25.10.2012 Views

The real structure of Na3BiO4 by electron ... - Columbia University

The real structure of Na3BiO4 by electron ... - Columbia University

The real structure of Na3BiO4 by electron ... - Columbia University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

244 S. Vensky, L. Kienle, R. E. Dinnebier et al.<br />

Laue crystals. I. <strong>The</strong>oretical considerations. J. Appl. Crystallogr.<br />

34 (2001) 504–509.<br />

[27] Zhong, Z.; Kao, C. C.; Siddons, D. P.; J. B. Hastings: Sagittal<br />

focusing <strong>of</strong> high-energy synchrotron X-rays with asymmmetric<br />

Laue crystals. II. Experimental studies. J. Appl. Crystallogr. 34<br />

(2001) 646–653.<br />

[28] Zhong, Z.; Kao, C. C.; Siddons, D. P.; J. B. Hastings: Rockingcurve<br />

width <strong>of</strong> sagittally bent Laue crystals. Acta Crystallogr.<br />

A58 (2002) 487–493.<br />

[29] Zhong, Z.; Kao, C. C.; Siddons, D. P.; Zhong, H.; J. B. Hastings:<br />

A lamellar model for the X-ray rocking curves <strong>of</strong> sagittally<br />

bent Laue crystals. Acta Crystallogr. A58 (2002) 487–493.<br />

[30] Dinnebier, R. E.; Finger, L. W.: GUFI 5.0. Z. Kristallogr. Suppl.<br />

15 (1998) 148.<br />

[31] Visser, J. W.: A fully automatic program for finding unit cell<br />

from powder data. J. Appl. Crystallogr. 2 (1969) 89–95.<br />

[32] Le Bail, A.; Duroy, H.; Fouerquet, J. L.: Ab-initio <strong>structure</strong> determination<br />

<strong>of</strong> LiSbWO6 <strong>by</strong> X-ray powder diffraction. Mater.<br />

Res. Bull. 23 (1988) 447–452.<br />

[33] Larson, A. C.; von Dreele, R. B.: GSAS, version 2002. Los<br />

Alamos National Laboratory Report LAUR 86–748. Los Alamos<br />

National Laboratory, Los Alamos, USA 2002.<br />

[34] Thompson, P.; Cox, D. E.; Hastings, J. B.: Rietveld refinement<br />

<strong>of</strong> De<strong>by</strong>e-Scherrer synchrotron X-ray data from Al2O3. J. Appl.<br />

Crystallogr. 20 (1987) 79–83.<br />

[35] Finger, L. W.; Cox, D. E.; Jephcoat, A. P.: A correction for<br />

powder diffraction peak asymmetry due to axial divergence. J.<br />

Appl. Crystallogr. 27 (1994) 892–900.<br />

[36] Rietveld, H. M.: A pr<strong>of</strong>ile refinement method for nuclear and<br />

magnetic <strong>structure</strong>s. J. Appl. Crystallogr. 2 (1969) 65–71.<br />

[37] Chupas, P. J.; Qiu, X.; Hanson, J. C.; Lee, P. L.; Grey, C. P.;<br />

Billinge, S. J. L.: Rapid acquisition pair distribution function<br />

analysis (RA-PDF). J. Appl. Crystallogr. 36 (2003) 1342–1347.<br />

[38] Hammersley, A. P.: FIT2D, Vers. 9.129. ESRF Internal Report<br />

ESRF98HA01T.<br />

[39] Hammersley, A. P.; Svenson, S. O.; Hanfland, M.; Hauserman, D.:<br />

Two-dimensional detector s<strong>of</strong>tware: From <strong>real</strong> detector to idealised<br />

image or two-theta scan. High Pressure Res. 14 (1996) 235–248.<br />

[40] Qiu, X.; Thompson, J. W.; Billinge, S. J. L.: PDFgetX2: a GUI<br />

driven program to obtain the pair distribution function from X-ray<br />

powder diffraction data. J. Appl. Crystallogr. 37 (2004) 678.<br />

[41] Stadelmann, P. A.: EMS – a s<strong>of</strong>tware package for <strong>electron</strong>-diffraction<br />

analysis and HREM image simulation in materials<br />

science. Ultramicroscopy 21 (1987) 131–145.<br />

[42] Goldsztaub, S.: Study <strong>of</strong> some derivates <strong>of</strong> ferric oxide<br />

(FeOOH, FeO2Na, FeOCl); determination <strong>of</strong> their <strong>structure</strong>s.<br />

Bull. Soc. Franc. Minral. 58 (1935) 6–76.<br />

[43] Takeda, Y.; Nakahara, K.; Nishijima, M.; Imanishi, N.; Yamamoto,<br />

O.; Takano, M.; Kanno, R.: Sodium deintercalation from<br />

sodium iron oxide. Mater. Res. Bull. 29 (1994) 659–666.<br />

[44] Egami, T.; Billinge, S. J. L.: Underneath the Bragg peaks: Structural<br />

analysis <strong>of</strong> complex materials. Pergamon Press Elsevier,<br />

Oxford 2003.<br />

[45] Kanatzidis, M. G.; Billinge, S. J. L.: Beyond crystallography:<br />

<strong>The</strong> study <strong>of</strong> disorder nanocrystallinity and crystallographically<br />

challenged materials. Chem. Commun. (2004) 749–760.<br />

[46] Pr<strong>of</strong>fen, Th.; Billinge, S. J. L.: PDFFIT: A program for full pr<strong>of</strong>ile<br />

structural refinement <strong>of</strong> the atomic pair distribution function.<br />

J. Appl. Crystallogr. 32 (1999) 572–575.<br />

[47] Hahn, T.: International tables for Crystallography, Vol. A.<br />

Kluwer Academic Publishers, Dordrecht 2000.<br />

[48] Nesper, R.; von Schnering, H. G.: Periodic equipotential layers<br />

(PEPS). Z. Kristallogr. 170 (1985) 138–140.<br />

[49] Nesper, R.; von Schnering, H. G.: Periodic potential surfaces in<br />

crystal stuctures. Angew. Chem. Int. Ed. 25 (1986) 110–112.<br />

[50] von Schnering, H. G.; Nesper, R.: How nature adapts chemical<br />

<strong>structure</strong>s to curved surfaces. Angew. Chem. Int. Ed. 26 (1987)<br />

1059–1080.<br />

[51] Allpress, J. G.: Electron microscopy <strong>of</strong> lithium ferrites – precipitation<br />

<strong>of</strong> LiFe5O8 in a-LiFeO2. J. Mater. Sci. 6 (1971) 313.<br />

[52] Tanaka, N.; Cowley, J. M.: High-resolution <strong>electron</strong> microscopy<br />

<strong>of</strong> disordered lthium ferrites. Ultramicroscopy 17 (1985) 365–<br />

377.<br />

[53] Billingham, J.; Bell, P. S.; Lewis, M. H.: Vacancy short-range<br />

order in substoichiometric transition metal carbides and nitrides<br />

with the NaCl <strong>structure</strong>. I. Electron diffraction studies <strong>of</strong> shortrange<br />

ordered compounds. Acta Crystllogr. A28 (1972) 602–<br />

606.<br />

[54] Sauvage, M.; Parthé, E.: Vacancy short-range order in substoichiometric<br />

transition metal carbides and nitrides with the NaCl<br />

<strong>structure</strong>. II. Numerical calculation <strong>of</strong> vacancy arrangement.<br />

Acta Crystllogr. A28 (1972) 607–616.<br />

[55] Sauvage, M.; Parthé, E.: Prediction <strong>of</strong> diffuse intensity surfaces<br />

in short-range ordered ternary derivative <strong>structure</strong>s based on<br />

SnS, NaCl, CsCl, an other stuctures. Acta Crystallogr. A30<br />

(1974) 239–246.<br />

[56] De Ridder, R.; van Tendeloo, G.; Amelinckx, S.: A cluster model<br />

for the transition from short-range order to the long-range<br />

order state in f.c.c based binary systems and its studies <strong>by</strong><br />

means <strong>of</strong> <strong>electron</strong> diffraction. Acta Crystllogr. A32 (1976) 216–<br />

224.<br />

[57] Kennett, H. M.; Rudee, M. L.: Short-range an long-range ordering<br />

<strong>of</strong> vacancies in nonstochiometric zirconium sulfide. Philos.<br />

Mag. 35 (1977) 129–137.<br />

[58] Ohshima, K.; Harada, J.; Morinaga, M.; Georgopoulos, P.; Cohen,<br />

J. B.: Distortion-induced scattering due to vacancies in<br />

NbC0.72. Acta Crystallogr. A44 (1988) 167–176.<br />

[59] Guymont, M.; Thomas, A.; Palazzi, M.: Short-range order in<br />

EuLiS2 <strong>by</strong> <strong>electron</strong> microscopy. Phys. Status Solidi A118 (1990)<br />

29–40.<br />

[60] Withers, R. L.; Otero-Diaz, L. C.; Thompson, J. G.: A TEM<br />

study <strong>of</strong> defect ordering in a calcium yttrium sulfide solid-solution<br />

with an average NaCl type <strong>structure</strong>. J. Solid State Chem.<br />

111 (1994) 283–293.<br />

[61] Pauling, J.: <strong>The</strong> nature <strong>of</strong> the chemical bond. Cornell Univ.<br />

Press, Ithaca 1960.<br />

[62] Brunel, M.; de Bergevin, F.; Gondrand, M.: <strong>The</strong>oretical determination<br />

and existence domains fo different super<strong>structure</strong>s in<br />

A 3+ B 1+ X 2- 2 <strong>of</strong> the sodium chloride type. J. Phys. Chem. Solids<br />

33 (1972) 1927–1941.<br />

[63] Froidevaux, C.; Rossier, D.: NMR investigations <strong>of</strong> the atomic<br />

and <strong>electron</strong>ic <strong>structure</strong> <strong>of</strong> vanadium and niobium carbides. J.<br />

Phys. Chem. Solids 28 (1967) 1197–1209.<br />

[64] Morniroli, J. P.; Steeds, J. W.: Microdiffraction as a tool for<br />

crystal <strong>structure</strong> identification and determination. Ultramicroscopy<br />

45 (1992) 219–239.<br />

[65] Cava, R. J.; Murphy, D. W.; Zahurak, S.; Santoro, A.; Roth, R.<br />

S.: <strong>The</strong> crystal <strong>structure</strong>s <strong>of</strong> the lithium inserted metal oxides<br />

Li0.5TiO2 anatase, LiTi2O4 spinel, and Li2Ti2O4. J. Solid State<br />

Chem. 53 (1984) 64–75.<br />

[66] Lissner, F.; Schleid, Th.: Single crystals <strong>of</strong> NaPrTe2 with Li-<br />

TiO2-type <strong>structure</strong>. Z. Anorg. Allg. Chem. 629 (2003) 1895–<br />

1897.<br />

[67] Hoppe, R.: Madelung constants. Angew. Chem. Int. Ed. 5<br />

(1966) 95.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!