07.11.2013 Views

MATROID THEORY NOTES 1. Axiom Systems The axioms for an ...

MATROID THEORY NOTES 1. Axiom Systems The axioms for an ...

MATROID THEORY NOTES 1. Axiom Systems The axioms for an ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>MATROID</strong> <strong>THEORY</strong> <strong>NOTES</strong><br />

MATH 777, SPRING 2008, COOPER<br />

<strong>1.</strong> <strong>Axiom</strong> <strong>Systems</strong><br />

<strong>The</strong> <strong>axioms</strong> <strong>for</strong> <strong>an</strong> independence system (E, I):<br />

(I1): ∅ ∈ I.<br />

(I2): If I ∈ I <strong>an</strong>d I ′ ⊆ I, then I ′ ∈ I.<br />

(I3): If I 1 , I 2 ∈ I <strong>an</strong>d |I 1 | < |I 2 |, then ∃e ∈ I 2 − I 1 such that I 1 ∪ e ∈ I.<br />

<strong>The</strong> <strong>axioms</strong> <strong>for</strong> a basis system (E, B):<br />

(B1): B ̸= ∅.<br />

(B2): If B 1 , B 2 ∈ B <strong>an</strong>d x ∈ B 1 − B 2 , then ∃y ∈ B 2 − B 1 such that<br />

(B 1 − x) ∪ y ∈ B.<br />

<strong>The</strong> <strong>axioms</strong> <strong>for</strong> a circuit system (E, C):<br />

(C1): ∅ ∉ C.<br />

(C2): If C 1 , C 2 ∈ C, <strong>an</strong>d C 1 ⊆ C 2 , then C 1 = C 2 .<br />

(C3): If C 1 , C 2 ∈ C, C 1 ≠ C 2 , <strong>an</strong>d e ∈ C 1 ∩ C 2 , then ∃C 3 ∈ C such that<br />

C 3 ⊆ (C 1 ∪ C 2 ) − e.<br />

<strong>The</strong> <strong>axioms</strong> <strong>for</strong> a r<strong>an</strong>k function r : 2 E → Z + :<br />

(R1): For X ⊆ E, 0 ≤ r(X) ≤ |X|.<br />

(R2): If X ⊆ Y ⊆ E, then r(X) ≤ r(Y ).<br />

(R3): If X, Y ⊆ E, then<br />

r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).<br />

<strong>The</strong> <strong>axioms</strong> <strong>for</strong> a closure function · : 2 E → 2 E :<br />

(CL1): For X ⊆ E, X ⊆ X.<br />

(CL2): If X ⊆ Y ⊆ E, then X ⊆ Y .<br />

(CL3): If X ⊆ E, then X = X.<br />

(CL4): If X ⊆ E, x ∈ E <strong>an</strong>d y ∈ X ∪ x − X, then x ∈ X ∪ y.<br />

<strong>The</strong> <strong>axioms</strong> <strong>for</strong> a system F ⊂ 2 E of flats:<br />

(F1): E ∈ F.<br />

(F2): If F 1 , F 2 ⊆ F, then F 1 ∩ F 2 ∈ F.<br />

(F3): If F ∈ F <strong>an</strong>d {F 1 , . . . , F k } is the set of minimal members of F that<br />

properly contain F , then the sets F 1 \ F, . . . , F k \ F partition E \ F .<br />

1


2 MATH 777, SPRING 2008, COOPER<br />

<strong>The</strong> <strong>axioms</strong> <strong>for</strong> a sp<strong>an</strong>ning set system S ⊂ 2 E :<br />

(S1): S ≠ ∅.<br />

(S2): If S 1 ∈ S <strong>an</strong>d S 2 ⊇ S 1 , then S 2 ∈ S.<br />

(S3): If S 1 , S 2 ∈ S <strong>an</strong>d |S 1 | > |S 2 |, then ∃e ∈ S 1 − S 2 such that S 1 − e ∈ S.<br />

2. Tr<strong>an</strong>slations<br />

<strong>The</strong> following set of “cryptomorphisms” between definitions of a matroid is strongly<br />

connected as a digraph, <strong>an</strong>d there<strong>for</strong>e provides a complete (though not always maximally<br />

efficient) tr<strong>an</strong>slation mech<strong>an</strong>ism between <strong>an</strong>y two.<br />

I → B: B is the set of maximal elements of I.<br />

B → I: I = {I : I ⊆ B, B ∈ B}.<br />

I → C: C is the set of minimal elements of 2 E \ I.<br />

C → I: I = {I : C ⊈ I, ∀C ∈ C}.<br />

r → I: I = {I ⊆ E : r(I) = |I|}.<br />

I → r: r(X) = max{|I| : I ⊆ X, I ∈ I}.<br />

r → · : X = {x ∈ E : r(X ∪ x) = r(X)}.<br />

· → I: I = {X ⊆ E : ∀x ∈ X, x ∉ X − x}.<br />

· → F: F = {X : X ⊆ E}.<br />

F → · : X = ⋂ {F : F ∈ F, F ⊇ X}.<br />

r → S: S = {S : r(S) = r(E)}.<br />

S → B: B = {B ⊆ E : ∀X ⊆ E, B ∪ X ∈ S}.<br />

3. Examples<br />

Let X ⊆ E be <strong>an</strong>y subset throughout the following.<br />

<strong>1.</strong> Graphic Matroids<br />

E<br />

I<br />

B<br />

C<br />

r(X)<br />

X<br />

E(G)<br />

acyclic sets<br />

sp<strong>an</strong>ning <strong>for</strong>ests<br />

cycles<br />

|X|− number of components of X as a subgraph<br />

X∪ <strong>an</strong>y e ∈ E so that X ∪ e has more cycles th<strong>an</strong> X


<strong>MATROID</strong> <strong>THEORY</strong> <strong>NOTES</strong> 3<br />

F no broken cycles, i.e., if C is a cycle of G, then |C \ X| ≠ <strong>1.</strong><br />

S<br />

sp<strong>an</strong>ning subgraphs<br />

2. Linear Matroids, aka Vector Matroids<br />

E<br />

I<br />

B<br />

C<br />

r(X)<br />

X<br />

F<br />

S<br />

elements of a (finite) vector space V<br />

independent sets<br />

bases<br />

minimally dependent sets<br />

dim(sp<strong>an</strong>(X))<br />

sp<strong>an</strong>(X)<br />

subspaces<br />

sets sp<strong>an</strong>ning V<br />

3. Algebraic Matroids<br />

E<br />

finite subset of a field extension K/F<br />

I algebraically independent sets (i.e., if X = {x 1 , . . . , x n }, <strong>an</strong>d<br />

f(x 1 , . . . , x n ) = 0 <strong>for</strong> f ∈ F [t 1 , . . . , t n ], then f ≡ 0).<br />

B<br />

C<br />

r(X)<br />

X<br />

F<br />

S<br />

tr<strong>an</strong>scendence bases <strong>for</strong> F (E), i.e., minimal sets X so that F (E) is<br />

algebraic over F (X)<br />

minimally dependent sets<br />

tr<strong>an</strong>scendence degree of F (X)/F<br />

F (X) alg ∩ E, where ·alg denotes algebraic closure<br />

F (X) alg ∩ E, <strong>for</strong> various X ⊆ E<br />

sets X so that F (E) is algebraic over F (X)<br />

4. Uni<strong>for</strong>m Matroids


4 MATH 777, SPRING 2008, COOPER<br />

E<br />

I<br />

B<br />

C<br />

<strong>an</strong>y finite set<br />

( E<br />

≤k)<br />

( E<br />

k)<br />

( E<br />

)<br />

k+1<br />

r(X) min{|X|, k}<br />

X<br />

F<br />

S<br />

X if |X| < k, E otherwise<br />

( E<br />

)<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!