14.11.2013 Views

Ventilation Systems: Operation and Testing - GHDonline

Ventilation Systems: Operation and Testing - GHDonline

Ventilation Systems: Operation and Testing - GHDonline

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Engineering Methods<br />

for the<br />

Control of Airborne Infections<br />

<strong>Ventilation</strong> <strong>Systems</strong>:<br />

<strong>Operation</strong> <strong>and</strong> <strong>Testing</strong><br />

Jack Price<br />

General Principles of <strong>Ventilation</strong><br />

Introduction<br />

Need for ventilation:<br />

‣Comfort<br />

‣Contamination Control<br />

both maintain healthy work environment<br />

1


General Principles of <strong>Ventilation</strong><br />

• Office buildings ----- In-door air quality<br />

• Occupational exposure ---- OSHA<br />

• Environmental releases ---- EPA<br />

General Principles of <strong>Ventilation</strong><br />

• Regulatory Agencies (compliance concerns):<br />

• Federal<br />

• State<br />

• Local<br />

• Good Practice<br />

• St<strong>and</strong>ard of care (industry st<strong>and</strong>ards ANSI, ASME, etc.)<br />

• Work productivity<br />

• Process control<br />

2


Types of <strong>Systems</strong><br />

• Supply<br />

Temperature & Humidity<br />

Replacement (make-up air)<br />

Return (recirculated air)<br />

• Exhaust<br />

General (dilution)<br />

Local Control (hoods)<br />

HVAC <strong>Systems</strong><br />

Air H<strong>and</strong>ling System with Economizer<br />

Air Balance in a Conditioned Space<br />

3


Design Concerns<br />

• Temperature<br />

• Pressure<br />

• Air Contaminants<br />

• Work Practices<br />

• Product Protection<br />

• Worker Protection<br />

• Building Codes<br />

• Equipment Selection<br />

• Energy Conservation<br />

• Maintenance<br />

• Security<br />

• Expansion<br />

Air Conditioning System Water <strong>and</strong> Refrigeration Circuits<br />

5


Factors in the Perception of Air Quality<br />

Conservation of Mass<br />

1 velocity = 50 FPM<br />

Hood<br />

2 velocity = 3000 fpm<br />

Air Flow<br />

Duct<br />

Q = V . A<br />

Where<br />

Flow rate at point 1 is called Q 1<br />

<strong>and</strong> is equal to<br />

flow rate at point 2 which is called Q 2<br />

Q = Volumetric Flow Rate, ft 3 /min<br />

V = Air Velocity, ft/min or fpm<br />

A = Cross Sectional Area, ft 2 or SF<br />

6


Q = V . A<br />

Conservation of Mass<br />

8 inch duct<br />

1<br />

12 inch duct<br />

3<br />

6 inch duct<br />

2<br />

Q 1 + Q 2 = Q 3<br />

V 1 A 1 + V 2 A 2 = V 3 A 3<br />

AIR FLOW<br />

• At st<strong>and</strong>ard temperature <strong>and</strong> pressure (STP):<br />

* 1 atmosphere & 70 o F *<br />

The density of air is 0.075 lb m /ft 3<br />

• Air will flow from a higher pressure region to a<br />

lower pressure region<br />

• Three Different Types of Pressure Measurements<br />

* Static * Velocity * Total *<br />

7


Types of Pressure Measurements<br />

• Static Pressure (S P )<br />

potential energy<br />

can be + or –<br />

bursting or collapsing<br />

measured perpendicular to flow<br />

• Velocity Pressure (V P )<br />

kinetic energy<br />

accelerates from 0 to some velocity<br />

Exerted in direction of flow always +<br />

• Total Pressure (T P )<br />

combined static & velocity components<br />

can be + or -<br />

measure of energy content of air stream<br />

Always decreasing as flow travels<br />

downstream thru a system only rising when<br />

going across a fan<br />

TP = SP + VP<br />

TP<br />

_<br />

+<br />

SP<br />

_<br />

+<br />

VP<br />

+<br />

8


Conservation of Energy<br />

• TP = SP + VP or<br />

T P = S P + V P<br />

• Energy losses:<br />

– Acceleration of air<br />

– Hood entry<br />

– Duct losses: friction (function of system materials & design)<br />

– Fitting losses: contractions & expansions<br />

• T P1 = T P2 + h L<br />

now substitute T P = S P + V P<br />

• S P1 + V P1 = S P2 + V P2 + h L<br />

Bench Grinder Hood<br />

Pressure Graphs for TP, SP, <strong>and</strong> VP<br />

9


Velocity Pressure & Velocity<br />

• V = 1096 (V P /p) 0.5<br />

where p = air density<br />

@ STP p = 0.075 lb m /ft 3<br />

• V = 4005 (V P ) 0.5<br />

• Velocity pressure is a function of the velocity <strong>and</strong><br />

fluid density.<br />

• Velocity pressure will only be exerted in the direction<br />

of air flow <strong>and</strong> is always positive.<br />

Bench Grinder Exhaust <strong>Ventilation</strong><br />

1<br />

Duct diameter = 3 inches<br />

Area = 0.0668 ft 2<br />

2 3<br />

• Q 1 = Q 2<br />

• If Q desired is 300 cfm<br />

• Then Q = V A<br />

V = Q A<br />

V = (300) / (0.0068)<br />

V = 4490 fpm<br />

• If there are no losses from the<br />

grinder hood entry then:<br />

SP 1 + VP 1 = SP 2 + VP 2<br />

but: SP 1 = 0 <strong>and</strong> VP 1 0<br />

we then have:<br />

0 = SP 2 + VP 2<br />

or -VP 2 = SP 2<br />

10


Bench Grinder Exhaust <strong>Ventilation</strong><br />

1<br />

Duct diameter = 3 inches<br />

Area = 0.0668 ft 2 V = 4490 fpm<br />

2 3<br />

• If there are no losses from the<br />

grinder hood entry then:<br />

SP 1 + VP 1 = SP 2 + VP 2<br />

but: SP 1 = 0 <strong>and</strong> VP 1 0<br />

we then have:<br />

0 = SP 2 + VP 2<br />

or SP 2 = (-VP 2 )<br />

• from V = 4005 (V P ) 0.5<br />

• VP 2 = (4490/4005) 2<br />

• VP 2 = 1.26 in w.g.<br />

• then: SP 2<br />

= (-VP 2<br />

)<br />

SP 2<br />

= -1.26 in w.g.<br />

Bench Grinder Exhaust <strong>Ventilation</strong><br />

1<br />

S Ph<br />

Duct diameter = 3 inches<br />

Area = 0.0668 ft 2 V = 4490 fpm<br />

2 3<br />

• However there are losses thru the grinder hood entry<br />

S P2 = (-V P2 + h e ) where h e is the energy loss of the hood entry<br />

• Static pressure (S P ) must decrease due to acceleration of air up to the duct velocity<br />

• F h is defined as the energy loss coefficient<br />

• Energy losses will be measured as a function of the velocity pressure in the system<br />

h e = (F h ) (VP)<br />

• Now we define the static pressure at the hood as S Ph<br />

• S Ph is also called the hood static suction <strong>and</strong> is the absolute value of S P2<br />

11


Flanged Inlet with Fd = 0.49<br />

Flanged Inlet with F d<br />

= 0.49<br />

12


Hood Entry Coefficients<br />

Actual Flow<br />

C e = Hypothetical Flow no losses<br />

(4005) (V P ) 0.5 (A) (V P ) 0.5<br />

C e = =<br />

(4005) (S Ph ) 0.5 (A) (S Ph ) 0.5<br />

C e = (V P /S Ph ) 0.5<br />

Hood Entry Coefficients<br />

C e = (V P /S Ph ) 0.5<br />

Typical values for C e are known for some hoods.<br />

For the bench grinder hood with a straight take-off :<br />

C e = 0.78<br />

13


Example Problem<br />

• What static pressure (S Ph ) should be set at<br />

the bench grinder hood to maintain a duct<br />

velocity of 4000 fpm if the take-off duct<br />

size is 4 inch diameter ?<br />

• What is the volumetric flow rate ?<br />

Example Problem<br />

• V = 4000 fpm Q = VA = 4005(A)(V P<br />

) 0.5 Q = VA = 348 cfm<br />

• A for 4 inch duct diameter = 0.087 ft 2<br />

• C e<br />

bench grinder hood = 0.78<br />

V = 4005 (V P<br />

) 0.5<br />

C e = (V P /S Ph ) 0.5 = 0.78<br />

(VP) 0.5 = (4000)/(4005)<br />

(V P /S Ph ) = (0.78) 2<br />

V P<br />

= 0.998 in w.g.<br />

S Ph = V P /(0.78) 2 = (0.998)/(0.608) = 1.64 in w.g.<br />

14


Air Flow Characteristics<br />

• See Industrial <strong>Ventilation</strong> Manual notes<br />

Blowing vs. Exhausting<br />

Air Flow Characteristics<br />

Exhaust Hoods<br />

Capture Velocity<br />

From Dalla Valle’s<br />

empirical work<br />

V (x ) = Q/ (10 x 2 + A)<br />

15


Capture Velocity<br />

V (x) = Q/ (10 X 2 + A)<br />

Capture velocity is<br />

only effective in the<br />

immediate vicinity<br />

of the hood<br />

Room supply air (makeup<br />

air) discharge can<br />

influence effectiveness<br />

of hood capture<br />

Questions ?<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!