br />

( )<br />

∞ − q0<br />

z,<br />

0<br />

T ( z)<br />

= 3 / 2<br />

Z / cm m=<br />

0 ( m + 1)<br />

-0.5 0.0 0.5<br />

β: two-phot<strong>on</strong> absorpti<strong>on</strong> coefficient<br />

N<br />

N<br />

CH 2CH 3<br />

CH 2CH 2OH<br />

m


Absorbance<br />

0.9<br />

0.6<br />

03 0.3<br />

0.0<br />

0.6<br />

0.3<br />

0.0<br />

0.9<br />

0.6<br />

0.3<br />

0.0<br />

0.6<br />

0.3<br />

00 0.0<br />

0.6<br />

0.3<br />

0.0<br />

Pseudostilbenes<br />

DO3<br />

DR1<br />

DR19<br />

DR13<br />

DR19-Cl<br />

400 600 800 1000<br />

λ (nm)<br />

600<br />

300<br />

0<br />

400<br />

200<br />

0<br />

600<br />

300<br />

0<br />

600<br />

300<br />

0<br />

600<br />

300<br />

0<br />

δ (GM)<br />

δ<br />

Absorbbance<br />

0.9<br />

0.6<br />

0.3<br />

0.0<br />

0.6<br />

03 0.3<br />

0.0<br />

AAminoazobenzenes b<br />

400 600 800 1000<br />

λ (nm)<br />

PAMINO 600<br />

300<br />

M)<br />

0<br />

(GM<br />

DIAMINO δ<br />

( ) ⎥ ⎤<br />

2<br />

νν<br />

⎡ A A1<br />

A A2<br />

( ν ) ∝<br />

⎢<br />

+<br />

600<br />

300<br />

( ) ( ) ( ) ⎥ ⎥<br />

2 2<br />

2 2<br />

2 2<br />

ν −ν<br />

+ Γ ν − 2ν<br />

+ Γ ν − 2ν<br />

+ Γ<br />

⎢ ⎢<br />

⎣<br />

i0 i0<br />

f10<br />

f10<br />

f2<br />

0<br />

f2<br />

0<br />

0<br />


Planarity of the π-bridge<br />

Thermally induced torsi<strong>on</strong> in the molecular structure


Molecular design strategy<br />

• Increasing the molecular c<strong>on</strong>jugati<strong>on</strong><br />

• Adding charged groups to the molecule<br />

• Keep molecular planarity


a<br />

intennsity<br />

(arb. unit) u<br />

White light c<strong>on</strong>tinuum Z-scan<br />

4<br />

3<br />

2<br />

1<br />

b<br />

450 550 650 750<br />

0<br />

wavelength (nm)


Transm mitância No ormalizada a<br />

1.0<br />

0.9 RB<br />

0.8<br />

0.7<br />

(d)<br />

White light c<strong>on</strong>tinuum Z-scan<br />

Δ T<br />

-0 -0.4 4 -0 -0.2 2 00 0.0 02 0.2 04 0.4<br />

z (cm)<br />

P (mw)<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

000 0.00<br />

Espectro de Luz branca<br />

Potência To<str<strong>on</strong>g>ta</str<strong>on</strong>g>l = 5 mW<br />

500 600 700<br />

λ (nm)<br />

(a)


α (cm -1 )<br />

20<br />

15<br />

10<br />

5<br />

MeH-PPV<br />

0<br />

400 500 600 700 800 900<br />

Wavelength (nm)<br />

White light c<strong>on</strong>tinuum Z-scan<br />

N<strong>on</strong> res<strong>on</strong>ant effects<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

δ(10 3 GM)<br />

Perylenes derivatives<br />

M)<br />

δ (10 3 GM<br />

8<br />

6<br />

4<br />

2<br />

0<br />

600 650 700 750 800 850 900 950<br />

Wavelength (nm)<br />

each measurement <str<strong>on</strong>g>ta</str<strong>on</strong>g>kes <strong>on</strong>ly a few minutes


fs-laser microfabricati<strong>on</strong><br />

Novel c<strong>on</strong>cept:<br />

build a microstructure using fs-laser <strong>and</strong> n<strong>on</strong>linear optical processes


two-phot<strong>on</strong> polymerizati<strong>on</strong><br />

applicati<strong>on</strong>s<br />

• micromechanics<br />

• waveguides<br />

• microfluidics<br />

• biology<br />

• optical devices


Two-phot<strong>on</strong> absorpti<strong>on</strong><br />

N<strong>on</strong>linear interacti<strong>on</strong> provides spatial c<strong>on</strong>finement of the exci<str<strong>on</strong>g>ta</str<strong>on</strong>g>ti<strong>on</strong><br />

α0<br />

fs-microfabricati<strong>on</strong><br />

α = α α + βI<br />

= 0


Two-phot<strong>on</strong> polymerizati<strong>on</strong><br />

M<strong>on</strong>omer + Photoinitiator → Polymer<br />

light<br />

Photoinitiator is excited by two-phot<strong>on</strong> absorpti<strong>on</strong><br />

R PA ∝<br />

2<br />

The polymerizati<strong>on</strong> is c<strong>on</strong>fined<br />

to the focal volume.<br />

I<br />

2<br />

High spatial resoluti<strong>on</strong>


Two-phot<strong>on</strong> polymerizati<strong>on</strong><br />

bellow the diffracti<strong>on</strong> limit


Two-phot<strong>on</strong> polymerizati<strong>on</strong><br />

even higher spatial resoluti<strong>on</strong>


Two-phot<strong>on</strong> polymerizati<strong>on</strong> setup<br />

CCD<br />

camera<br />

Beam<br />

Expansi<strong>on</strong><br />

Objective<br />

z<br />

Illuminati<strong>on</strong><br />

y<br />

x<br />

spacer<br />

Scanning<br />

Mirror<br />

glass (150 micr<strong>on</strong>)<br />

glass (150 micr<strong>on</strong>)<br />

Laser<br />

resin<br />

Ti:sapphire laser oscillator<br />

• 130 fs<br />

• 800 nm<br />

• 76 MHz<br />

• 20 mW<br />

40 x<br />

0.65 NA<br />

Objective


Two-phot<strong>on</strong> polymerizati<strong>on</strong><br />

After the fabricati<strong>on</strong>, the sample is<br />

immersed in ethanol to wash away any<br />

unsolidified resin <strong>and</strong> then dried


Microstructures c<strong>on</strong><str<strong>on</strong>g>ta</str<strong>on</strong>g>ining MEH-PPV<br />

MEH-PPV MEH PPV<br />

Fluorescence<br />

Electro Luminescent<br />

C<strong>on</strong>ductive


Microstructures c<strong>on</strong><str<strong>on</strong>g>ta</str<strong>on</strong>g>ining MEH-PPV<br />

waveguiding of the microstructure fabricated<br />

<strong>on</strong> porous silica substrate (n= (n 11.185) 185)<br />

Applicati<strong>on</strong>s: micro-laser; fluorescent microstructures; c<strong>on</strong>ductive microstructures


Other studies<br />

• microstructures for optical p storage g – birefringence g<br />

φφ<br />

NN<br />

NN<br />

E r<br />

E r<br />

r dye<br />

p dye<br />

Light Relax<br />

NN NN NN<br />

NN<br />

trans cis trans<br />

J. Appl. Phys., 102, 13109-1-13109-4 (2007)<br />

NN<br />

N<br />

NN<br />

N<br />

φφ<br />

p r<br />

p r<br />

E r<br />

E r


Other studies<br />

• microstructures for optical p storage g – birefringence g<br />

Ar + i<strong>on</strong> laser irradiati<strong>on</strong><br />

• 514.5 nm<br />

• <strong>on</strong>e minute<br />

• intensity of 600 mW/cm2


Other studies<br />

• microstructures for optical storage – birefringence<br />

The sample was placed under an optical microscope between crossed<br />

polarizers <strong>and</strong> its angle was varied with respect to the polarizer angle


Other studies<br />

• microstructures for optical storage – birefringence<br />

J. Appl. Phys., 102, 13109-1-13109-4 (2007)


Other studies<br />

• 3D cell migrati<strong>on</strong> studies in micro-scaffolds SEM of the scaffolds<br />

110 µm pore size<br />

52 µm pore size<br />

Top view<br />

110, 52, 25, 12 µm<br />

pore size<br />

Side view<br />

25, 52 µm<br />

pore size


Other studies<br />

• 3D cell migrati<strong>on</strong> studies in micro-scaffolds<br />

Advanced Materials, 20, 4494-4498 (2008)


Thank you !<br />

www.phot<strong>on</strong>ics.ifsc.usp.br


for a copy of this presen<str<strong>on</strong>g>ta</str<strong>on</strong>g>ti<strong>on</strong><br />

www.phot<strong>on</strong>ics.ifsc.usp.br

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!