27.10.2013 Views

Flight-Testing of the FAA Onboard Inert Gas Generation System on ...

Flight-Testing of the FAA Onboard Inert Gas Generation System on ...

Flight-Testing of the FAA Onboard Inert Gas Generation System on ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DOT/<str<strong>on</strong>g>FAA</str<strong>on</strong>g>/AR-03/58<br />

Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Aviati<strong>on</strong> Research<br />

Washingt<strong>on</strong>, D.C. 20591<br />

<str<strong>on</strong>g>Flight</str<strong>on</strong>g>-<str<strong>on</strong>g>Testing</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> <str<strong>on</strong>g>Onboard</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Inert</str<strong>on</strong>g> <str<strong>on</strong>g>Gas</str<strong>on</strong>g> <str<strong>on</strong>g>Generati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> <strong>on</strong><br />

an Airbus A320<br />

Michael Burns<br />

William M. Cavage<br />

Richard Hill<br />

Robert Morris<strong>on</strong><br />

June 2004<br />

Final Report<br />

This document is available to <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. public<br />

Through <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Technical Informati<strong>on</strong><br />

Service (NTIS), Springfield, Virginia 22161.<br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong><br />

Federal Aviati<strong>on</strong> Administrati<strong>on</strong>


NOTICE<br />

This document is disseminated under <str<strong>on</strong>g>the</str<strong>on</strong>g> sp<strong>on</strong>sorship <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> interest <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> exchange. The<br />

United States Government assumes no liability for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tents or use<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>re<str<strong>on</strong>g>of</str<strong>on</strong>g>. The United States Government does not endorse products or<br />

manufacturers. Trade or manufacturer's names appear herein solely<br />

because <str<strong>on</strong>g>the</str<strong>on</strong>g>y are c<strong>on</strong>sidered essential to <str<strong>on</strong>g>the</str<strong>on</strong>g> objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this report. This<br />

document does not c<strong>on</strong>stitute <str<strong>on</strong>g>FAA</str<strong>on</strong>g> certificati<strong>on</strong> policy. C<strong>on</strong>sult your local<br />

<str<strong>on</strong>g>FAA</str<strong>on</strong>g> aircraft certificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>fice as to its use.<br />

This report is available at <str<strong>on</strong>g>the</str<strong>on</strong>g> Federal Aviati<strong>on</strong> Administrati<strong>on</strong> William J.<br />

Hughes Technical Center's Full-Text Technical Reports page:<br />

actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF).


1. Report No.<br />

DOT/<str<strong>on</strong>g>FAA</str<strong>on</strong>g>/AR-03/58<br />

4. Title and Subtitle<br />

2. Government Accessi<strong>on</strong> No. 3. Recipient's Catalog No.<br />

FLIGHT-TESTING OF THE <str<strong>on</strong>g>FAA</str<strong>on</strong>g> ONBOARD INERT GAS GENERATION<br />

SYSTEM ON AN AIRBUS A320<br />

7. Author(s)<br />

Michael Burns, William M. Cavage, Richard Hill, and Robert Morris<strong>on</strong><br />

9. Performing Organizati<strong>on</strong> Name and Address<br />

Federal Aviati<strong>on</strong> Administrati<strong>on</strong><br />

William J. Hughes Technical Center<br />

Airport and Aircraft Safety<br />

Research and Development Divisi<strong>on</strong><br />

Fire Safety Branch<br />

Atlantic City Internati<strong>on</strong>al Airport, NJ 08405<br />

12. Sp<strong>on</strong>soring Agency Name and Address<br />

U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong><br />

Federal Aviati<strong>on</strong> Administrati<strong>on</strong><br />

Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Aviati<strong>on</strong> Research<br />

Washingt<strong>on</strong>, DC 20591<br />

15. Supplementary Notes<br />

16. Abstract<br />

Technical Report Documentati<strong>on</strong> Page<br />

5. Report Date<br />

June 2004<br />

6. Performing Organizati<strong>on</strong> Code<br />

ATO-P<br />

8. Performing Organizati<strong>on</strong> Report No.<br />

DOT/<str<strong>on</strong>g>FAA</str<strong>on</strong>g>/AR-03/58<br />

10. Work Unit No. (TRAIS)<br />

11. C<strong>on</strong>tract or Grant No.<br />

13. Type <str<strong>on</strong>g>of</str<strong>on</strong>g> Report and Period Covered<br />

Final Report<br />

14. Sp<strong>on</strong>soring Agency Code<br />

ANM-112<br />

Extensive development and analysis has illustrated that fuel tank inerting could potentially be cost-effective if air separati<strong>on</strong><br />

modules (ASM), based <strong>on</strong> hollow-fiber membrane technology, could be used in an efficient way. To illustrate this, <str<strong>on</strong>g>the</str<strong>on</strong>g> Federal<br />

Aviati<strong>on</strong> Administrati<strong>on</strong> has developed an <strong>on</strong>board inert gas generati<strong>on</strong> system that uses aircraft bleed air to generate nitrogenenriched<br />

air (NEA) at varying flow and purity (oxygen c<strong>on</strong>centrati<strong>on</strong>) during a commercial airplane flight cycle. A series <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ground and flight tests were performed, in c<strong>on</strong>juncti<strong>on</strong> with Airbus, designed to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> simplified inerting c<strong>on</strong>cept. The<br />

system was mounted in <str<strong>on</strong>g>the</str<strong>on</strong>g> cargo bay <str<strong>on</strong>g>of</str<strong>on</strong>g> an A320 operated by Airbus for <str<strong>on</strong>g>the</str<strong>on</strong>g> purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> research and development and used to<br />

inert <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft center wing fuel tank during testing. The system and center wing fuel tank were instrumented to allow for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system performance and inerting capability.<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tests indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simplified inerting system is valid and that <str<strong>on</strong>g>the</str<strong>on</strong>g> air separati<strong>on</strong> module<br />

dynamic characteristics were as expected. ASM pressure had <str<strong>on</strong>g>the</str<strong>on</strong>g> expected effect <strong>on</strong> flow rate and purity; however, bleed air<br />

c<strong>on</strong>sumpti<strong>on</strong> was greater than expected during cruise. The fuel tank inerting results illustrated that no stratificati<strong>on</strong> or<br />

heterogeneous oxygen c<strong>on</strong>centrati<strong>on</strong>s occurred in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank. The measured average tank ullage oxygen c<strong>on</strong>centrati<strong>on</strong> data agreed<br />

well with a simple analytical model applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> flight test data. The measured effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> high-flow mode was significant,<br />

allowing <str<strong>on</strong>g>the</str<strong>on</strong>g> single-membrane c<strong>on</strong>figurati<strong>on</strong> to maintain an inert ullage during <str<strong>on</strong>g>the</str<strong>on</strong>g> entire flight cycle, even with <str<strong>on</strong>g>the</str<strong>on</strong>g> very high rate<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> descent employed for <str<strong>on</strong>g>the</str<strong>on</strong>g> flight tests. Fuel had virtually no effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting oxygen c<strong>on</strong>centrati<strong>on</strong>s observed in all <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

tests.<br />

17. Key Words<br />

Nitrogen-enriched air, OBIGGS, Hollow-fiber membrane,<br />

Fuel tank inerting, Oxygen c<strong>on</strong>centrati<strong>on</strong>, Air separati<strong>on</strong><br />

module<br />

19. Security Classif. (<str<strong>on</strong>g>of</str<strong>on</strong>g> this report)<br />

Unclassified<br />

20. Security Classif. (<str<strong>on</strong>g>of</str<strong>on</strong>g> this page)<br />

Unclassified<br />

18. Distributi<strong>on</strong> Statement<br />

Form DOT F 1700.7 (8-72) Reproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> completed page authorized<br />

This Document is available to <str<strong>on</strong>g>the</str<strong>on</strong>g> public through <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al<br />

Technical Informati<strong>on</strong> Service (NTIS), Springfield, Virginia<br />

22161<br />

21. No. <str<strong>on</strong>g>of</str<strong>on</strong>g> Pages<br />

39<br />

22. Price


ACKNOWLEDGEMENT<br />

The Federal Aviati<strong>on</strong> Administrati<strong>on</strong> (<str<strong>on</strong>g>FAA</str<strong>on</strong>g>) and AAR-440, Fire Safety Research, would like to<br />

acknowledge <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Airbus Company in accomplishing <str<strong>on</strong>g>the</str<strong>on</strong>g> very difficult task <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

flight testing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> inerting system. Airbus provided all <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft modificati<strong>on</strong> and<br />

instrumentati<strong>on</strong> as well as system airframe integrati<strong>on</strong>. The <str<strong>on</strong>g>FAA</str<strong>on</strong>g> was also supported by Airbus<br />

UK with additi<strong>on</strong>al instrumentati<strong>on</strong> and systems safety and analysis.<br />

Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r acknowledgement is extended to <str<strong>on</strong>g>the</str<strong>on</strong>g> many Airbus employees in Toulouse, France, that<br />

supported <str<strong>on</strong>g>the</str<strong>on</strong>g> joint <str<strong>on</strong>g>FAA</str<strong>on</strong>g>/Airbus flight test. The day-to-day dedicati<strong>on</strong> and commitment required<br />

to successfully complete <str<strong>on</strong>g>the</str<strong>on</strong>g> ground and flight test regiment was significant and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir technical<br />

know-how and pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>alism are <str<strong>on</strong>g>the</str<strong>on</strong>g> primary reas<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> test program.<br />

iii/iv


TABLE OF CONTENTS<br />

EXECUTIVE SUMMARY ix<br />

1. INTRODUCTION 1<br />

Page<br />

1.1 Background 1<br />

1.1.1 Air Separati<strong>on</strong> Modules 1<br />

1.1.2 Previous Research 1<br />

1.1.3 Commercial Transport Fuel Tanks 2<br />

1.2 Scope 2<br />

2. TEST ARTICLE AND PROCEDURES 3<br />

2.1 Test Article 3<br />

2.1.1 A320 Test Article 3<br />

2.1.2 Instrumentati<strong>on</strong> 3<br />

2.1.2.1 Center Wing Tank 4<br />

2.1.2.2 The <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS Instrumentati<strong>on</strong> 4<br />

2.1.2.3 Additi<strong>on</strong>al Parameters Collected 5<br />

2.1.2.4 Aircraft Data Acquisiti<strong>on</strong> <str<strong>on</strong>g>System</str<strong>on</strong>g> 5<br />

2.2 Test Procedures 6<br />

3. THE <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS 7<br />

3.1 <str<strong>on</strong>g>System</str<strong>on</strong>g> Flow 7<br />

3.2 <str<strong>on</strong>g>System</str<strong>on</strong>g> Interfaces 8<br />

3.3 <str<strong>on</strong>g>System</str<strong>on</strong>g> Operati<strong>on</strong> 9<br />

4. ANALYSIS 10<br />

4.1 Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bleed Air C<strong>on</strong>sumpti<strong>on</strong> 10<br />

4.2 Tank <str<strong>on</strong>g>Inert</str<strong>on</strong>g>ing Model 11<br />

5. DISCUSSION OF RESULTS 12<br />

5.1 <str<strong>on</strong>g>System</str<strong>on</strong>g> Peformance 12<br />

5.1.1 Air Separati<strong>on</strong> Module Performance Characteristics 12<br />

5.1.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Varying Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Air Separati<strong>on</strong> Modules 13<br />

v


5.1.3 Bleed Air C<strong>on</strong>sumpti<strong>on</strong> 15<br />

5.1.4 Membrane Performance Degradati<strong>on</strong> 17<br />

5.2 Fuel Tank <str<strong>on</strong>g>Inert</str<strong>on</strong>g>ing 18<br />

5.2.1 Typical Missi<strong>on</strong> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile 18<br />

5.2.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> High-Flow Mode 20<br />

5.2.3 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Fuel <strong>on</strong> <str<strong>on</strong>g>Inert</str<strong>on</strong>g>ing 21<br />

6. SUMMARY OF FINDINGS 23<br />

7. REFERENCES 23<br />

APPENDICES<br />

A—The <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS Engineering Drawing<br />

B—Four-Bolt Flange Engineering Specificati<strong>on</strong><br />

C—The <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS Wiring Diagram<br />

D—Calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bleed Air C<strong>on</strong>sumpti<strong>on</strong><br />

LIST OF FIGURES<br />

Figure Page<br />

1 Airbus A320 Aircraft 3<br />

2 Side View <str<strong>on</strong>g>of</str<strong>on</strong>g> A320 Center Wing Tank With Sample Port Locati<strong>on</strong>s 4<br />

3 Engineering Drawing <str<strong>on</strong>g>of</str<strong>on</strong>g> Flow Meter 5<br />

4 <str<strong>on</strong>g>System</str<strong>on</strong>g> Block Diagram 7<br />

5 The <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS Installed in <str<strong>on</strong>g>the</str<strong>on</strong>g> Test Aircraft Cargo Bay 9<br />

6 Fr<strong>on</strong>t Panel <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS C<strong>on</strong>trol Box 9<br />

7 <str<strong>on</strong>g>System</str<strong>on</strong>g> Performance Data for a Single-Membrane Test 12<br />

8 <str<strong>on</strong>g>System</str<strong>on</strong>g> Flow and Purity With ASM Pressure for Both Membrane C<strong>on</strong>figurati<strong>on</strong>s<br />

During Ascent and Cruise 13<br />

9 <str<strong>on</strong>g>System</str<strong>on</strong>g> Flow and Purity With ASM Pressure for Both Membrane C<strong>on</strong>figurati<strong>on</strong>s<br />

During Descent 14<br />

vi


10 Correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ASM Pressure With NEA Flow for Both <str<strong>on</strong>g>System</str<strong>on</strong>g> Membrane<br />

C<strong>on</strong>figurati<strong>on</strong>s 15<br />

11 Measured Membrane Characteristics for <str<strong>on</strong>g>the</str<strong>on</strong>g> Single-Membrane C<strong>on</strong>figurati<strong>on</strong><br />

<str<strong>on</strong>g>System</str<strong>on</strong>g> 15<br />

12 Calculated Bleed Airflow Into <str<strong>on</strong>g>the</str<strong>on</strong>g> Single-Membrane C<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>System</str<strong>on</strong>g> 16<br />

13 Correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bleed Airflow and Atmospheric Pressure for a Single-Membrane<br />

Test 17<br />

14 Oxygen C<strong>on</strong>centrati<strong>on</strong> Variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> CWT During a Typical <str<strong>on</strong>g>Flight</str<strong>on</strong>g> Test 18<br />

15 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Single-Membrane <str<strong>on</strong>g>Inert</str<strong>on</strong>g>ing <str<strong>on</strong>g>Flight</str<strong>on</strong>g> Test Tank Ullage Oxygen<br />

C<strong>on</strong>centrati<strong>on</strong> With <str<strong>on</strong>g>the</str<strong>on</strong>g> Two-Membrane C<strong>on</strong>figurati<strong>on</strong> 19<br />

16 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Single-Membrane <str<strong>on</strong>g>Inert</str<strong>on</strong>g>ing <str<strong>on</strong>g>Flight</str<strong>on</strong>g> Test Average Tank Ullage<br />

Oxygen C<strong>on</strong>centrati<strong>on</strong> With <str<strong>on</strong>g>the</str<strong>on</strong>g> Model Data 20<br />

17 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Single-Membrane <str<strong>on</strong>g>Inert</str<strong>on</strong>g>ing <str<strong>on</strong>g>Flight</str<strong>on</strong>g> Test Average Tank Oxygen<br />

C<strong>on</strong>centrati<strong>on</strong> for Both High-Flow Descent and Low-Flow Descent 21<br />

18 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Single-Membrane <str<strong>on</strong>g>Inert</str<strong>on</strong>g>ing <str<strong>on</strong>g>Flight</str<strong>on</strong>g> Test Average Tank Oxygen<br />

C<strong>on</strong>centrati<strong>on</strong> for Both Empty Tank and a C<strong>on</strong>stant Fuel Load 22<br />

19 Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Single-Membrane <str<strong>on</strong>g>Inert</str<strong>on</strong>g>ing <str<strong>on</strong>g>Flight</str<strong>on</strong>g> Test Average Tank Oxygen<br />

C<strong>on</strong>centrati<strong>on</strong> for Both Empty Tank Tests and C<strong>on</strong>sumed Fuel Load 22<br />

LIST OF TABLES<br />

Table Page<br />

1 <str<strong>on</strong>g>Inert</str<strong>on</strong>g>ing <str<strong>on</strong>g>Flight</str<strong>on</strong>g> Tests <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Airbus A320 6<br />

2 Air Separati<strong>on</strong> Module Performance Data Before and After 100 Hours <str<strong>on</strong>g>of</str<strong>on</strong>g> Aircraft<br />

Operati<strong>on</strong> 17<br />

vii


LIST OF ACRONYMS<br />

ASM Air separati<strong>on</strong> module<br />

CWT Center wing tank<br />

<str<strong>on</strong>g>FAA</str<strong>on</strong>g> Federal Aviati<strong>on</strong> Administrati<strong>on</strong><br />

HFM Hollow-fiber membrane<br />

NEA Nitrogen-enriched air<br />

OBIGGS <str<strong>on</strong>g>Onboard</str<strong>on</strong>g> inert gas generati<strong>on</strong> system<br />

OBOAS <str<strong>on</strong>g>Onboard</str<strong>on</strong>g> oxygen analysis system<br />

OEA Oxygen-enriched air<br />

SCFM Standard cubic feet per minute<br />

SOV Shut<str<strong>on</strong>g>of</str<strong>on</strong>g>f valve<br />

t Metric t<strong>on</strong><br />

viii


EXECUTIVE SUMMARY<br />

Significant emphasis has been placed <strong>on</strong> fuel tank safety since <str<strong>on</strong>g>the</str<strong>on</strong>g> TWA flight 800 accident in<br />

July 1996. Extensive development and analysis has illustrated that fuel tank inerting could<br />

potentially be cost-effective if air separati<strong>on</strong> modules (ASM), based <strong>on</strong> hollow-fiber membrane<br />

technology, could be used in an efficient way. To illustrate this, <str<strong>on</strong>g>the</str<strong>on</strong>g> Federal Aviati<strong>on</strong><br />

Administrati<strong>on</strong> (<str<strong>on</strong>g>FAA</str<strong>on</strong>g>), with <str<strong>on</strong>g>the</str<strong>on</strong>g> assistance <str<strong>on</strong>g>of</str<strong>on</strong>g> several aviati<strong>on</strong>-oriented companies, developed an<br />

<strong>on</strong>board inert gas generati<strong>on</strong> system with ASMs that uses aircraft bleed air to generate nitrogenenriched<br />

air at varying flow and purity (oxygen c<strong>on</strong>centrati<strong>on</strong>) during a commercial airplane<br />

flight cycle.<br />

The <str<strong>on</strong>g>FAA</str<strong>on</strong>g> performed a series <str<strong>on</strong>g>of</str<strong>on</strong>g> ground and flight tests designed to prove <str<strong>on</strong>g>the</str<strong>on</strong>g> simplified inerting<br />

c<strong>on</strong>cept that is being proposed by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g>. The <str<strong>on</strong>g>FAA</str<strong>on</strong>g>-developed system was mounted in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cargo bay <str<strong>on</strong>g>of</str<strong>on</strong>g> an A320 operated by Airbus for <str<strong>on</strong>g>the</str<strong>on</strong>g> purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> research and development and used<br />

to inert <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft center wing fuel tank during testing. The system and center wing fuel tank<br />

were instrumented to allow for <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system performance as well as inerting<br />

capability. The <str<strong>on</strong>g>FAA</str<strong>on</strong>g> <strong>on</strong>board oxygen analysis system was used to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen<br />

c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> center wing tank c<strong>on</strong>tinuously during operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting system.<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tests indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simplified inerting system is valid and<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> air separati<strong>on</strong> module dynamic characteristics were as expected for <str<strong>on</strong>g>the</str<strong>on</strong>g> limited test plan<br />

performed. Both <strong>on</strong>e- and two-ASM c<strong>on</strong>figurati<strong>on</strong> tests gave <str<strong>on</strong>g>the</str<strong>on</strong>g> expected performance with<br />

ASM pressure having <str<strong>on</strong>g>the</str<strong>on</strong>g> expected effect <strong>on</strong> flow rate and <str<strong>on</strong>g>the</str<strong>on</strong>g> duel-flow performance being<br />

predictable. Bleed air c<strong>on</strong>sumpti<strong>on</strong> was greater than expected during <str<strong>on</strong>g>the</str<strong>on</strong>g> cruise phase <str<strong>on</strong>g>of</str<strong>on</strong>g> flight.<br />

Additi<strong>on</strong>al research is needed to determine what changes in system design or operati<strong>on</strong>al<br />

methodology would best reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> bleed airflow and <str<strong>on</strong>g>the</str<strong>on</strong>g> associated cost.<br />

The fuel tank inerting results illustrated that, as expected, no stratificati<strong>on</strong> or heterogeneous<br />

oxygen c<strong>on</strong>centrati<strong>on</strong>s occurred in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank for <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting tests performed, in part due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

essentially rectangular box c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tank, allowing easy distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inert gas.<br />

A simple analytical model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting process illustrated good agreement with <str<strong>on</strong>g>the</str<strong>on</strong>g> measured<br />

data. The measured effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> high-flow mode was significant, allowing <str<strong>on</strong>g>the</str<strong>on</strong>g> single-membrane<br />

c<strong>on</strong>figurati<strong>on</strong> to maintain an inert ullage (less <str<strong>on</strong>g>the</str<strong>on</strong>g>n 12%) during <str<strong>on</strong>g>the</str<strong>on</strong>g> entire flight cycle, even with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> very high rate <str<strong>on</strong>g>of</str<strong>on</strong>g> descent employed for <str<strong>on</strong>g>the</str<strong>on</strong>g> flight-tests. When <str<strong>on</strong>g>the</str<strong>on</strong>g> high-flow mode was not<br />

used, <str<strong>on</strong>g>the</str<strong>on</strong>g> ullage reached a peak <str<strong>on</strong>g>of</str<strong>on</strong>g> 15% oxygen by volume. Fuel had virtually no effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

resulting oxygen c<strong>on</strong>centrati<strong>on</strong>s observed in all <str<strong>on</strong>g>the</str<strong>on</strong>g> tests.<br />

ix/x


1. INTRODUCTION.<br />

1.1 BACKGROUND.<br />

Significant emphasis has been placed <strong>on</strong> fuel tank safety since <str<strong>on</strong>g>the</str<strong>on</strong>g> TWA flight 800 accident in<br />

July 1996. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> accident, <str<strong>on</strong>g>the</str<strong>on</strong>g> Federal Aviati<strong>on</strong> Administrati<strong>on</strong> (<str<strong>on</strong>g>FAA</str<strong>on</strong>g>) has issued numerous<br />

Airworthiness Directives, enacted a comprehensive regulati<strong>on</strong> to correct potential igniti<strong>on</strong><br />

sources in fuel tanks, and c<strong>on</strong>ducted research into methods that could eliminate or significantly<br />

reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> transport airplanes to flammable vapors. Extensive development and<br />

analysis has illustrated that fuel tank inerting during aircraft operati<strong>on</strong> could potentially be costeffective<br />

if air separati<strong>on</strong> modules (ASM), based <strong>on</strong> hollow-fiber membrane (HFM) technology,<br />

could be integrated into a system in an efficient manner.<br />

To illustrate this, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g>, with <str<strong>on</strong>g>the</str<strong>on</strong>g> assistance <str<strong>on</strong>g>of</str<strong>on</strong>g> several aviati<strong>on</strong>-oriented companies, developed<br />

an <strong>on</strong>board inert gas generati<strong>on</strong> system (OBIGGS) with ASMs that used aircraft bleed air to<br />

generate nitrogen-enriched air (NEA) at varying flows and purities (NEA oxygen c<strong>on</strong>centrati<strong>on</strong>)<br />

during a commercial airplane flight cycle. This system takes advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> operati<strong>on</strong>al<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specified ASM as well as a two-flow methodology to keep <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen<br />

c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a fuel tank below 12% oxygen by volume. This oxygen c<strong>on</strong>centrati<strong>on</strong> has been<br />

identified as <str<strong>on</strong>g>the</str<strong>on</strong>g> point at which a potential igniti<strong>on</strong> source could create a reacti<strong>on</strong> in a flammable<br />

tank with a measurable pressure rise [1].<br />

1.1.1 Air Separati<strong>on</strong> Modules.<br />

Hollow-fiber membranes are fabricated into a vessel called an air separati<strong>on</strong> module. When<br />

supplied with pressurized air, <str<strong>on</strong>g>the</str<strong>on</strong>g>se modules will ventilate a waste stream <str<strong>on</strong>g>of</str<strong>on</strong>g> gas from a permeate<br />

vent that is rich in oxygen, carb<strong>on</strong> dioxide, and water vapor [2]. This allows <str<strong>on</strong>g>the</str<strong>on</strong>g> product gas<br />

passing through <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM to be rich in nitrogen. As flow is limited through <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM product<br />

port (orifice), more pure (lower oxygen c<strong>on</strong>centrati<strong>on</strong>) NEA is generated at lower mass flows.<br />

This operati<strong>on</strong>al property allows for a single-ASM system to generate different flows and<br />

purities <str<strong>on</strong>g>of</str<strong>on</strong>g> NEA to optimize <str<strong>on</strong>g>the</str<strong>on</strong>g> system’s ability to inert a center wing tank (CWT) throughout a<br />

given aircraft missi<strong>on</strong>.<br />

In general, when an ASM is exposed to a specified feed pressure at a given pressure altitude, it<br />

will produce a mass flow <str<strong>on</strong>g>of</str<strong>on</strong>g> NEA at some purity, given a specific orifice setting (backpressure).<br />

This statement assumes a c<strong>on</strong>stant operati<strong>on</strong> temperature at which <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM performs optimally.<br />

It is <str<strong>on</strong>g>the</str<strong>on</strong>g>se performance characteristics that will drive <str<strong>on</strong>g>the</str<strong>on</strong>g> capabilities <str<strong>on</strong>g>of</str<strong>on</strong>g> a given ASM inerting<br />

system to inert a given ullage space.<br />

1.1.2 Previous Research.<br />

Previous <str<strong>on</strong>g>FAA</str<strong>on</strong>g> research into using ASMs to inert fuel tanks has focused <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount and purity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NEA required to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a given ullage [2]. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>FAA</str<strong>on</strong>g> research<br />

focused <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> a ground-based source <str<strong>on</strong>g>of</str<strong>on</strong>g> NEA to maintain an inert ullage <str<strong>on</strong>g>of</str<strong>on</strong>g> a Boeing<br />

737 during ground and initial flight operati<strong>on</strong>s [3]. The research validated <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g>’s in-flight<br />

oxygen measurement system and also documented <str<strong>on</strong>g>the</str<strong>on</strong>g> small, but measurable, effects <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

refueling process had <strong>on</strong> an inert aircraft CWT.<br />

1


O<str<strong>on</strong>g>the</str<strong>on</strong>g>r previous studies include an extensive analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> an aircraft-based<br />

OBIGGS based <strong>on</strong> permeable membranes (ASMs) versus <strong>on</strong>e that uses a molecular sieve<br />

(pressure-swing absorpti<strong>on</strong>) [4]. This report represents <str<strong>on</strong>g>the</str<strong>on</strong>g> first time <str<strong>on</strong>g>the</str<strong>on</strong>g> OBIGGS research<br />

attempted to quantify <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> ASMs to inert an aircraft fuel tank. The study, which ended<br />

in 1984, c<strong>on</strong>cluded that <str<strong>on</strong>g>the</str<strong>on</strong>g> performance and reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> state-<str<strong>on</strong>g>of</str<strong>on</strong>g>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-art membrane<br />

materials was not adequate to incorporate into an aircraft envir<strong>on</strong>ment. Follow-<strong>on</strong> research in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> late 1980s illustrated that <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> so-called HFMs drastically decreased <str<strong>on</strong>g>the</str<strong>on</strong>g> size<br />

and weight <str<strong>on</strong>g>of</str<strong>on</strong>g> ASMs. This allowed for a relative performance increase <str<strong>on</strong>g>of</str<strong>on</strong>g> a factor <str<strong>on</strong>g>of</str<strong>on</strong>g> ten [5].<br />

This study highlighted <str<strong>on</strong>g>the</str<strong>on</strong>g> favorable life cycle costs <str<strong>on</strong>g>of</str<strong>on</strong>g> a demand (inert gas generati<strong>on</strong>) system<br />

over a stored inerting agent system and explosive suppressant foam.<br />

Improved manufacturing methods, fiber postprocessing, and permeate flow management has<br />

made HFM ASMs even more productive and efficient in <str<strong>on</strong>g>the</str<strong>on</strong>g> past 10 years. This makes it<br />

possible to purchase ASMs <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g> shelf, already designed and optimized for use in aerospace<br />

applicati<strong>on</strong>s.<br />

1.1.3 Commercial Transport Fuel Tanks.<br />

Fuel tanks in commercial transport airplanes are generally sealed geometric structures in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

wing or tail <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft. This is usually <str<strong>on</strong>g>the</str<strong>on</strong>g> volume between <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t and rear spar within <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

upper and lower wing surface. These tanks are vented to <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft exterior to ensure that<br />

ambient pressure is maintained within <str<strong>on</strong>g>the</str<strong>on</strong>g> tank. Venting is accomplished by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> tubing<br />

and venting channels that terminate at a small overflow compartment at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wing<br />

called <str<strong>on</strong>g>the</str<strong>on</strong>g> surge/vent tank. This tank vents to <str<strong>on</strong>g>the</str<strong>on</strong>g> outside through an aerodynamic opening in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

underside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wing.<br />

Many commercial transport aircraft have an extra wing fuel tank c<strong>on</strong>tained partially or fully<br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft fuselage. These tanks are generally referred to as center wing tanks. Most<br />

commercial transport aircraft have air cycle machines below <str<strong>on</strong>g>the</str<strong>on</strong>g>se CWTs that c<strong>on</strong>diti<strong>on</strong> hot,<br />

ducted air from <str<strong>on</strong>g>the</str<strong>on</strong>g> engines and reject heat during operati<strong>on</strong> [6]. These tanks have been<br />

identified in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1998 Aviati<strong>on</strong> Rulemaking Advisory Committee report as potentially more<br />

flammable and statistically more susceptible to explosi<strong>on</strong>s [7].<br />

1.2 SCOPE.<br />

The <str<strong>on</strong>g>FAA</str<strong>on</strong>g> and Airbus performed a series <str<strong>on</strong>g>of</str<strong>on</strong>g> ground and flight tests designed to prove <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

simplified inerting c<strong>on</strong>cept that is being proposed by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g>. The <str<strong>on</strong>g>FAA</str<strong>on</strong>g> developed an inerting<br />

system, based <strong>on</strong> ASM technology, designed to maintain an inert ullage in a commercial<br />

transport CWT during normal ground and flight operati<strong>on</strong>s. The system was mounted <strong>on</strong> a cargo<br />

pallet and installed in <str<strong>on</strong>g>the</str<strong>on</strong>g> cargo bay <str<strong>on</strong>g>of</str<strong>on</strong>g> an A320 operated by Airbus for <str<strong>on</strong>g>the</str<strong>on</strong>g> purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> research<br />

and development. The system was interfaced with <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft systems, and instrumentati<strong>on</strong> was<br />

installed to study <str<strong>on</strong>g>the</str<strong>on</strong>g> system performance during flight-tests. The CWT <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft was<br />

instrumented with gas sample tubing to allow for c<strong>on</strong>tinuous m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tank oxygen<br />

c<strong>on</strong>centrati<strong>on</strong> during each test flight cycle with <str<strong>on</strong>g>the</str<strong>on</strong>g> system performance.<br />

The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tests was to validate <str<strong>on</strong>g>the</str<strong>on</strong>g> simplified inerting c<strong>on</strong>cept as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> expected<br />

system performance. The tests will also give insight into <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft operati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

2


system performance and operati<strong>on</strong>al c<strong>on</strong>siderati<strong>on</strong>s. The performance degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e<br />

membrane during <str<strong>on</strong>g>the</str<strong>on</strong>g> test will also be examined to allow for a better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> effects<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft bleed air <strong>on</strong> ASM performance.<br />

2. TEST ARTICLE AND PROCEDURES.<br />

2.1 TEST ARTICLE.<br />

The test article c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> an Airbus A320 (figure 1) with associated instrumentati<strong>on</strong> and data<br />

acquisiti<strong>on</strong> system. The <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS with associated instrumentati<strong>on</strong> was installed in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cargo bay. The CWT was instrumented with eight gas sample tubes that were routed to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>on</strong>board oxygen analysis system (OBOAS). The OBOAS was developed by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> to<br />

c<strong>on</strong>tinuously measure <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen c<strong>on</strong>centrati<strong>on</strong> in a fuel tank envir<strong>on</strong>ment during a typical<br />

commercial transport airplane flight cycle using c<strong>on</strong>venti<strong>on</strong>al oxygen analyzers.<br />

2.1.1 A320 Test Article.<br />

Airbus provided an A320 airplane for <str<strong>on</strong>g>the</str<strong>on</strong>g> series <str<strong>on</strong>g>of</str<strong>on</strong>g> tests. The aircraft has a basic operating<br />

weight <str<strong>on</strong>g>of</str<strong>on</strong>g> 93,079 lb with a gross take<str<strong>on</strong>g>of</str<strong>on</strong>g>f weight <str<strong>on</strong>g>of</str<strong>on</strong>g> 162,040 lb. It has a 112-foot wing span and is<br />

123 feet l<strong>on</strong>g with a wing area <str<strong>on</strong>g>of</str<strong>on</strong>g> 1320 square feet. The maximum cruise speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft is<br />

487 knots at an altitude <str<strong>on</strong>g>of</str<strong>on</strong>g> 28,000 feet.<br />

FIGURE 1. AIRBUS A320 AIRCRAFT<br />

The CWT has a capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> 8200 liters <str<strong>on</strong>g>of</str<strong>on</strong>g> fuel (2165 gal) and is located below <str<strong>on</strong>g>the</str<strong>on</strong>g> floor and in<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> wings, within <str<strong>on</strong>g>the</str<strong>on</strong>g> fuselage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft. The empty CWT ullage volume is 289<br />

normal cubic feet for <str<strong>on</strong>g>the</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> inerting <str<strong>on</strong>g>the</str<strong>on</strong>g> tank with NEA.<br />

2.1.2 Instrumentati<strong>on</strong>.<br />

The primary instrumentati<strong>on</strong> employed in <str<strong>on</strong>g>the</str<strong>on</strong>g> test centered around <str<strong>on</strong>g>the</str<strong>on</strong>g> gas sample tubing in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

CWT that allowed for c<strong>on</strong>tinuous oxygen c<strong>on</strong>centrati<strong>on</strong> measurements in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank during each<br />

flight test using <str<strong>on</strong>g>the</str<strong>on</strong>g> OBOAS. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS was instrumented with extensive<br />

pressure and temperature sensors as well as oxygen c<strong>on</strong>centrati<strong>on</strong> measurements and flow to<br />

allow analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> system performance and health m<strong>on</strong>itoring for each test. Additi<strong>on</strong>al test<br />

parameters were also collected to allow for analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting process during <str<strong>on</strong>g>the</str<strong>on</strong>g> flight tests.<br />

3


2.1.2.1 Center Wing Tank.<br />

The CWT <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> A320 is a nearly rectangular box with associated structural reinforcement in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

interior. The approximate inside dimensi<strong>on</strong>s are 9 ft l<strong>on</strong>g by 11 ft wide with <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum<br />

height <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 3 feet at <str<strong>on</strong>g>the</str<strong>on</strong>g> highest point. The internal volume is estimated at 289 cubic<br />

feet. Eight sample ports are located in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank at <str<strong>on</strong>g>the</str<strong>on</strong>g> eight locati<strong>on</strong>s identified in figure 2.<br />

Locati<strong>on</strong>s 1, 4, 5, and 6 are near <str<strong>on</strong>g>the</str<strong>on</strong>g> centerline <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft (laterally), while locati<strong>on</strong>s 2, 3, 7,<br />

and 8 are located away from <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft centerline.<br />

Vent Locati<strong>on</strong> NEA Deposit<br />

(units in millimeters)<br />

FIGURE 2. SIDE VIEW OF A320 CENTER WING TANK WITH SAMPLE<br />

PORT LOCATIONS<br />

The OBOAS was used to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen c<strong>on</strong>centrati<strong>on</strong>s at <str<strong>on</strong>g>the</str<strong>on</strong>g> eight specified locati<strong>on</strong>s<br />

within <str<strong>on</strong>g>the</str<strong>on</strong>g> center wing fuel tank. This system c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a regulated sample train with flowthrough,<br />

in-line oxygen sensors and ancillary equipment. Two identical four-channel systems<br />

were developed. Each four-channel system was self-c<strong>on</strong>tained in a flight test 19-inch rack. Each<br />

system has four independent sample trains that can draw an ullage sample at four different<br />

locati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel tank, regulate <str<strong>on</strong>g>the</str<strong>on</strong>g> sample pressure, expose <str<strong>on</strong>g>the</str<strong>on</strong>g> sample to <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen sensor,<br />

and redeposit <str<strong>on</strong>g>the</str<strong>on</strong>g> sample back into <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel tank. Each oxygen sensor has a compani<strong>on</strong> analyzer<br />

mounted <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> same 19-inch rack. Also mounted <strong>on</strong> each rack is a four-channel inlet pressure<br />

c<strong>on</strong>troller and a single-outlet pressure c<strong>on</strong>troller electr<strong>on</strong>ic unit. These electr<strong>on</strong>ic units support<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> five pressure regulators and c<strong>on</strong>trollers in each four-channel system. Additi<strong>on</strong>al informati<strong>on</strong><br />

<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> and operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> OBOAS is c<strong>on</strong>tained in reference 8.<br />

2.1.2.2 The <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS Instrumentati<strong>on</strong>.<br />

The <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS was mounted in <str<strong>on</strong>g>the</str<strong>on</strong>g> cargo bay <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft and was equipped with<br />

instrumentati<strong>on</strong> to m<strong>on</strong>itor and set system parameters. The system had six <str<strong>on</strong>g>the</str<strong>on</strong>g>rmocouples and<br />

four pressure transducers (Airbus part no. GG691) installed to m<strong>on</strong>itor system health and<br />

performance. The specific locati<strong>on</strong> and names <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure and temperature sensors are given<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> engineering drawing in appendix A.<br />

The system was also equipped with gas sample ports to measure both NEA and oxygen-enriched<br />

air (OEA) permeate oxygen c<strong>on</strong>centrati<strong>on</strong>. A laboratory-based altitude oxygen analyzer<br />

developed by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> was used to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>the</str<strong>on</strong>g> NEA and OEA<br />

4


during <str<strong>on</strong>g>the</str<strong>on</strong>g> test. This analyzer employed <str<strong>on</strong>g>the</str<strong>on</strong>g> same oxygen analyzer/sensor combinati<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

OBOAS and also used <str<strong>on</strong>g>the</str<strong>on</strong>g> same sample train pressure c<strong>on</strong>trol methodology. The two-channel<br />

analyzer did not employ <str<strong>on</strong>g>the</str<strong>on</strong>g> same liquid traps and flash arrestors necessary when sampling from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> tank nor was <str<strong>on</strong>g>the</str<strong>on</strong>g> sample train c<strong>on</strong>tained in a ventilated box.<br />

Additi<strong>on</strong>ally, a totalizing mass flow meter was installed at <str<strong>on</strong>g>the</str<strong>on</strong>g> NEA output to measure <str<strong>on</strong>g>the</str<strong>on</strong>g> NEA<br />

flow rate. The flow meter employs two <str<strong>on</strong>g>the</str<strong>on</strong>g>rmopiles within <str<strong>on</strong>g>the</str<strong>on</strong>g> flow stream, allowing <strong>on</strong>e to shed<br />

vortices about <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. The difference in power required to maintain <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmopiles at a<br />

c<strong>on</strong>stant temperature is directly related to flow. The meter measures static pressure and total<br />

temperature and has a digital c<strong>on</strong>troller to acquire <str<strong>on</strong>g>the</str<strong>on</strong>g> meter signals and give a linear voltage<br />

output calibrated against flow (figure 3).<br />

FIGURE 3. ENGINEERING DRAWING OF FLOW METER<br />

2.1.2.3 Additi<strong>on</strong>al Parameters Collected.<br />

Additi<strong>on</strong>al instrumentati<strong>on</strong> was employed to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> validity <str<strong>on</strong>g>of</str<strong>on</strong>g> certain data and to better<br />

understand <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel tank inerting process in general as it relates to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> c<strong>on</strong>cept. <str<strong>on</strong>g>Flight</str<strong>on</strong>g><br />

altitude and total air temperature were measured to examine <str<strong>on</strong>g>the</str<strong>on</strong>g> effect flight c<strong>on</strong>diti<strong>on</strong>s have <strong>on</strong><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inerting process. The cargo bay temperature and <str<strong>on</strong>g>the</str<strong>on</strong>g> backpressure <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> OEA line were also<br />

acquired. Additi<strong>on</strong>al NEA and OEA line temperatures were also taken.<br />

2.1.2.4 Aircraft Data Acquisiti<strong>on</strong> <str<strong>on</strong>g>System</str<strong>on</strong>g>.<br />

All signals were recorded by <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft data acquisiti<strong>on</strong> system, which accepted all analog and<br />

digital signals required for <str<strong>on</strong>g>the</str<strong>on</strong>g> test in a multiplexed method and stored <str<strong>on</strong>g>the</str<strong>on</strong>g> data <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> flight test<br />

data computer. Some data were presented <strong>on</strong> a master display, in a block diagram format, for<br />

real-time m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> many signals, making it easy to examine significant parameters during<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> test.<br />

5


2.2 TEST PROCEDURES.<br />

All tests were performed at <str<strong>on</strong>g>the</str<strong>on</strong>g> Airbus test facility in Toulouse, France. Nine flight tests were<br />

performed after a requisite 40 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> ground tests were accomplished, though <strong>on</strong>ly six flight<br />

tests were used by <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting system capabilities. The primary purpose <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ground tests was to familiarize pers<strong>on</strong>nel with <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting system operati<strong>on</strong> and to adjust <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system flow valves to ensure <str<strong>on</strong>g>the</str<strong>on</strong>g> system operated as designed during <str<strong>on</strong>g>the</str<strong>on</strong>g> two flow modes.<br />

Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft systems’ compatibility was also validated to ensure <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting system<br />

had no adverse effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> existing aircraft systems or instrumentati<strong>on</strong>.<br />

The six relevant tests performed were used to validate <str<strong>on</strong>g>the</str<strong>on</strong>g> system’s capability to inert <str<strong>on</strong>g>the</str<strong>on</strong>g> tank<br />

under c<strong>on</strong>diti<strong>on</strong>s deemed challenging (short flights with high descent rates) for an OBIGGS in<br />

additi<strong>on</strong> to allowing study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> center tank inerting and fuel/air evoluti<strong>on</strong>. <str<strong>on</strong>g>System</str<strong>on</strong>g><br />

performance was also studied from <str<strong>on</strong>g>the</str<strong>on</strong>g> specified test plan. Some tests used two membranes to<br />

inert <str<strong>on</strong>g>the</str<strong>on</strong>g> tank, while most used <strong>on</strong>ly <strong>on</strong>e. This allowed for a gauging <str<strong>on</strong>g>of</str<strong>on</strong>g> system size and<br />

validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> correct system operati<strong>on</strong>. Table 1 shows a list <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant tests with <str<strong>on</strong>g>the</str<strong>on</strong>g> test<br />

descripti<strong>on</strong>s.<br />

No.<br />

TABLE 1. INERTING FLIGHT TESTS ON THE AIRBUS A320<br />

Airbus<br />

Designator Date Descripti<strong>on</strong><br />

1 1969 8/18/03 Started with CWT not inerted (20% O2) and empty. Two ASMs,<br />

OBIGGS started 10 mins before take<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Low-flow climb and<br />

cruise (39,000 ft), high flow in descent (normal descent).<br />

2 1970 8/19/03 Started with CWT inerted (9% O2) and empty. Two ASMs,<br />

OBIGGS started 10 mins before take<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Low-flow climb and<br />

cruise (39,000 ft), high flow in descent (rapid descent).<br />

3 1972 8/20/03 Started with CWT not inerted (20% O2) and empty. One ASM,<br />

OBIGGS started 10 mins before take<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Low-flow climb and<br />

cruise (39,000 ft), high flow in descent (rapid descent at<br />

beginning).<br />

4 1973 8/21/03 Started with CWT not inerted (19% O2) and with 1.5t (23%) fuel<br />

all flight. One ASM, OBIGGS started 10 mins before take<str<strong>on</strong>g>of</str<strong>on</strong>g>f.<br />

Low-flow climb and cruise (39,000 ft), high flow in descent<br />

(normal descent).<br />

5 1974 8/22/03 Started with CWT not inerted (20% O2) and with 3t fuel (46%)<br />

normal usage. One ASM, OBIGGS started 10 mins before<br />

take<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Low-flow climb and cruise (39,000 ft), high flow in<br />

descent (normal descent).<br />

6 1976 8/27/03 Started with CWT inerted (10% O2) and with 3t fuel (46%)<br />

normal usage. One ASM, OBIGGS started 10 mins before<br />

take<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Low-flow for entire flight (rapid descent).<br />

6


3. THE <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS.<br />

The system c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a single unregulated flow path that is plumbed to a manifold <str<strong>on</strong>g>of</str<strong>on</strong>g> three<br />

ASMs. The nitrogen-rich gas that passes through <str<strong>on</strong>g>the</str<strong>on</strong>g> modules is <str<strong>on</strong>g>the</str<strong>on</strong>g>n plumbed to <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel tank to<br />

reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen c<strong>on</strong>centrati<strong>on</strong>, a process known as ullage washing. The flow path has a heat<br />

exchanger that c<strong>on</strong>trols <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM inlet temperature and a filter. The flow passes through <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ASMs and <str<strong>on</strong>g>the</str<strong>on</strong>g> flow c<strong>on</strong>trol valves, which allows <str<strong>on</strong>g>the</str<strong>on</strong>g> system to flow in both high- and low-flow<br />

modes. For <str<strong>on</strong>g>the</str<strong>on</strong>g> Airbus tests, <strong>on</strong>e or two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ASMs were blocked to allow <str<strong>on</strong>g>the</str<strong>on</strong>g> system to better<br />

fit <str<strong>on</strong>g>the</str<strong>on</strong>g> needs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> A320 CWT. Figure 4 shows a block diagram illustrating <str<strong>on</strong>g>the</str<strong>on</strong>g> primary<br />

comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGG system as well as points for instrumentati<strong>on</strong>.<br />

3.1 SYSTEM FLOW.<br />

FIGURE 4. SYSTEM BLOCK DIAGRAM<br />

The system accepts bleed air from <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft through a 2-inch-diameter fitting, which c<strong>on</strong>tained<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> system shut<str<strong>on</strong>g>of</str<strong>on</strong>g>f valve (SOV). When energized, <str<strong>on</strong>g>the</str<strong>on</strong>g> SOV valve opens, allowing flow into <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system through <str<strong>on</strong>g>the</str<strong>on</strong>g> heat exchanger bypass Y into <str<strong>on</strong>g>the</str<strong>on</strong>g> heat exchanger. The heat exchanger<br />

accepts <str<strong>on</strong>g>the</str<strong>on</strong>g> hot bleed air and uses a 4-inch-diameter cooling bypass loop to cool <str<strong>on</strong>g>the</str<strong>on</strong>g> system flow<br />

to a temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 180° ±10°F. The cooling bypass uses a fan to flow c<strong>on</strong>diti<strong>on</strong>ed cabin air<br />

through <str<strong>on</strong>g>the</str<strong>on</strong>g> heat exchanger cooling loop and uses a 4-inch-diameter, motor-operated modulating<br />

valve to throttle <str<strong>on</strong>g>the</str<strong>on</strong>g> airflow. The modulating valve has six positi<strong>on</strong>s and is operated by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system temperature c<strong>on</strong>troller by using <str<strong>on</strong>g>the</str<strong>on</strong>g> manual-modulating valve positi<strong>on</strong> c<strong>on</strong>troller, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten<br />

referred to as <str<strong>on</strong>g>the</str<strong>on</strong>g> Parker box. The heat exchanger bypass Y allows a 1-inch-diameter line to<br />

bypass a porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system flow into <str<strong>on</strong>g>the</str<strong>on</strong>g> heat exchanger to decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

cooling loop, giving better c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> air temperature into <str<strong>on</strong>g>the</str<strong>on</strong>g> ASMs.<br />

7


After passing through <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature c<strong>on</strong>trol porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system, <str<strong>on</strong>g>the</str<strong>on</strong>g> cooled bleed air passes<br />

through a desiccating filter, past a temperature sensor used by <str<strong>on</strong>g>the</str<strong>on</strong>g> operator in <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature<br />

c<strong>on</strong>trol loop, and through a secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pipe with a 187-watt clamp heater before entering <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ASMs via a manifold. This clamp heater is designed to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM<br />

inlet air significantly if <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature should drop well below <str<strong>on</strong>g>the</str<strong>on</strong>g> target c<strong>on</strong>trol temperature<br />

(due to system heat rejecti<strong>on</strong>). However, it provided very little additi<strong>on</strong>al temperature where <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

air was maintained close to <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature obtained in <str<strong>on</strong>g>the</str<strong>on</strong>g> temperature c<strong>on</strong>trol porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system.<br />

After <str<strong>on</strong>g>the</str<strong>on</strong>g> air passes into <str<strong>on</strong>g>the</str<strong>on</strong>g> ASMs through <str<strong>on</strong>g>the</str<strong>on</strong>g> manifold pipe, <str<strong>on</strong>g>the</str<strong>on</strong>g> air is separated in <str<strong>on</strong>g>the</str<strong>on</strong>g> ASMs<br />

with <str<strong>on</strong>g>the</str<strong>on</strong>g> NEA porti<strong>on</strong> passing through and <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen-enriched porti<strong>on</strong> passing out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

permeate vent. The ASM waste flow is eliminated from <str<strong>on</strong>g>the</str<strong>on</strong>g> system through <str<strong>on</strong>g>the</str<strong>on</strong>g> OEA manifold<br />

with a port in <str<strong>on</strong>g>the</str<strong>on</strong>g> side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft. It is important that this manifold be exposed directly to<br />

ambient pressure with little or no obstructi<strong>on</strong>s. This will prevent large pressure differentials<br />

between <str<strong>on</strong>g>the</str<strong>on</strong>g> OEA vent port and <str<strong>on</strong>g>the</str<strong>on</strong>g> ambient air pressure, which can compromise system<br />

performance.<br />

After <str<strong>on</strong>g>the</str<strong>on</strong>g> air is separated, <str<strong>on</strong>g>the</str<strong>on</strong>g> NEA passes through <str<strong>on</strong>g>the</str<strong>on</strong>g> flow c<strong>on</strong>trol porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system, which<br />

allows <str<strong>on</strong>g>the</str<strong>on</strong>g> system to flow at ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r low- or high-flow c<strong>on</strong>diti<strong>on</strong>s. The c<strong>on</strong>diti<strong>on</strong>s are set by two<br />

changeable orifices (needle valves). With <str<strong>on</strong>g>the</str<strong>on</strong>g> high-flow valve closed, <str<strong>on</strong>g>the</str<strong>on</strong>g> system delivers NEA<br />

in low-flow mode, and when opened, it delivers NEA in high-flow mode. The high-flow mode<br />

allows <str<strong>on</strong>g>the</str<strong>on</strong>g> system to produce higher volumes <str<strong>on</strong>g>of</str<strong>on</strong>g> NEA at higher oxygen c<strong>on</strong>centrati<strong>on</strong>s. This<br />

system feature allows greater flow into <str<strong>on</strong>g>the</str<strong>on</strong>g> tank during aircraft descent to minimize air entry into<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> ullage due to increasing static air pressure. This should allow for a resulting ullage oxygen<br />

c<strong>on</strong>centrati<strong>on</strong> less than if <str<strong>on</strong>g>the</str<strong>on</strong>g> low-flow mode was simply employed <str<strong>on</strong>g>the</str<strong>on</strong>g> entire flight cycle. The<br />

flow c<strong>on</strong>trol needle valves are set, given <str<strong>on</strong>g>the</str<strong>on</strong>g> system c<strong>on</strong>figurati<strong>on</strong>, prior to <str<strong>on</strong>g>the</str<strong>on</strong>g> system flight test.<br />

Note that changing <str<strong>on</strong>g>the</str<strong>on</strong>g> system ASM c<strong>on</strong>figurati<strong>on</strong> (1 or 2 ASMs) requires <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS<br />

flow c<strong>on</strong>trol needle valves to be adjusted.<br />

3.2 SYSTEM INTERFACES.<br />

To allow a relatively simple interface with <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft, <str<strong>on</strong>g>the</str<strong>on</strong>g> system was installed in <str<strong>on</strong>g>the</str<strong>on</strong>g> aft cargo<br />

bay <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> test aircraft <strong>on</strong> an LD3 pallet. The primary mechanical interfaces for <str<strong>on</strong>g>the</str<strong>on</strong>g> system, as<br />

installed in <str<strong>on</strong>g>the</str<strong>on</strong>g> A320, was <str<strong>on</strong>g>the</str<strong>on</strong>g> bleed air inlet interface, <str<strong>on</strong>g>the</str<strong>on</strong>g> NEA deposit interface, <str<strong>on</strong>g>the</str<strong>on</strong>g> OEA<br />

discharge, <str<strong>on</strong>g>the</str<strong>on</strong>g> heat exchanger cooling air inlet, and <str<strong>on</strong>g>the</str<strong>on</strong>g> heat exchanger cooling air exit. In this<br />

test program, <str<strong>on</strong>g>the</str<strong>on</strong>g> heat exchanger cooling air interfaces were not integrated with <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft<br />

exterior. The cooling air was simply drafted out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cargo bay and deposited in <str<strong>on</strong>g>the</str<strong>on</strong>g> rear <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

bay near <str<strong>on</strong>g>the</str<strong>on</strong>g> outflow valve by using a piece <str<strong>on</strong>g>of</str<strong>on</strong>g> 4-inch-diameter flexible ducting. A 2-inch<br />

stainless steel pipe was mated to <str<strong>on</strong>g>the</str<strong>on</strong>g> SOV four-bolt flange (appendix B) that c<strong>on</strong>nected to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system bleed air. The system NEA outflow was c<strong>on</strong>nected by a 1-inch flange with seal assembly<br />

and clamp fitting (AS1650 compatible). The OEA was vented to a 1.6-inch-diameter drain mast<br />

that exited <str<strong>on</strong>g>the</str<strong>on</strong>g> aft part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft. It was attached to <str<strong>on</strong>g>the</str<strong>on</strong>g> system aluminum vent pipe with a 2inch<br />

flexible coupling. All system interfaces and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir locati<strong>on</strong>s are specified <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanical<br />

drawing shown in appendix A. Figure 5 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS installati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> cargo bay<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> A320 test aircraft.<br />

8


FIGURE 5. THE <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS INSTALLED IN THE TEST AIRCRAFT CARGO BAY<br />

Each system part has a specified electrical c<strong>on</strong>nector to communicate power and signals to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

individual comp<strong>on</strong>ent. They are wired with aviati<strong>on</strong>-grade wire to a system c<strong>on</strong>nector, allowing<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> system to easily interface to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS c<strong>on</strong>trol box. This box allows <str<strong>on</strong>g>the</str<strong>on</strong>g> system and<br />

its comp<strong>on</strong>ents to be turned <strong>on</strong> or <str<strong>on</strong>g>of</str<strong>on</strong>g>f and to switch <str<strong>on</strong>g>the</str<strong>on</strong>g> system from <strong>on</strong>e flow mode to <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

(see figure 6). It also provides <str<strong>on</strong>g>the</str<strong>on</strong>g> system operator with an ASM inlet temperature and manual<br />

temperature c<strong>on</strong>trol box. A complete wiring diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system and c<strong>on</strong>trol box is shown in<br />

appendix C.<br />

FIGURE 6. FRONT PANEL OF THE <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS CONTROL BOX<br />

3.3 SYSTEM OPERATION.<br />

The system is designed to operate during normal aircraft flight and ground operati<strong>on</strong>s, provided<br />

bleed air is available. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> system temperature c<strong>on</strong>troller did not work to <str<strong>on</strong>g>the</str<strong>on</strong>g> specificati<strong>on</strong>s<br />

set by <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM manufacturer (180° ±10°F), <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM inlet temperature was c<strong>on</strong>trolled manually<br />

by a system operator. The operator used a system <str<strong>on</strong>g>the</str<strong>on</strong>g>rmocouple attached to a reader in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g><br />

OBIGGS c<strong>on</strong>trol box to adjust several potentiometers that c<strong>on</strong>trolled <str<strong>on</strong>g>the</str<strong>on</strong>g> positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heat<br />

exchanger cooling air-modulating valve. The heat exchanger bypass valve can be opened to<br />

decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> effectivity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heat exchanger. This was accomplished by bypassing a small<br />

9


amount <str<strong>on</strong>g>of</str<strong>on</strong>g> flow (10%-20%) around <str<strong>on</strong>g>the</str<strong>on</strong>g> heat exchanger, which makes c<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> air<br />

temperature to <str<strong>on</strong>g>the</str<strong>on</strong>g> ASMs easier with <str<strong>on</strong>g>the</str<strong>on</strong>g> heat exchanger cooling air-modulating valve.<br />

The system did not have a flow mode c<strong>on</strong>troller. This required <str<strong>on</strong>g>the</str<strong>on</strong>g> operator to change from low-<br />

to high-flow mode manually. The low-flow mode was used for ground taxi, take<str<strong>on</strong>g>of</str<strong>on</strong>g>f, climb, and<br />

cruise phases <str<strong>on</strong>g>of</str<strong>on</strong>g> flight, while <str<strong>on</strong>g>the</str<strong>on</strong>g> high-flow mode was used for <str<strong>on</strong>g>the</str<strong>on</strong>g> descent phase <str<strong>on</strong>g>of</str<strong>on</strong>g> flight. For<br />

this test, if descent was halted for an extended period <str<strong>on</strong>g>of</str<strong>on</strong>g> time, <str<strong>on</strong>g>the</str<strong>on</strong>g> system was switched back to<br />

low-flow mode. One test used low-flow mode during <str<strong>on</strong>g>the</str<strong>on</strong>g> complete flight cycle. To set <str<strong>on</strong>g>the</str<strong>on</strong>g> flow<br />

c<strong>on</strong>trol needle valves to <str<strong>on</strong>g>the</str<strong>on</strong>g> proper setting, prior to flight test, <str<strong>on</strong>g>the</str<strong>on</strong>g> bleed air system was charged<br />

by <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft auxiliary power unit (APU). This bleed air pressure was used to run <str<strong>on</strong>g>the</str<strong>on</strong>g> system at<br />

sea level with <str<strong>on</strong>g>the</str<strong>on</strong>g> low-flow needle valve set to generate 5% oxygen NEA, while <str<strong>on</strong>g>the</str<strong>on</strong>g> high-flow<br />

needle valve was set to generate 11% oxygen NEA.<br />

4. ANALYSIS.<br />

Calculati<strong>on</strong>s performed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> test data determined <str<strong>on</strong>g>the</str<strong>on</strong>g> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bleed air c<strong>on</strong>sumed by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system. Additi<strong>on</strong>ally, a simple inerting model was developed to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen<br />

c<strong>on</strong>centrati<strong>on</strong> in a tank volume, given a flight pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and performance schedule <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system.<br />

4.1 CALCULATION OF BLEED AIR CONSUMPTION.<br />

To determine <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> bleed air <str<strong>on</strong>g>the</str<strong>on</strong>g> system was c<strong>on</strong>suming, <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> an ASM were<br />

examined. Intuitively, <str<strong>on</strong>g>the</str<strong>on</strong>g> bleed airflow into <str<strong>on</strong>g>the</str<strong>on</strong>g> system is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NEA flow and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> permeate flow.<br />

Q&<br />

= Q&<br />

+<br />

Bleed<br />

Also, a balance <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in and out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM yields <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>.<br />

NEA<br />

Q&<br />

Perm<br />

& = &<br />

] ⋅ Q&<br />

( 0.<br />

21)<br />

QBleed<br />

[ O2<br />

] NEA ⋅ QNEA<br />

+ [ O2<br />

With: O ] = NEA Oxygen C<strong>on</strong>centrati<strong>on</strong><br />

[ 2<br />

[ O 2 ]<br />

NEA<br />

Perm<br />

Perm<br />

= OEA Oxygen C<strong>on</strong>centrati<strong>on</strong><br />

Combining equati<strong>on</strong>s 1 and 2 gives <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong> for bleed airflow.<br />

Perm<br />

([ O2<br />

] NEA [ O2<br />

] Perm )<br />

Q&<br />

−<br />

Bleed = Q&<br />

NEA ⋅<br />

(3)<br />

( 0.<br />

21−<br />

[ O ] )<br />

2<br />

Perm<br />

A more complete derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> is given in appendix D.<br />

10<br />

(1)<br />

(2)


4.2 TANK INERTING MODEL.<br />

To allow for better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting process in a wider range <str<strong>on</strong>g>of</str<strong>on</strong>g> flight scenarios and<br />

system methodologies, an analytical model was developed to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> average tank ullage<br />

oxygen c<strong>on</strong>centrati<strong>on</strong>, given a specific tank volume and system performance schedule. This<br />

schedule gives a missi<strong>on</strong> time and altitude with <str<strong>on</strong>g>the</str<strong>on</strong>g> system volume flow and purity. The tank<br />

ullage temperature is also included, and <str<strong>on</strong>g>the</str<strong>on</strong>g> model makes <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> pressure inside<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> tank is equal to ambient (altitude) pressure outside <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft.<br />

The model calculates <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank at <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> missi<strong>on</strong>, given a starting<br />

tank oxygen c<strong>on</strong>centrati<strong>on</strong>. The model <str<strong>on</strong>g>the</str<strong>on</strong>g>n c<strong>on</strong>verts <str<strong>on</strong>g>the</str<strong>on</strong>g> volume flow and purity at each time<br />

step to a mass <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen deposited in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank, given <str<strong>on</strong>g>the</str<strong>on</strong>g> altitude and temperature. The model<br />

also tracks <str<strong>on</strong>g>the</str<strong>on</strong>g> change in mass <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank due to changing pressure and temperature.<br />

The model tracks <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in and out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tank, given <str<strong>on</strong>g>the</str<strong>on</strong>g> changing system<br />

performance and flight c<strong>on</strong>diti<strong>on</strong>s, including <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate net oxygen entering <str<strong>on</strong>g>the</str<strong>on</strong>g> tank as a<br />

result <str<strong>on</strong>g>of</str<strong>on</strong>g> descent. The mass <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen calculated in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank at each time step is divided by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

tank gas mass to obtain oxygen c<strong>on</strong>centrati<strong>on</strong> at that time. The following equati<strong>on</strong> governs <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

model process.<br />

m ( t) = m ( t −1)<br />

+ m&<br />

∗IGOF<br />

− m&<br />

∗UGOF(<br />

t −1)<br />

− ( ∆ρ<br />

* V ) ∗UGOF(<br />

t −1)<br />

+ ( ∆ρ<br />

* V ) * 0.<br />

21 (4)<br />

O O<br />

Tank<br />

Tank<br />

2<br />

2<br />

In this equati<strong>on</strong>, UGOF(t-1) is <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in <str<strong>on</strong>g>the</str<strong>on</strong>g> ullage gas. It is calculated by<br />

dividing <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank at t-1 by <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> gas in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank ullage or:<br />

UGOF O<br />

Tank<br />

( t −1) = m ( t −1)<br />

/ m ( t −1)<br />

Where: O ( ) = Mass <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in tank at time t<br />

2<br />

t m<br />

m & = Mass flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> inerting gas (in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> t)<br />

IGOF = Fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in inerting gas<br />

∆ρ = Change in ullage density due to altitude change<br />

VTank = Volume <str<strong>on</strong>g>of</str<strong>on</strong>g> tank ullage<br />

mTank = Mass <str<strong>on</strong>g>of</str<strong>on</strong>g> gas in tank<br />

mair = Mass <str<strong>on</strong>g>of</str<strong>on</strong>g> air entering tank<br />

2<br />

Equati<strong>on</strong> 4 can be simplified by term as <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank at time t is equal to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

mass <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank at time (t-1), plus <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen being deposited by <str<strong>on</strong>g>the</str<strong>on</strong>g> inert<br />

gas, minus <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen being vented due to depositing inert gas, minus <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oxygen being vented due to changing altitude (ascent), plus <str<strong>on</strong>g>the</str<strong>on</strong>g> mass <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen being deposited<br />

due to changing altitude (descent).<br />

To compare <str<strong>on</strong>g>the</str<strong>on</strong>g> model with <str<strong>on</strong>g>the</str<strong>on</strong>g> data acquired, <str<strong>on</strong>g>the</str<strong>on</strong>g> average oxygen c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel tank<br />

was calculated by taking <str<strong>on</strong>g>the</str<strong>on</strong>g> normal average <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> eight sample ports in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank. When <strong>on</strong>e or<br />

more sample ports were not available, <str<strong>on</strong>g>the</str<strong>on</strong>g> average was simply calculated without that sample<br />

locati<strong>on</strong>.<br />

11<br />

(5)


5. DISCUSSION OF RESULTS.<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flight tests are presented for two areas <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis: system performance and<br />

fuel tank inerting.<br />

5.1 SYSTEM PEFORMANCE.<br />

The system performance data presented here focuses <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> volume and purity (oxygen<br />

c<strong>on</strong>centrati<strong>on</strong>) <str<strong>on</strong>g>of</str<strong>on</strong>g> inert gas generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> system, given <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft flight pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and bleed air<br />

pressure (ASM feed pressure). ASM pressure was correlated with NEA flow for tests using both<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e- and two-membrane c<strong>on</strong>figurati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting system. Membrane performance<br />

characteristics were also examined, illustrating bleed air used that was also correlated with<br />

pressure altitude. Additi<strong>on</strong>ally, membrane performance degradati<strong>on</strong> was calculated for <strong>on</strong>e<br />

ASM before and after <str<strong>on</strong>g>the</str<strong>on</strong>g> flight tests.<br />

5.1.1 Air Separati<strong>on</strong> Module Performance Characteristics.<br />

The primary factors influencing <str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> an ASM is feed pressure, permeate pressure<br />

(pressure altitude), and membrane backpressure (orifice setting). Given <str<strong>on</strong>g>the</str<strong>on</strong>g> fixed orifice settings<br />

used for <str<strong>on</strong>g>the</str<strong>on</strong>g> flight test for each system c<strong>on</strong>figurati<strong>on</strong>, ASM inlet pressure and pressure altitude<br />

are <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters most affecting system performance. Figure 7 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> system flow and<br />

purity with ASM pressure and flight altitude for a flight test using a single membrane to inert <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

aircraft CWT over a given flight pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. This illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> ASM inlet pressure <strong>on</strong> flow<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> given flight cycle.<br />

[O2] (% vol)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 20 40 60 80 100 120<br />

Time (min)<br />

Single Membrane Test<br />

NEA Line O2 (%)<br />

ASM Inlet Pressure (Psig)<br />

NEA Flow (SCFM)<br />

FIGURE 7. SYSTEM PERFORMANCE DATA FOR A SINGLE-MEMBRANE TEST<br />

12<br />

Alt (kft)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Alt (kft) / Pressure (psi) / Flow (scfm)


In general, increasing ASM inlet pressure will increase NEA flow and purity (decreasing oxygen<br />

c<strong>on</strong>centrati<strong>on</strong>) simultaneously, given a fixed outflow orifice setting. Decreasing atmospheric<br />

pressure during ascent will increase <str<strong>on</strong>g>the</str<strong>on</strong>g> separating efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> membrane module, having<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> decreasing <str<strong>on</strong>g>the</str<strong>on</strong>g> flow and increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> purity. During <str<strong>on</strong>g>the</str<strong>on</strong>g> descent, a high-flow mode<br />

is selected, giving an instantaneous increase in flow and decrease in purity. As <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric<br />

pressure rises, flow increases and purity decreases.<br />

5.1.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Varying Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Air Separati<strong>on</strong> Modules.<br />

Similar tests were performed with <str<strong>on</strong>g>the</str<strong>on</strong>g> system using both <strong>on</strong>e- and two-ASM c<strong>on</strong>figurati<strong>on</strong>s.<br />

These results were compared for c<strong>on</strong>sistency. The high- and low-flow orifices were fixed<br />

differently for <str<strong>on</strong>g>the</str<strong>on</strong>g> two-system c<strong>on</strong>figurati<strong>on</strong> to give essentially <str<strong>on</strong>g>the</str<strong>on</strong>g> same system purity, given <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

flight pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. This should allow <str<strong>on</strong>g>the</str<strong>on</strong>g> two-ASM system to give twice <str<strong>on</strong>g>the</str<strong>on</strong>g> flow as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e-ASM<br />

c<strong>on</strong>figurati<strong>on</strong>. Figure 8 compares <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM flow and purity for <str<strong>on</strong>g>the</str<strong>on</strong>g> two different system<br />

c<strong>on</strong>figurati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> ascent to cruise porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tests. The ASM inlet pressure is also<br />

shown.<br />

Flow (scfm) / [O2] (% vol)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1 Membrane<br />

2 Membranes<br />

NEA Flow (SCFM) NEA Flow (SCFM)<br />

NEA Line O2 (%) NEA Line O2 (%)<br />

ASM Inlet Pressure (Psig) ASM Inlet Pressure (Psig)<br />

0 5 10 15 20 25 30 35 40 45 50<br />

Time (min)<br />

FIGURE 8. SYSTEM FLOW AND PURITY WITH ASM PRESSURE FOR BOTH<br />

MEMBRANE CONFIGURATIONS DURING ASCENT AND CRUISE<br />

Figure 9 gives <str<strong>on</strong>g>the</str<strong>on</strong>g> same comparis<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> descent porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tests, where <str<strong>on</strong>g>the</str<strong>on</strong>g> system is<br />

switched to high-flow mode. This segment required time to be adjusted for <str<strong>on</strong>g>the</str<strong>on</strong>g> two-membrane<br />

test to allow for a side-by-side comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> data. Both graphs illustrate that <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM inlet<br />

pressure and resulting purity were very similar for <str<strong>on</strong>g>the</str<strong>on</strong>g> relevant segments <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flight, while <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NEA flow was approximately double for <str<strong>on</strong>g>the</str<strong>on</strong>g> two-membrane c<strong>on</strong>figurati<strong>on</strong>, as expected. It is<br />

unclear why <str<strong>on</strong>g>the</str<strong>on</strong>g> two-membrane system flow at times is c<strong>on</strong>siderably less than double<br />

(approximately 50%) <str<strong>on</strong>g>the</str<strong>on</strong>g> single-membrane c<strong>on</strong>figurati<strong>on</strong>. This could be due to <str<strong>on</strong>g>the</str<strong>on</strong>g> inefficiencies<br />

13<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Pressure (psig)


<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> permeate venting, because high OEA venting backpressure was measured <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> twomembrane<br />

test. The result from this backpressure would be to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> ASMs ability to flow<br />

permeate, decreasing <str<strong>on</strong>g>the</str<strong>on</strong>g> overall efficiency and total flow out <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM. As <str<strong>on</strong>g>the</str<strong>on</strong>g> system is<br />

switched to high-flow mode in descent for both c<strong>on</strong>figurati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> NEA flow tends to be more<br />

representative <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> expected relati<strong>on</strong>ship. This is c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> problem in<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> decreasing <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM inlet pressure would be less permeate flow and, thus, less<br />

permeate backpressure. The problem is observed at cruise and higher altitudes, which is also <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

point at which permeate backpressure was <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest. This c<strong>on</strong>clusi<strong>on</strong> is also supported by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

measured permeate backpressure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two-membrane c<strong>on</strong>figurati<strong>on</strong>, which was about three<br />

times <str<strong>on</strong>g>the</str<strong>on</strong>g> backpressure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> single-membrane c<strong>on</strong>figurati<strong>on</strong>.<br />

Oxygen C<strong>on</strong>centrati<strong>on</strong> (%vol)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1 Membrane<br />

2 Membranes<br />

NEA Line O2 (%) NEA Line O2 (%)<br />

ASM Inlet Pressure (Psig) ASM Inlet Pressure (Psig)<br />

NEA Flow (SCFM) NEA Flow (SCFM)<br />

70 72 74 76 78 80 82 84 86 88 90<br />

Time (min)<br />

FIGURE 9. SYSTEM FLOW AND PURITY WITH ASM PRESSURE FOR BOTH<br />

MEMBRANE CONFIGURATIONS DURING DESCENT<br />

The relati<strong>on</strong>ship between ASM pressure and NEA flow shown in figures 8 and 9 are correlated<br />

in figure 10. Again, this correlati<strong>on</strong> is <strong>on</strong>ly valid for a similar flight pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile with bleed air<br />

schedule, as NEA flow is a str<strong>on</strong>g functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pressure altitude. This is why <str<strong>on</strong>g>the</str<strong>on</strong>g> cruise curves<br />

indicate a much lesser slope than <str<strong>on</strong>g>the</str<strong>on</strong>g> ascent and descent curves. The changing altitude causes<br />

vast changes in membrane permeability and a wider range in NEA flows, while <str<strong>on</strong>g>the</str<strong>on</strong>g> cruise<br />

porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flight exhibits no altitude change effects and, thus, gives a true correlati<strong>on</strong> between<br />

pressure and flow with <str<strong>on</strong>g>the</str<strong>on</strong>g> given low-flow fixed orifice at 39,000 feet. The ascent and descent<br />

porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> graph illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> large increase in normalized NEA flow from <str<strong>on</strong>g>the</str<strong>on</strong>g> system,<br />

given a relatively small change in ASM pressure, exhibiting a benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> using HFM technology<br />

to generate inert gas at altitude. Only selected data for each flight phase were plotted because<br />

widely varying throttle settings produce rapid changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> system causing uncorrelated data<br />

for brief periods due to delays in some instrumentati<strong>on</strong>.<br />

14<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Flow (scfm) / Pressure (Psig)


NEA Flow (SCFM)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ASM Pressure and Flow<br />

Accent - Two Membranes<br />

Cruise - Two Membranes<br />

Descent - Two Membranes<br />

Ascent - One Membrane<br />

Cruise - One Membrane<br />

Descent - One Membrane<br />

0 5 10 15 20 25 30 35 40 45 50<br />

ASM Pressure (psig)<br />

FIGURE 10. CORRELATION OF ASM PRESSURE WITH NEA FLOW FOR BOTH<br />

SYSTEM MEMBRANE CONFIGURATIONS<br />

5.1.3 Bleed Air C<strong>on</strong>sumpti<strong>on</strong>.<br />

To help determine <str<strong>on</strong>g>the</str<strong>on</strong>g> feasibility and practicality <str<strong>on</strong>g>of</str<strong>on</strong>g> an ASM inerting system for a commercial<br />

transport airplane, <str<strong>on</strong>g>the</str<strong>on</strong>g> bleed air c<strong>on</strong>sumed by <str<strong>on</strong>g>the</str<strong>on</strong>g> system during <str<strong>on</strong>g>the</str<strong>on</strong>g> flight pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile was calculated<br />

for a test with <str<strong>on</strong>g>the</str<strong>on</strong>g> system c<strong>on</strong>figured with a single membrane. Figure 11 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> measured<br />

NEA flow, NEA oxygen c<strong>on</strong>centrati<strong>on</strong>, and OEA oxygen c<strong>on</strong>centrati<strong>on</strong> used to calculate system<br />

bleed airflow. Figure 11 illustrates that as NEA oxygen c<strong>on</strong>centrati<strong>on</strong> decreases, OEA oxygen<br />

c<strong>on</strong>centrati<strong>on</strong> decreases. This n<strong>on</strong>intuitive relati<strong>on</strong>ship is <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

ASM that generates more pure NEA by essentially venting greater quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> OEA, more <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

which is nitrogen as compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM operating at lower NEA c<strong>on</strong>centrati<strong>on</strong>s.<br />

Flow Rate (SCFM)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Single Membrane Test Data<br />

NEA Flow (SCFM)<br />

NEA Line O2 (%)<br />

OEA Line O2 (%)<br />

0 20 40 60<br />

Time (min)<br />

80 100<br />

0<br />

120<br />

FIGURE 11. MEASURED MEMBRANE CHARACTERISTICS FOR THE SINGLE-<br />

MEMBRANE CONFIGURATION SYSTEM<br />

15<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Oxygen C<strong>on</strong>centrati<strong>on</strong> (% vol)


Figure 12 gives <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated bleed airflow and permeate flow <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system for <str<strong>on</strong>g>the</str<strong>on</strong>g> same singlemembrane<br />

inerting flight test. The graph illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> increased recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM<br />

with altitude and <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> venting more nitrogen, as stated in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous paragraph. In <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> test, at sea level, <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM generated 5 standard cubic feet per minute (SCFM)<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NEA at 5% oxygen c<strong>on</strong>centrati<strong>on</strong> and was c<strong>on</strong>suming 14 SCFM <str<strong>on</strong>g>of</str<strong>on</strong>g> bleed air. At cruise, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system is generating 4 SCFM <str<strong>on</strong>g>of</str<strong>on</strong>g> less than 1% NEA but was c<strong>on</strong>suming almost 50 SCFM <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bleed air. The increased performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM at altitude allowed excellent producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

NEA, especially when c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> NEA <strong>on</strong> inerting <str<strong>on</strong>g>the</str<strong>on</strong>g> tank is five-fold greater at<br />

39,000 ft than at sea level. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> system discarded more than three times <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bleed air.<br />

Flow Rate (SCFM)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Single Membrane Data<br />

NEA Flow (SCFM)<br />

Bleedair Flow (SCFM)<br />

Permeate Flow (SCFM)<br />

0 20 40 60 80 100<br />

Time (min)<br />

FIGURE 12. CALCULATED BLEED AIRFLOW INTO THE SINGLE-MEMBRANE<br />

CONFIGURATION SYSTEM<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> altitude <strong>on</strong> bleed air was examined by correlating bleed airflow with atmospheric<br />

pressure during <str<strong>on</strong>g>the</str<strong>on</strong>g> accent porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> test. Figure 13 illustrates that <str<strong>on</strong>g>the</str<strong>on</strong>g> bleed airflow more<br />

than doubles as altitude increases, although <str<strong>on</strong>g>the</str<strong>on</strong>g> grouping <str<strong>on</strong>g>of</str<strong>on</strong>g> data points in a lateral manner<br />

illustrates dependence <strong>on</strong> ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r parameter. This is most likely due to changing throttle settings<br />

(ASM pressure) during <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft climb to cruise.<br />

16<br />

120


Bleedair Flow (SCFM)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Ascent<br />

0<br />

0 100 200 300 400 500 600 700 800 900 1000<br />

Atmo Pressure (mBar)<br />

FIGURE 13. CORRELATION OF BLEED AIRFLOW AND ATMOSPHERIC PRESSURE<br />

FOR A SINGLE-MEMBRANE TEST<br />

5.1.4 Membrane Performance Degradati<strong>on</strong>.<br />

An ASM can be sensitive to c<strong>on</strong>taminents in <str<strong>on</strong>g>the</str<strong>on</strong>g> air source. These c<strong>on</strong>taminents can decrease<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness or even damage <str<strong>on</strong>g>the</str<strong>on</strong>g> fibers in <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM, degrading <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM performance over<br />

time exposure to <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>taminents. As previously stated, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS has a filter to<br />

remove particulate, but how effective this type <str<strong>on</strong>g>of</str<strong>on</strong>g> filter is at protecting <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM is unknown.<br />

Most hollow fiber is intollerant <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrocarb<strong>on</strong> vapor in general and <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrocarb<strong>on</strong><br />

vapor in <str<strong>on</strong>g>the</str<strong>on</strong>g> bleed air and <str<strong>on</strong>g>the</str<strong>on</strong>g> filter’s ability to remove it is in questi<strong>on</strong>.<br />

To determine <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft bleed air systems <strong>on</strong> an ASM, a single-ASM used during<br />

ground and flight tests was subjected to a single test point before and after <str<strong>on</strong>g>the</str<strong>on</strong>g> tests. The NEA<br />

and ASM inlet (bleed) flow were measured for a given NEA purity at a specific inlet pressure<br />

and temperature at sea level. Table 2 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> difference in ASM performance before and after<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> test. The 14 percent drop in NEA produced is more than <str<strong>on</strong>g>the</str<strong>on</strong>g> expected decrease in<br />

productivity due to normal break-in <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ASM over <str<strong>on</strong>g>the</str<strong>on</strong>g> first hours <str<strong>on</strong>g>of</str<strong>on</strong>g> service.<br />

TABLE 2. AIR SEPARATION MODULE PERFORMANCE DATA BEFORE AND AFTER<br />

100 HOURS OF AIRCRAFT OPERATION<br />

Membrane<br />

State<br />

ASM Inlet<br />

Temperature<br />

ASM Inlet<br />

Pressure Altitude<br />

NEA<br />

Purity NEA Flow<br />

ASM Inlet<br />

Flow<br />

Before 172°F 25 psig Sea Level 5% 0.36 lbs/min 1.48 lbs/min<br />

After 169°F 25 psig Sea Level 5% 0.31 lbs/min 1.25 lbs/min<br />

Difference 0.05 lbs/min 0.23 lbs/min<br />

17


5.2 FUEL TANK INERTING.<br />

The fuel tank inerting results illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> effect that system performance has <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel tank in<br />

terms <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen c<strong>on</strong>centrati<strong>on</strong> achieved during <str<strong>on</strong>g>the</str<strong>on</strong>g> flight test pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. This data will be compared<br />

to a model that calculates <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel tank oxygen c<strong>on</strong>centrati<strong>on</strong>, given <str<strong>on</strong>g>the</str<strong>on</strong>g> system performance and<br />

flight cycle. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> high-flow mode and fuel tank fuel load <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system to<br />

inert <str<strong>on</strong>g>the</str<strong>on</strong>g> tank was also examined.<br />

5.2.1 Typical Missi<strong>on</strong> Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile.<br />

To determine <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen c<strong>on</strong>centrati<strong>on</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> tank during a typical flight, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> eight gas sample ports in <str<strong>on</strong>g>the</str<strong>on</strong>g> CWT were plotted with <str<strong>on</strong>g>the</str<strong>on</strong>g> flight pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for <str<strong>on</strong>g>the</str<strong>on</strong>g> total<br />

test (figure 14). This test (see table 1—Airbus 1972) employed <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting system with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

dual-mode operati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> single ASM c<strong>on</strong>figurati<strong>on</strong>. The results show a small variati<strong>on</strong> in<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen c<strong>on</strong>centrati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank for most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> missi<strong>on</strong> with some noticeable, but small,<br />

variati<strong>on</strong> am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> measurements during <str<strong>on</strong>g>the</str<strong>on</strong>g> ascent and descent phase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flight. As<br />

previously stated, <str<strong>on</strong>g>the</str<strong>on</strong>g> Airbus A320 tank design is a simple rectangular box, with no web<br />

structures to compartmentalize <str<strong>on</strong>g>the</str<strong>on</strong>g> tank, as is <str<strong>on</strong>g>the</str<strong>on</strong>g> case with most large commercial transport<br />

aircraft manufactured in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States. The <strong>on</strong>ly appreciable difference any oxygen<br />

c<strong>on</strong>centrati<strong>on</strong> measurement has from <str<strong>on</strong>g>the</str<strong>on</strong>g> collective average is sample port 1 during <str<strong>on</strong>g>the</str<strong>on</strong>g> descent.<br />

This sample port is very close to <str<strong>on</strong>g>the</str<strong>on</strong>g> vent port, which is depositing air into <str<strong>on</strong>g>the</str<strong>on</strong>g> tank during<br />

descent. This sample port gives an excellent visual indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> what altitude <str<strong>on</strong>g>the</str<strong>on</strong>g> tank stops<br />

“breathing” air in as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting system flow into <str<strong>on</strong>g>the</str<strong>on</strong>g> tank. Virtually every flight test<br />

exhibits this same characteristic appearance, illustrating no observed c<strong>on</strong>diti<strong>on</strong>s that would give<br />

localized heterogeneous oxygen c<strong>on</strong>centrati<strong>on</strong>s.<br />

[O 2] (% vol)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Single Membrane Test<br />

O2 Sample 1 (%)<br />

O2 Sample 2 (%)<br />

O2 Sample 3 (%)<br />

O2 Sample 4 (%)<br />

O2 Sample 5 (%)<br />

O2 Sample 6 (%)<br />

O2 Sample 7 (%)<br />

O2 Sample 8 (%)<br />

Alt (kft)<br />

0 20 40 60 80 100 120<br />

Time (min)<br />

FIGURE 14. OXYGEN CONCENTRATION VARIATION IN THE CWT DURING A<br />

TYPICAL FLIGHT TEST<br />

18<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Altitude (kft)


The average oxygen c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ullage was plotted for <str<strong>on</strong>g>the</str<strong>on</strong>g> baseline c<strong>on</strong>figurati<strong>on</strong> test<br />

(figure 14) as well as for <str<strong>on</strong>g>the</str<strong>on</strong>g> two-membrane c<strong>on</strong>figurati<strong>on</strong> test, which is compared in figure 15.<br />

This illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> increased system size <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system to maintain an<br />

inert ullage in <str<strong>on</strong>g>the</str<strong>on</strong>g> CWT <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flight test aircraft compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> single-membrane test for a<br />

comparable flight pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. This flight pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile had <str<strong>on</strong>g>the</str<strong>on</strong>g> aircraft descend from 39,000 feet to 3,000<br />

feet in 9 minutes (a c<strong>on</strong>stant 4,000 ft/min descent), which represents <str<strong>on</strong>g>the</str<strong>on</strong>g> high limit <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

commercial airplane descents not executed for emergency purposes. Secti<strong>on</strong> 5.1.2 stated that<br />

system flow rate performance was more than 50% greater in low-flow mode and double in highflow<br />

mode. This drastic increase in system performance has <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> decreasing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

resulting average ullage oxygen c<strong>on</strong>centrati<strong>on</strong> approximately 1%, while decreasing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

maximum average oxygen c<strong>on</strong>centrati<strong>on</strong> achieved during <str<strong>on</strong>g>the</str<strong>on</strong>g> descent by 2%, from 12 to 10<br />

percent oxygen by volume. This illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> diminishing returns <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> system size<br />

drastically for this inerting methodology.<br />

Oxygen C<strong>on</strong>centrati<strong>on</strong> (% vol)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

Average Tank [O 2]<br />

One Membrane<br />

Two Membrane<br />

0<br />

0 20 40 60 80 100<br />

Time (min)<br />

FIGURE 15. COMPARISON OF THE SINGLE-MEMBRANE INERTING FLIGHT<br />

TEST TANK ULLAGE OXYGEN CONCENTRATION WITH THE<br />

TWO-MEMBRANE CONFIGURATION<br />

Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> system scaling (size and amount <str<strong>on</strong>g>of</str<strong>on</strong>g> ASMs) should be reflected in <str<strong>on</strong>g>the</str<strong>on</strong>g> tuning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

system. In <str<strong>on</strong>g>the</str<strong>on</strong>g> above-stated case with two ASMs, <str<strong>on</strong>g>the</str<strong>on</strong>g> high-flow mode was so overwhelming that<br />

very little air entered <str<strong>on</strong>g>the</str<strong>on</strong>g> tank, and <str<strong>on</strong>g>the</str<strong>on</strong>g> increase in oxygen c<strong>on</strong>centrati<strong>on</strong> is essentially due to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

increase oxygen c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NEA “deinerting” <str<strong>on</strong>g>the</str<strong>on</strong>g> tank during descent. For both<br />

membrane c<strong>on</strong>figurati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> system flow c<strong>on</strong>trol valves were set to make as much 12% NEA<br />

at <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> descent as possible. Given <str<strong>on</strong>g>the</str<strong>on</strong>g> increased capability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two-membrane<br />

c<strong>on</strong>figurati<strong>on</strong>, it is likely that setting <str<strong>on</strong>g>the</str<strong>on</strong>g> flow c<strong>on</strong>trol valves to make a lower oxygen<br />

c<strong>on</strong>centrati<strong>on</strong> NEA at <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> descent would have a positive effect <strong>on</strong> resulting ullage<br />

oxygen c<strong>on</strong>centrati<strong>on</strong>. Although more air would enter <str<strong>on</strong>g>the</str<strong>on</strong>g> tank during <str<strong>on</strong>g>the</str<strong>on</strong>g> initial part <str<strong>on</strong>g>of</str<strong>on</strong>g> descent,<br />

19<br />

120


<str<strong>on</strong>g>the</str<strong>on</strong>g> ullage would benefit from a net average lower oxygen c<strong>on</strong>centrati<strong>on</strong> being deposited during<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> descent. This is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> how a different tuning (flow c<strong>on</strong>trol valve settings) may help<br />

increase <str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> this particular system methodology (two flow modes) with <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

greater system performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two-membrane c<strong>on</strong>figurati<strong>on</strong>. More research is required to<br />

evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> flexibility <str<strong>on</strong>g>of</str<strong>on</strong>g> this c<strong>on</strong>figurati<strong>on</strong> to be applied to a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> inerting situati<strong>on</strong>s.<br />

Figure 16 illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> calculated and measured average ullage oxygen c<strong>on</strong>centrati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

single-membrane inerting flight test with a zero fuel load using <str<strong>on</strong>g>the</str<strong>on</strong>g> duel-mode inerting<br />

methodology and <str<strong>on</strong>g>the</str<strong>on</strong>g> single-membrane system c<strong>on</strong>figurati<strong>on</strong>. Even with <str<strong>on</strong>g>the</str<strong>on</strong>g> relative simplicity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical model, it has no trouble illustrating both <str<strong>on</strong>g>the</str<strong>on</strong>g> trend <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ullage oxygen<br />

c<strong>on</strong>centrati<strong>on</strong>, given <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic c<strong>on</strong>diti<strong>on</strong>s, as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> peak and resulting values. This<br />

model method can be used to analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> a different system performance or <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r system’s operati<strong>on</strong>al methodology in inerting a given ullage space.<br />

Oxygen C<strong>on</strong>centrati<strong>on</strong> (% vol)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0<br />

0 20 40 60 80 100 120<br />

Time (min)<br />

Single Membrane Test<br />

<str<strong>on</strong>g>Flight</str<strong>on</strong>g> Test Data<br />

Model Data<br />

FIGURE 16. COMPARISON OF THE SINGLE-MEMBRANE INERTING FLIGHT TEST<br />

AVERAGE TANK ULLAGE OXYGEN CONCENTRATION WITH THE MODEL DATA<br />

5.2.2 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> High-Flow Mode.<br />

To illustrate <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dual-flow c<strong>on</strong>figurati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting capability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g><br />

OBIGGS in general, a flight test was performed that did not employ <str<strong>on</strong>g>the</str<strong>on</strong>g> high-flow mode <strong>on</strong><br />

descent. Figure 17 illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> CWT average oxygen c<strong>on</strong>centrati<strong>on</strong> during descent as a result<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> not employing <str<strong>on</strong>g>the</str<strong>on</strong>g> high-flow mode compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> single ASM test data given in figure 14.<br />

The resulting ullage oxygen c<strong>on</strong>centrati<strong>on</strong> is almost 2 percent higher than when employing <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

high-flow mode <strong>on</strong> descent. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum average oxygen c<strong>on</strong>centrati<strong>on</strong> obtained<br />

in <str<strong>on</strong>g>the</str<strong>on</strong>g> ullage during descent was 3 percent higher than when employing <str<strong>on</strong>g>the</str<strong>on</strong>g> high-flow mode <strong>on</strong><br />

descent, reaching a peak <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 percent oxygen by volume. This illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> improved<br />

capability <str<strong>on</strong>g>of</str<strong>on</strong>g> a system using a dual-mode c<strong>on</strong>figurati<strong>on</strong>, given <str<strong>on</strong>g>the</str<strong>on</strong>g> same flight pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile and<br />

baseline (low flow) system performance.<br />

20<br />

Altitude<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Altitude (kft)


Oxygen C<strong>on</strong>centrati<strong>on</strong> (% vol)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Average Tank [O 2]<br />

Single Membrane<br />

High Flow Descent<br />

Low Flow Descent<br />

60 65 70 75 80 85 90 95 100 105<br />

Time (min)<br />

FIGURE 17. COMPARISON OF THE SINGLE-MEMBRANE INERTING FLIGHT<br />

TEST AVERAGE TANK OXYGEN CONCENTRATION FOR BOTH HIGH-FLOW<br />

DESCENT AND LOW-FLOW DESCENT<br />

5.2.3 Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Fuel <strong>on</strong> <str<strong>on</strong>g>Inert</str<strong>on</strong>g>ing.<br />

To examine <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> CWT fuel <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting process for an operati<strong>on</strong>al aircraft, two flight<br />

tests were performed with fuel in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank. Both tests used <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS in <str<strong>on</strong>g>the</str<strong>on</strong>g> duel-flow<br />

mode with <str<strong>on</strong>g>the</str<strong>on</strong>g> single-membrane c<strong>on</strong>figurati<strong>on</strong>, allowing comparis<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> baseline singlemembrane,<br />

zero fuel test (figure 14). To examine <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> air potentially evolving from a<br />

fuel load, a test was performed that replicated <str<strong>on</strong>g>the</str<strong>on</strong>g> baseline, zero fuel flight pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, but with a<br />

static (not used) 1.5-metric t<strong>on</strong> (t) fuel load in <str<strong>on</strong>g>the</str<strong>on</strong>g> CWT, making <str<strong>on</strong>g>the</str<strong>on</strong>g> tank approximately 23%<br />

full. Figure 18 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> this flight test compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> empty tank baseline data.<br />

This illustrates that <str<strong>on</strong>g>the</str<strong>on</strong>g> tank is slightly easier to inert and has a slightly lower resulting oxygen<br />

c<strong>on</strong>centrati<strong>on</strong>. This is due to <str<strong>on</strong>g>the</str<strong>on</strong>g> decreased ullage size, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel load.<br />

The same flight pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile was also repeated with a 3-t fuel load (46% full) that is used in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

c<strong>on</strong>venti<strong>on</strong>al manner (burned first). Figure 19 illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> average ullage oxygen<br />

c<strong>on</strong>centrati<strong>on</strong> compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> empty tank baseline data. Again, <str<strong>on</strong>g>the</str<strong>on</strong>g> two tests are very similar,<br />

illustrating no potential problems for <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS c<strong>on</strong>cept with using CWT fuel. Some<br />

small anomalies exist in <str<strong>on</strong>g>the</str<strong>on</strong>g> average oxygen c<strong>on</strong>centrati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumed fuel test that could<br />

be <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> air evolving from <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel. Also, <str<strong>on</strong>g>the</str<strong>on</strong>g> tank should inert slightly differently because<br />

burned fuel increases <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ullage during <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting process.<br />

21


Oxygen C<strong>on</strong>centrati<strong>on</strong> (% vol)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Average Tank [O2]<br />

Single Membrane<br />

0 20 40 60 80 100 120<br />

Time (min)<br />

Empty Tank<br />

C<strong>on</strong>stant Fuel Load<br />

FIGURE 18. COMPARISON OF THE SINGLE-MEMBRANE INERTING FLIGHT<br />

TEST AVERAGE TANK OXYGEN CONCENTRATION FOR BOTH EMPTY<br />

TANK AND A CONSTANT FUEL LOAD<br />

Oxygen C<strong>on</strong>centrati<strong>on</strong> (% vol)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Average Tank [O 2]<br />

Single Membrane<br />

0 20 40 60 80 100 120<br />

Time (min)<br />

Empty Tank<br />

C<strong>on</strong>sumed Fuel Load<br />

FIGURE 19. COMPARISON OF THE SINGLE-MEMBRANE INERTING FLIGHT<br />

TEST AVERAGE TANK OXYGEN CONCENTRATION FOR BOTH EMPTY<br />

TANK TESTS AND CONSUMED FUEL LOAD<br />

22


6. SUMMARY OF FINDINGS.<br />

The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tests indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simplified inerting system is valid and<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> air separati<strong>on</strong> module (ASM) dynamic characteristics were as expected for <str<strong>on</strong>g>the</str<strong>on</strong>g> limited<br />

discussed test plan. Both <strong>on</strong>e- and two-ASM c<strong>on</strong>figurati<strong>on</strong> tests gave <str<strong>on</strong>g>the</str<strong>on</strong>g> expected performance<br />

with ASM pressure having <str<strong>on</strong>g>the</str<strong>on</strong>g> expected affect <strong>on</strong> flow rate, and <str<strong>on</strong>g>the</str<strong>on</strong>g> duel-flow performance<br />

having <str<strong>on</strong>g>the</str<strong>on</strong>g> predicted effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ullage oxygen c<strong>on</strong>centrati<strong>on</strong>. Bleed air c<strong>on</strong>sumpti<strong>on</strong> was<br />

greater than expected. Additi<strong>on</strong>al research is needed to determine what changes in system<br />

design or operati<strong>on</strong>al methodology would best reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> bleed airflow and <str<strong>on</strong>g>the</str<strong>on</strong>g> associated cost.<br />

The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> aircraft bleed air <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> performance degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an ASM needs to be studied<br />

fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r.<br />

The fuel tank inerting results illustrated that no stratificati<strong>on</strong> or heterogeneous oxygen<br />

c<strong>on</strong>centrati<strong>on</strong>s occurred in <str<strong>on</strong>g>the</str<strong>on</strong>g> tank for <str<strong>on</strong>g>the</str<strong>on</strong>g> inerting tests performed. The essentially rectangular<br />

box c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tank allowed easy distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inert gas. The measured effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> high-flow mode was significant, allowing <str<strong>on</strong>g>the</str<strong>on</strong>g> single-membrane c<strong>on</strong>figurati<strong>on</strong> to maintain an<br />

inert ullage during <str<strong>on</strong>g>the</str<strong>on</strong>g> entire flight cycle, even with <str<strong>on</strong>g>the</str<strong>on</strong>g> abnormally high rate <str<strong>on</strong>g>of</str<strong>on</strong>g> descent<br />

employed for <str<strong>on</strong>g>the</str<strong>on</strong>g> flight test. When <str<strong>on</strong>g>the</str<strong>on</strong>g> high-flow mode was not used, <str<strong>on</strong>g>the</str<strong>on</strong>g> ullage reached a peak<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> 15% oxygen by volume. The fuel quantity in <str<strong>on</strong>g>the</str<strong>on</strong>g> fuel tank had virtually no effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

resulting oxygen c<strong>on</strong>centrati<strong>on</strong>s observed during <str<strong>on</strong>g>the</str<strong>on</strong>g> tests.<br />

7. REFERENCES.<br />

1. Summer, Steven M., “Limiting Oxygen C<strong>on</strong>centrati<strong>on</strong> Required to <str<strong>on</strong>g>Inert</str<strong>on</strong>g> Jet Fuel Vapors<br />

Existing at Reduced Fuel Tank Pressures,” <str<strong>on</strong>g>FAA</str<strong>on</strong>g> Report DOT/<str<strong>on</strong>g>FAA</str<strong>on</strong>g>/AR-TN02/79, August<br />

2003.<br />

2. Burns, Michael and Cavage, William M., “<str<strong>on</strong>g>Inert</str<strong>on</strong>g>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> a Vented Aircraft Fuel Tank Test<br />

Article With Nitrogen-Enriched Air,” <str<strong>on</strong>g>FAA</str<strong>on</strong>g> Report DOT/<str<strong>on</strong>g>FAA</str<strong>on</strong>g>/AR-01/6, April 2001.<br />

3. Burns, Michael and Cavage, William M., “Ground and <str<strong>on</strong>g>Flight</str<strong>on</strong>g> <str<strong>on</strong>g>Testing</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Boeing 737<br />

Center Wing Fuel Tank <str<strong>on</strong>g>Inert</str<strong>on</strong>g>ed With Nitrogen-Enriched Air,” DOT/<str<strong>on</strong>g>FAA</str<strong>on</strong>g>/AR-01/63,<br />

August 2001.<br />

4. Anders<strong>on</strong>, C. L., “Volume III—On-Board <str<strong>on</strong>g>Inert</str<strong>on</strong>g> <str<strong>on</strong>g>Gas</str<strong>on</strong>g> <str<strong>on</strong>g>Generati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>System</str<strong>on</strong>g> (OBIGGS)<br />

Studies, Part 1—OBIGGS Ground Performance Tests,” Aero Propulsi<strong>on</strong> Laboratory<br />

Report AFWAL-TR-85-2060, January 1986.<br />

5. Clodfelter, R. G., Anders<strong>on</strong>, C. L., and Vannice, W. L., “OBIGGS for Fighter Aircraft,”<br />

SAE Technical Paper 871903, Aerospace Technology C<strong>on</strong>ference and Expositi<strong>on</strong>, L<strong>on</strong>g<br />

Beach, California, October 5-8, 1987.<br />

23


6. “A Review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Flammability Hazard <str<strong>on</strong>g>of</str<strong>on</strong>g> Jet A Fuel Vapor in Civil Transport Aircraft<br />

Fuel Tanks,” Fuel Flammability Task Group, <str<strong>on</strong>g>FAA</str<strong>on</strong>g> Report DOT/<str<strong>on</strong>g>FAA</str<strong>on</strong>g>/AR-98/26, June<br />

1998.<br />

7. “Fuel Tank Harm<strong>on</strong>izati<strong>on</strong> Working Group Final Report,” Aviati<strong>on</strong> Rulemaking<br />

Advisory Committee, July 1998.<br />

8. Burns, Michael and Cavage, William M., “A Descripti<strong>on</strong> and Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>FAA</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Onboard</str<strong>on</strong>g> Oxygen Analysis <str<strong>on</strong>g>System</str<strong>on</strong>g>,” <str<strong>on</strong>g>FAA</str<strong>on</strong>g> Report DOT/<str<strong>on</strong>g>FAA</str<strong>on</strong>g>/AR-TN03/52, June 2003.<br />

24


APPENDIX A—THE <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS ENGINEERING DRAWING<br />

A-1/A-2


Interface Descripti<strong>on</strong>:<br />

Interface 1: 2” Flexible Coupling<br />

Interface 2: 2” Dia SS Pipe with 4-Bolt flange with Face Mating Seal<br />

Static Pressure (28-14)<br />

Temperature (28-15)<br />

NEA [O2] (28-73)<br />

Interface 3:<br />

<str<strong>on</strong>g>System</str<strong>on</strong>g> NEA<br />

Output<br />

Interface 2:<br />

<str<strong>on</strong>g>System</str<strong>on</strong>g> Bleed<br />

Air C<strong>on</strong>necti<strong>on</strong><br />

Interface 3: 1” Dia Al tube with Hydra-flow 14T02 Sleeve, Coupling, Seal, and Clamp Assy<br />

Interface 1:<br />

OEA Exhaust<br />

Heat Exchanger<br />

Cooling Air<br />

Exhaust<br />

(No Interface)<br />

Temperature<br />

(28-5)<br />

Note:<br />

Static Pressure (28-8)<br />

Temperature (28-9)<br />

Spare Port<br />

Static Pressure (282)<br />

Temperature (28-1)<br />

OEA [O2] (28-74)<br />

Temperature<br />

(28-4)<br />

Heat Exchanger<br />

Cooling Air Inlet<br />

(No Interface)<br />

Instrumentati<strong>on</strong> Identified with Paren<str<strong>on</strong>g>the</str<strong>on</strong>g>tic Numbers Cited in Airbus Z-Mod XB 071 B<br />

Heat Exchanger Exhaust Deposited in Rear <str<strong>on</strong>g>of</str<strong>on</strong>g> Cargo Bay via 4” Flexible Duct C<strong>on</strong>nected with<br />

Flexible Copuling<br />

Static Pressure (28-6)<br />

Temperature (28-7)<br />

Temperature (<str<strong>on</strong>g>FAA</str<strong>on</strong>g> Reader)<br />

A-3/A-4


APPENDIX B—FOUR-BOLT FLANGE ENGINEERING SPECIFICATION<br />

B-1/B-2


APPENDIX C—THE <str<strong>on</strong>g>FAA</str<strong>on</strong>g> OBIGGS WIRING DIAGRAM<br />

C-1/C-2


C-3/C-4


APPENDIX D—CALCULATION OF BLEED AIR CONSUMPTION<br />

Given bleed airflow Q &<br />

Bleed,<br />

NEA flow QNEA , and Permeate (OEA) flow Q for a given ASM,<br />

intuitively <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong> applies:<br />

&<br />

&<br />

Perm<br />

or,<br />

Q&<br />

= Q&<br />

+<br />

Bleed<br />

Perm<br />

NEA<br />

Q&<br />

= Q&<br />

− Q&<br />

Also, a mole balance <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen for <str<strong>on</strong>g>the</str<strong>on</strong>g> same ASM yields <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>.<br />

Bleed<br />

NEA<br />

Q&<br />

Perm<br />

Moles <str<strong>on</strong>g>of</str<strong>on</strong>g> O2 in Air = Moles <str<strong>on</strong>g>of</str<strong>on</strong>g> O2 in NEA + Moles <str<strong>on</strong>g>of</str<strong>on</strong>g> O2 in Permeate<br />

& = &<br />

] ⋅ Q&<br />

( 0.<br />

21)<br />

QBleed<br />

[ O 2 ] NEA ⋅ QNEA<br />

+ [ O 2<br />

Where: [ O 2 ] NEA = NEA Oxygen C<strong>on</strong>centrati<strong>on</strong><br />

O ] = OEA Oxygen C<strong>on</strong>centrati<strong>on</strong><br />

[ 2<br />

Perm<br />

Combining equati<strong>on</strong>s 1 and 2 and solving for QBleed gives: &<br />

Perm<br />

Perm<br />

0.<br />

21)<br />

Q&<br />

= [ O ] ⋅ Q&<br />

+ [ O ] ⋅ ( Q&<br />

− Q&<br />

( Bleed<br />

2 NEA NEA<br />

2 Perm Bleed NEA<br />

& = &<br />

&<br />

] ⋅Q&<br />

( 0.<br />

21)<br />

QBleed<br />

[ O2<br />

] NEA ⋅QNEA<br />

+ [ O2<br />

] Perm ⋅QBleed<br />

− [ O2<br />

& − &<br />

&<br />

] ⋅Q&<br />

( 0.<br />

21)<br />

QBleed<br />

[ O2]<br />

Perm⋅<br />

QBleed<br />

= [ O2]<br />

NEA⋅<br />

QNEA<br />

− [ O2<br />

Q& Bleed ⋅(<br />

0.<br />

21−<br />

[ O ] Perm)<br />

= Q&<br />

NEA ⋅([<br />

O2<br />

] NEA − [ O2<br />

]<br />

Perm<br />

2 Perm<br />

)<br />

Perm<br />

NEA<br />

)<br />

NEA<br />

(D-1)<br />

(D-2)<br />

([ O2]<br />

NEA −[<br />

O2]<br />

Perm)<br />

QBleed<br />

= QNEA⋅<br />

( 0.<br />

21−[<br />

O ] )<br />

& & (D-3)<br />

2 Perm<br />

This equati<strong>on</strong> allows for <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bleed air c<strong>on</strong>sumed by an ASM based inerting<br />

system given <str<strong>on</strong>g>the</str<strong>on</strong>g> NEA flow and purity as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> oxygen c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> permeate.<br />

D-1/D-2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!