12.11.2013 Views

Seismic Instruments

Seismic Instruments

Seismic Instruments

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Seismic</strong> instruments<br />

<strong>Seismic</strong> <strong>Instruments</strong><br />

The seismometer as a forced oscillator<br />

The seismometer equation<br />

Transfer function, resonance<br />

Broadband sensors, accelerometers<br />

Dynamic range and generator constant<br />

Rotation sensors<br />

Strainmeters<br />

Tiltmeters<br />

Global Positioning System (GPS)<br />

Ocean Bottom Seismometers (OBS)<br />

Data examples, measurement principles, interconnections, accuracy,<br />

domains of application


<strong>Seismic</strong> instruments<br />

Spring-mass seismometer<br />

vertical motion<br />

Before Before we we look look more more carefully at at<br />

seismic instruments we we ask ask<br />

ourselves what what to to expect for for a<br />

typical typical spring spring based based seismic<br />

inertial sensor. This This will will highlight<br />

several fundamental issues issues we we<br />

have have to to deal deal with with concerning<br />

seismic data data analysis.


<strong>Seismic</strong> instruments<br />

Seismometer – The basic principles<br />

x 0<br />

x r<br />

x<br />

x<br />

x m<br />

u<br />

x 0<br />

u g<br />

u m<br />

u<br />

x r<br />

mass<br />

x 0<br />

ground displacement<br />

displacement of seismometer<br />

mass equilibrium position


<strong>Seismic</strong> instruments<br />

Seismometer – The basic principles<br />

The motion of the seismometer mass as a<br />

function of the ground displacement is<br />

given through a differential equation<br />

resulting from the equilibrium of forces (in<br />

rest):<br />

x 0<br />

x r<br />

F spring<br />

+ F friction<br />

+ F gravity<br />

= 0<br />

x<br />

for example<br />

.<br />

F sprin<br />

=-k x, k spring constant<br />

..<br />

F friction<br />

=-D x, D friction coefficient<br />

u g<br />

F gravity<br />

=-mu, m seismometer mass


<strong>Seismic</strong> instruments<br />

Seismometer – The basic principles<br />

using the notation introduced above the<br />

equation of motion for the mass is<br />

ẍ r<br />

t 2ε ẋ r<br />

t <br />

¿+ϖ 0 2 x r t =−ü g t <br />

x 0<br />

x<br />

x r<br />

From this we learn that:<br />

- for slow movements the acceleration<br />

and<br />

velocity becomes negligible, the<br />

seismometer records ground<br />

acceleration<br />

u g<br />

- for fast movements the acceleration of<br />

the<br />

mass dominates and the seismometer<br />

records ground displacement


A simple finite-difference solution of the seismometer equation<br />

<strong>Seismic</strong> instruments


<strong>Seismic</strong> instruments<br />

Seismometer – examples<br />

x 0<br />

x<br />

x<br />

r<br />

u<br />

g


<strong>Seismic</strong> instruments<br />

Varying damping constant<br />

x 0<br />

x<br />

x<br />

r<br />

u<br />

g


<strong>Seismic</strong> instruments<br />

Seismometer – Calibration<br />

1. How can we determine the damping<br />

properties from the observed behaviour of<br />

the seismometer?<br />

x 0<br />

x<br />

x<br />

r<br />

2. How does the seismometer amplify the<br />

ground motion? Is this amplification<br />

frequency dependent?<br />

u<br />

g<br />

We need to answer these question in<br />

order to determine what we really want to<br />

know:<br />

The ground motion.


Seismometer – Release Test<br />

1. How can we determine the damping<br />

properties from the observed<br />

behaviour of the seismometer?<br />

x 0<br />

u<br />

x<br />

x<br />

r<br />

ẍ r (t )+hϖ 0 ẋ r (t )+ϖ 0 2 x r (t )=0<br />

g<br />

x r<br />

( 0)=x 0<br />

, ẋ r<br />

(0)=0<br />

We release the seismometer mass from a given initial<br />

position and let it swing. The behaviour depends on<br />

the relation between the frequency of the spring and<br />

the damping parameter. If the seismometers<br />

oscillates, we can determine the damping coefficient<br />

h.<br />

<strong>Seismic</strong> instruments


<strong>Seismic</strong> instruments<br />

Seismometer – Release Test<br />

1<br />

F 0 = 1 H z , h = 0<br />

1<br />

F 0 = 1 H z , h = 0 .2<br />

D is p la c e m e n t<br />

0 .5<br />

0<br />

-0 .5<br />

0 .5<br />

0<br />

-0 .5<br />

x 0<br />

u<br />

g<br />

x<br />

x<br />

r<br />

-1<br />

0 1 2 3 4 5<br />

-1<br />

0 1 2 3 4 5<br />

1<br />

F 0 = 1 H z , h = 0 .7<br />

1<br />

F 0 = 1 H z , h = 2 .5<br />

D is p la c e m e n t<br />

0 .5<br />

0<br />

-0 .5<br />

0 .5<br />

0<br />

-0 .5<br />

-1<br />

0 1 2 3 4 5<br />

Tim e (s )<br />

-1<br />

0 1 2 3 4 5<br />

Tim e (s )


<strong>Seismic</strong> instruments<br />

Seismometer – Release Test<br />

a k<br />

a k+1<br />

The damping<br />

coefficients can be<br />

determined from the<br />

amplitudes of<br />

consecutive extrema a k<br />

and a k+1<br />

We need the logarithmic<br />

decrement L<br />

Λ=2ln<br />

( a k<br />

a k+1)<br />

x 0<br />

u<br />

g<br />

x<br />

x<br />

r<br />

The damping constant h can then be determined through:<br />

h=<br />

Λ<br />

√4π 2 +Λ 2


<strong>Seismic</strong> instruments<br />

Seismometer – Frequency<br />

a k<br />

a k+1<br />

T<br />

x 0<br />

x<br />

x<br />

r<br />

u<br />

g<br />

The period T with which the seismometer<br />

mass oscillates depends on h and (for h


<strong>Seismic</strong> instruments<br />

Seismometer – Response Function<br />

2. How does the seismometer amplify the ground<br />

motion? Is this amplification frequency dependent?<br />

x 0<br />

x<br />

x<br />

r<br />

To answer this question we excite our<br />

seismometer with a monofrequent signal and<br />

record the response of the seismometer:<br />

u<br />

g<br />

ẍ r (t )+hϖ 0 ẋ r (t )+ϖ 0 2 x r (t )=ϖ 2 A 0 e i<br />

ϖt<br />

the amplitude response A r<br />

of the seismometer<br />

depends on the frequency of the seismometer w 0<br />

,<br />

the frequency of the excitation w and the damping<br />

constant h:<br />

∣ A r<br />

A 0<br />

∣=<br />

1<br />

√( T 2 )2<br />

2<br />

T −1 +4h 2 T 2<br />

2<br />

0<br />

T 0


<strong>Seismic</strong> instruments<br />

Amplitude Response Function - Resonance


Phase Response<br />

<strong>Seismic</strong> instruments<br />

Clearly, the amplitude and<br />

phase response of the<br />

seismometer mass leads to a<br />

severe distortion of the original<br />

input signal (i.e., ground<br />

motion).<br />

Before analysing seismic signals<br />

this distortion has to be revered:<br />

-> Instrument correction


<strong>Seismic</strong> instruments<br />

Seismometer as a Filter<br />

Restitution -> Instrument correction


<strong>Seismic</strong> instruments<br />

Seismometer as a Filter<br />

Restitution -> Instrument correction


<strong>Seismic</strong> instruments<br />

Electromagnetic Seismograph<br />

Electromagnetic seismographs<br />

measure ground velocity


<strong>Seismic</strong> instruments<br />

The STS-2 Seismometer<br />

www.kinemetrics.com


<strong>Seismic</strong> instruments<br />

Accelerometer<br />

force-balance principle<br />

Feedback circuit of a force-balance accelerometer (FBA). The motion<br />

of the mass is controlled by the sum of two forces: the inertial force<br />

due to ground acceleration, and the negative feedback force. The<br />

electronic circuit adjusts the feedback force so that the two forces very<br />

nearly cancel. (Source Stuttgart University)


<strong>Seismic</strong> instruments<br />

<strong>Seismic</strong> signal and noise<br />

The observation of seismic noise had a strong<br />

impact on the design of seismic instruments,<br />

the separation into short-period and long-period<br />

instruments and eventually to the development<br />

of broadband sensors.


<strong>Seismic</strong> instruments<br />

<strong>Seismic</strong> noise


<strong>Seismic</strong> instruments<br />

Seismometer Bandwidth<br />

Today most of the<br />

sensors of permanent<br />

and temporary seismic<br />

networks are broadband<br />

instruments such as the<br />

STS1+2.<br />

Short period instruments<br />

are used for local<br />

seismic events (e.g., the<br />

Bavarian seismic<br />

network).


<strong>Seismic</strong> instruments<br />

(Relative) Dynamic range<br />

Dynamic Range DR: the ratio between largest measurable<br />

amplitude A max<br />

to the smallest measurable amplitude A min<br />

.<br />

DR = V max<br />

/V min<br />

Units Units … what what is is 1 Bell? Bell?<br />

… it it is is the the Base Base 10 10 Logarithm of of the the ratio ratio of of two two<br />

energies<br />

L= L= log log (P (P 1<br />

/P<br />

1<br />

/P 2<br />

)<br />

2<br />

) B = 10 10 log log (P (P 1<br />

/P<br />

1<br />

/P 2<br />

)<br />

2<br />

) dB dB<br />

Where Where B is is a 10th 10th of of B, B, and and in in terms terms of of amplitudes<br />

L = 10 10 log log (A (A 1<br />

/A<br />

1<br />

/A 2<br />

)<br />

2<br />

) 2 2 dB dB = 20 20 log log (A (A 1<br />

/A<br />

1<br />

/A 2<br />

)<br />

2<br />

)


<strong>Seismic</strong> instruments<br />

(Relative) Dynamic range<br />

Nature:<br />

The Earth has motions varying 10 orders of magnitude<br />

from the strongest motion to the lowest noise level<br />

-> DR Earth<br />

= 20 log (10 10 )dB = 200 dB !<br />

<strong>Instruments</strong>: e.g., e.g., 10 10 bit bit digitizer<br />

Dynamic range range = 20 20 log log 10<br />

(A<br />

10<br />

(A max<br />

/A<br />

max<br />

/A min<br />

)<br />

min<br />

) dB dB<br />

Example: with with 1024 1024 units units of of amplitude (A (A min<br />

=1,<br />

min<br />

=1,<br />

A max<br />

=1024)<br />

max 20 20 log log 10<br />

(1024/1)<br />

10 dB dB ~ 60 60 dB dB


<strong>Seismic</strong> instruments<br />

Bits, counts, dynamic range


<strong>Seismic</strong> instruments<br />

Dynamic range of a seismometer<br />

ADC (analog-digital-converter)<br />

A n-bit n-bit digitzer will will have have 2 n-1 n-1 intervals to to<br />

describe an an analog analog signal. signal.<br />

Seismogram<br />

data in counts<br />

Example:<br />

A 24-bit 24-bit digitizer has has 5V 5V maximum output output<br />

signal signal (full-scale-voltage)<br />

The The least least significant bit bit (lsb) (lsb) is is then then<br />

lsb lsb = 5V 5V // 2 n-1 n-1 = 0.6 0.6 microV microV<br />

Generator constant STS-2: STS-2: 750 750 Vs/m Vs/m<br />

What What does does this this imply imply for for the the peak peak ground ground<br />

velocity at at 5V? 5V?


<strong>Seismic</strong> instruments<br />

Rotation: the curl of the wavefield<br />

(ω x<br />

ω y<br />

ω z<br />

)= 1 2 ∇×v= 1 2<br />

(∂ y<br />

v z<br />

−∂ z<br />

v y<br />

∂ z v x −∂ x v<br />

x)<br />

z<br />

∂ x<br />

v y<br />

−∂ y<br />

v<br />

v z<br />

ω y<br />

ω x<br />

v y<br />

v x<br />

ω z<br />

Ground velocity<br />

Rotation rate<br />

Rotation sensor<br />

Seismometer


<strong>Seismic</strong> instruments<br />

How can we observe rotations?<br />

-> ring laser<br />

Ring laser technology developed by the<br />

groups at the Technical University<br />

Munich and the University of<br />

Christchurch, NZ


<strong>Seismic</strong> instruments<br />

Ring laser – the principle<br />

Δf Sagnac = 4Ω⋅A<br />

λP<br />

A<br />

surface of of the the ring ring laser (vector)<br />

Ω imposed rotation rate rate (Earth‘s rotation +<br />

earthquake +...) +...)<br />

λ<br />

laser wavelength (e.g. (e.g. 633 633 nm) nm)<br />

Pperimeter (e.g. (e.g. 4-16m)<br />

∆f ∆f Sagnac frequency (e.g. (e.g. 348,6 Hz Hz sampled at at<br />

1000Hz)


<strong>Seismic</strong> instruments<br />

The Sagnac Frequency<br />

(schematically)<br />

Sagnac frequency sampled with 1000Hz<br />

Tiny changes in in the the<br />

Sagnac<br />

frequencies are are<br />

extracted to to<br />

obtain the the time<br />

series with<br />

rotation rate rate<br />

Rotation rate sampled with 20Hz<br />

Df Df -> -> Q


The ring laser at Wettzell<br />

<strong>Seismic</strong> instruments<br />

ring laser<br />

Data accessible at www.rotational-seismology.org


<strong>Seismic</strong> instruments<br />

The Pinon Flat Observatory sensor


<strong>Seismic</strong> instruments<br />

PFO


<strong>Seismic</strong> instruments<br />

Rotation from seismic arrays?<br />

... by finite differencing ...<br />

ω z<br />

≈∂ x<br />

v y<br />

−∂ y<br />

v x<br />

seismometers<br />

ω z<br />

v y<br />

v x<br />

v y<br />

v x<br />

v y<br />

v x<br />

v y<br />

v x<br />

Rotational motion<br />

estimated from<br />

seismometer recordings


<strong>Seismic</strong> instruments<br />

Direct vs. array-derived rotation


Array vs. direct measurements<br />

Wassermann et al., 2009, BSSA<br />

<strong>Seismic</strong> instruments


<strong>Seismic</strong> instruments<br />

Strain sensors<br />

Network in EarthScope


<strong>Seismic</strong> instruments<br />

Pinon Flat Observatory, CA


<strong>Seismic</strong> instruments<br />

Strain meter principle


<strong>Seismic</strong> instruments<br />

Strain - Observations


<strong>Seismic</strong> instruments<br />

Tiltmeters<br />

• Tiltmeters are designed to<br />

measure changes in the angle<br />

of the surface normal<br />

• These changes are particularly<br />

important near volcanoes, or in<br />

structural engineering<br />

• In the seismic frequency band<br />

tiltmeters are sensitive to<br />

transverse acceleration<br />

Source: USGS


<strong>Seismic</strong> instruments<br />

Tilt vs. horizontal acceleration<br />

Earthquake recorded at Wettzell, Germany


<strong>Seismic</strong> instruments<br />

GPS Sensor Networks


<strong>Seismic</strong> instruments<br />

San Francisco GPS Network<br />

Co-seismic displacement<br />

measured in California<br />

during an earthquake.<br />

(Source: UC Berkeley


<strong>Seismic</strong> instruments<br />

Ocean Bottom Seismometers<br />

The OB Unit is equipped with a<br />

broadband Güralp seismometer<br />

and a Differential Pressure Gauge<br />

(from Scripps Institution of<br />

Oceanography). Additionally, it<br />

measures the absolute pressure<br />

with a Paroscientific Intelligent<br />

Depth sensor, manufactured by<br />

DIGIQUARZ.<br />

Source: GFZ Potsdam<br />

Source: USGS


<strong>Seismic</strong> instruments<br />

Ocean Bottom Seismometers<br />

RHUM-RUM<br />

Investigating La Réunion<br />

mantle plume<br />

www.rhum-rum.net<br />

Source: USGS


<strong>Seismic</strong> instruments<br />

Other sensors and curiosities<br />

• Gravimeters<br />

• Ground water level<br />

• Electromagnetic measurements<br />

(ionosphere)<br />

• Infrasound measurements


<strong>Seismic</strong> instruments<br />

Summary<br />

• Seismometers are forced oscillators, recorded<br />

seismograms have to be corrected for the instrument<br />

response<br />

• Strains and rotations are usually measured with optical<br />

interferometry, the accuracy is lower than for standard<br />

seismometers<br />

• The goal in seismology is to measure with one<br />

instrument a broad frequency and amplitude range<br />

(broadband instruments)<br />

• Cross-axis sensitivity is an important current issue<br />

(translation – rotation – tilt)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!