14.11.2013 Views

leachate flow in leakage collection layers due to defects in ...

leachate flow in leakage collection layers due to defects in ...

leachate flow in leakage collection layers due to defects in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Technical Paper by J.P. Giroud, B.A. Gross, R. Bonaparte<br />

and J.A. McKelvey<br />

LEACHATE FLOW IN LEAKAGE<br />

COLLECTION LAYERS DUE TO<br />

DEFECTS IN GEOMEMBRANE LINERS<br />

ABSTRACT: This paper provides analytical and graphical solutions related <strong>to</strong> the <strong>flow</strong> of<br />

<strong>leachate</strong> <strong>in</strong> a <strong>leakage</strong> <strong>collection</strong> layer <strong>due</strong> <strong>to</strong> <strong>defects</strong> <strong>in</strong> the overly<strong>in</strong>g l<strong>in</strong>er (i.e. the primary<br />

l<strong>in</strong>er of a double l<strong>in</strong>er system). The <strong>defects</strong> are assumed <strong>to</strong> be small (e.g. holes <strong>in</strong> geomembrane<br />

l<strong>in</strong>ers). It is shown that <strong>leachate</strong> <strong>flow</strong>s <strong>in</strong> a zone of the <strong>leakage</strong> <strong>collection</strong> layer (the<br />

wetted zone) that is limited by a parabola. A simple relationship is established between the<br />

rate of <strong>leachate</strong> migration through the defect and the maximum thickness of <strong>leachate</strong> <strong>in</strong> the<br />

<strong>leakage</strong> <strong>collection</strong> layer; this relationship depends on the hydraulic conductivity (but not on<br />

the slope) of the <strong>leakage</strong> <strong>collection</strong> layer. Equations are provided <strong>to</strong> calculate the average<br />

head of <strong>leachate</strong> on <strong>to</strong>p of the l<strong>in</strong>er underly<strong>in</strong>g the <strong>leakage</strong> <strong>collection</strong> layer (i.e. the secondary<br />

l<strong>in</strong>er of a double l<strong>in</strong>er system), which is useful for calculat<strong>in</strong>g the rate of <strong>leachate</strong> migration<br />

through that l<strong>in</strong>er. F<strong>in</strong>ally, the case of several leaks randomly distributed is considered, and<br />

equations for the surface area of the wetted zone and the average head are given for this case.<br />

Parametric analyses and design examples provide useful comparisons between the three<br />

types of materials used <strong>in</strong> <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong>: gravel, sand and geonets.<br />

KEYWORDS: Geomembrane, Defect, Leachate migration, Leachate <strong>collection</strong>, Leakage,<br />

Leakage <strong>collection</strong>, L<strong>in</strong>er system, Double l<strong>in</strong>er, Geosynthetic <strong>leakage</strong> <strong>collection</strong> layer.<br />

AUTHORS: J.P. Giroud, Senior Pr<strong>in</strong>cipal, GeoSyntec Consultants, 621 N.W. 53rd Street,<br />

Suite 650, Boca Ra<strong>to</strong>n, Florida 33487, USA, Telephone: 1/561-995-0900, Telefax:<br />

1/561-995-0925, E-mail: jpgiroud@geosyntec.com; B.A. Gross, Senior Project Eng<strong>in</strong>eer,<br />

GeoSyntec Consultants, 1004 East 43rd Street, Aust<strong>in</strong>, Texas 78751, USA, Telephone:<br />

1/512-451-4003, Telefax: 1/512-451-9355, E-mail: bethg@geosyntec.com; R. Bonaparte,<br />

Pr<strong>in</strong>cipal, GeoSyntec Consultants, 1100 Lake Hearn Drive, N.E., Suite 200, Atlanta, Georgia<br />

30342, USA, Telephone: 1/404-705-9500, Telefax: 1/404-705-9400, E-mail:<br />

rudyb@geosyntec.com; and J.A. McKelvey, Senior Project Eng<strong>in</strong>eer, GeoSyntec<br />

Consultants, 2100 Ma<strong>in</strong> Street, Suite 150, Hunt<strong>in</strong>g<strong>to</strong>n Beach, California 92648, USA,<br />

Telephone: 1/714-969-0800, Telefax: 1/714-969-0820, E-mail: jaym@geosyntec.com.<br />

PUBLICATION: Geosynthetics International is published by the Industrial Fabrics<br />

Association International, 345 Cedar St., Suite 800, St. Paul, M<strong>in</strong>nesota 55101-1088, USA,<br />

Telephone: 1/612-222-2508, Telefax: 1/612-222-8215. Geosynthetics International is<br />

registered under ISSN 1072-6349.<br />

DATES: Orig<strong>in</strong>al manuscript received 1 March 1997 and accepted 19 April 1997.<br />

Discussion open until 1 March 1998.<br />

REFERENCE: Giroud, J.P., Gross, B.A., Bonaparte, R. and McKelvey, J.A., 1997,<br />

“Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Defects <strong>in</strong> Geomembrane L<strong>in</strong>ers”,<br />

Geosynthetics International, Vol. 4, Nos. 3-4, pp. 215-292.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

215


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

1 INTRODUCTION<br />

1.1 Leakage Collection Layer<br />

Many landfills, especially those conta<strong>in</strong><strong>in</strong>g hazardous waste, are l<strong>in</strong>ed with a double<br />

l<strong>in</strong>er system. This paper addresses the design of the dra<strong>in</strong>age layer, called “<strong>leakage</strong><br />

<strong>collection</strong> layer”, located between the two l<strong>in</strong>ers, i.e. the primary l<strong>in</strong>er located above<br />

and the secondary l<strong>in</strong>er located below the <strong>leakage</strong> <strong>collection</strong> layer. The purpose of the<br />

<strong>leakage</strong> <strong>collection</strong> layer is <strong>to</strong> collect the <strong>leachate</strong> that migrates (“leaks”) through the<br />

primary l<strong>in</strong>er and <strong>to</strong> convey it <strong>to</strong>ward collec<strong>to</strong>r pipes. The collec<strong>to</strong>r pipes then convey<br />

the <strong>leachate</strong> <strong>to</strong> a sump where it is removed from the landfill. The <strong>leakage</strong> <strong>collection</strong> layer<br />

also allows detection of liquid migrat<strong>in</strong>g (“leak<strong>in</strong>g”) through the primary l<strong>in</strong>er, and<br />

as a result it is also called “<strong>leakage</strong> detection and <strong>collection</strong> layer”. It should not be<br />

called “leak detection layer” s<strong>in</strong>ce it does not detect <strong>in</strong>dividual leaks.<br />

1.2 Leachate Flow<br />

1.2.1 Description of the Flow<br />

To reach the <strong>leakage</strong> <strong>collection</strong> layer, <strong>leachate</strong> first <strong>flow</strong>s through a defect <strong>in</strong> the primary<br />

l<strong>in</strong>er (Figure 1a). In this paper the only mechanism of <strong>leachate</strong> migration through<br />

the primary l<strong>in</strong>er that is considered is advective <strong>flow</strong> through <strong>defects</strong> <strong>in</strong> the l<strong>in</strong>er. Phenomena<br />

such as permeation or diffusion of <strong>leachate</strong> or its constituents through a l<strong>in</strong>er<br />

are not considered <strong>in</strong> this paper.<br />

Leachate <strong>flow</strong> is governed by the hydraulic gradient. After it has passed through a<br />

defect <strong>in</strong> the primary l<strong>in</strong>er, the <strong>leachate</strong> <strong>flow</strong>s more or less vertically through the <strong>leakage</strong><br />

<strong>collection</strong> layer upper part, which is unsaturated (Figure 1a). When the <strong>leachate</strong> reaches<br />

the saturated part of the <strong>leakage</strong> <strong>collection</strong> layer, it <strong>flow</strong>s downgradient, which for a<br />

small fraction of the <strong>leachate</strong> consists of first <strong>flow</strong><strong>in</strong>g upslope then turn<strong>in</strong>g gradually<br />

<strong>to</strong> <strong>flow</strong> downslope with the rest of the <strong>leachate</strong> (Figure 1b). As a result, the <strong>leachate</strong><br />

<strong>flow</strong>s only <strong>in</strong> a portion of the <strong>leakage</strong> <strong>collection</strong> layer called the wetted zone. The<br />

boundary of the wetted zone has approximately the shape of a parabola (Figure 1b),<br />

which will be demonstrated <strong>in</strong> Section 2.2.<br />

1.2.2 Def<strong>in</strong>ition of the Two Cases, “Not Full” and “Full”<br />

The case described above and illustrated <strong>in</strong> Figure 1 is the usual case where the <strong>leachate</strong><br />

phreatic surface <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer is not <strong>in</strong> contact with the primary<br />

l<strong>in</strong>er. In this paper, this case is referred <strong>to</strong> as “the case where the <strong>leakage</strong> <strong>collection</strong> layer<br />

is not full”. The case where the <strong>leachate</strong> phreatic surface <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer<br />

is <strong>in</strong> contact with the primary l<strong>in</strong>er is shown <strong>in</strong> Figure 2. In this paper, this case is referred<br />

<strong>to</strong> as the case where the <strong>leakage</strong> <strong>collection</strong> layer is full <strong>in</strong> a certa<strong>in</strong> area around<br />

the primary l<strong>in</strong>er defect, or more simply “the case where the <strong>leakage</strong> <strong>collection</strong> layer<br />

is full”. In this paper, both cases will be analyzed: the case where the <strong>leakage</strong> <strong>collection</strong><br />

layer is not full and the case where the <strong>leakage</strong> <strong>collection</strong> layer is full.<br />

216 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

(a)<br />

Leachate <strong>in</strong>filtration<br />

Waste<br />

Leachate phreatic<br />

surface <strong>in</strong> the<br />

<strong>leachate</strong> <strong>collection</strong><br />

layer<br />

Leachate <strong>flow</strong><br />

<strong>in</strong> the <strong>leachate</strong><br />

<strong>collection</strong><br />

layer<br />

Leachate phreatic<br />

surface <strong>in</strong> the<br />

<strong>leakage</strong><br />

<strong>collection</strong> layer<br />

Leachate <strong>flow</strong><br />

<strong>in</strong> the <strong>leakage</strong><br />

<strong>collection</strong> layer<br />

Leachate<br />

<strong>collection</strong> layer<br />

Primary l<strong>in</strong>er<br />

with defect<br />

Leakage<br />

<strong>collection</strong> layer<br />

Secondary l<strong>in</strong>er<br />

Small fraction of<br />

<strong>leachate</strong> <strong>flow</strong><strong>in</strong>g upslope<br />

(b)<br />

Secondary l<strong>in</strong>er<br />

Boundary of the<br />

wetted zone<br />

Wetted zone<br />

Defect <strong>in</strong> the<br />

primary l<strong>in</strong>er<br />

Leachate <strong>flow</strong><br />

<strong>in</strong> the <strong>leakage</strong><br />

<strong>collection</strong> layer<br />

Figure 1. Leachate <strong>flow</strong> <strong>in</strong> the <strong>leachate</strong> <strong>collection</strong> layer, through a defect <strong>in</strong> the primary<br />

l<strong>in</strong>er, and <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer <strong>in</strong> the case where the <strong>leakage</strong> <strong>collection</strong> layer is not<br />

filled with <strong>leachate</strong>: (a) cross section; (b) plan view of the secondary l<strong>in</strong>er.<br />

1.3 Scope of the Paper<br />

The paper presents a theoretical analysis of the <strong>flow</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer<br />

result<strong>in</strong>g from a leak through a defect <strong>in</strong> the primary l<strong>in</strong>er. The result<strong>in</strong>g equations make<br />

it possible <strong>to</strong> size <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong>. The analysis also provides the size of the<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

217


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

(a)<br />

Leachate phreatic<br />

surface <strong>in</strong> the<br />

<strong>leachate</strong> <strong>collection</strong><br />

layer<br />

Leachate <strong>flow</strong><br />

<strong>in</strong> the <strong>leachate</strong><br />

<strong>collection</strong><br />

layer<br />

Leachate phreatic<br />

surface <strong>in</strong> the<br />

<strong>leakage</strong><br />

<strong>collection</strong> layer<br />

Leachate <strong>in</strong>filtration<br />

Leachate <strong>flow</strong><br />

<strong>in</strong> the <strong>leakage</strong><br />

<strong>collection</strong> layer<br />

Waste<br />

Leachate<br />

<strong>collection</strong> layer<br />

Primary l<strong>in</strong>er<br />

with defect<br />

Leakage<br />

<strong>collection</strong> layer<br />

Secondary l<strong>in</strong>er<br />

(b)<br />

Secondary l<strong>in</strong>er<br />

Boundary of the<br />

wetted zone<br />

Wetted zone<br />

Defect <strong>in</strong><br />

the primary<br />

l<strong>in</strong>er<br />

Leachate <strong>flow</strong><br />

<strong>in</strong> the <strong>leakage</strong><br />

<strong>collection</strong> layer<br />

Figure 2. Leachate <strong>flow</strong> <strong>in</strong> the <strong>leachate</strong> <strong>collection</strong> layer, through a defect <strong>in</strong> the primary<br />

l<strong>in</strong>er, and <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer <strong>in</strong> the case where the <strong>leakage</strong> <strong>collection</strong> layer is<br />

filled with <strong>leachate</strong> <strong>in</strong> a certa<strong>in</strong> area around the primary l<strong>in</strong>er defect: (a) cross section;<br />

(b) plan view of the secondary l<strong>in</strong>er.<br />

wetted zone and the average head of <strong>leachate</strong> on <strong>to</strong>p of the secondary l<strong>in</strong>er <strong>in</strong> the wetted<br />

zone: this <strong>in</strong>formation is necessary <strong>to</strong> calculate the rate of <strong>leakage</strong> through the secondary<br />

l<strong>in</strong>er. The case where the primary l<strong>in</strong>er has several <strong>defects</strong> is treated; the <strong>defects</strong><br />

are either randomly distributed (“random scenario”) or their location is such that the<br />

rate of <strong>leakage</strong> through the secondary l<strong>in</strong>er is maximum (“worst scenario”). F<strong>in</strong>ally, the<br />

218 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

paper provides an approximate value of the time required for steady-state <strong>flow</strong> conditions<br />

<strong>to</strong> exist and the value of the time required for <strong>leachate</strong> <strong>to</strong> travel from the higher<br />

end <strong>to</strong> the lower end of the <strong>leakage</strong> <strong>collection</strong> layer.<br />

The <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er are assumed <strong>to</strong> be small <strong>in</strong> all directions, such as holes<br />

<strong>in</strong> geomembrane l<strong>in</strong>ers. Therefore, the results of the study presented here<strong>in</strong> are mostly<br />

applicable <strong>to</strong> the case where the primary l<strong>in</strong>er is a geomembrane used alone. However,<br />

the results of the study may also be useful for the case where the primary l<strong>in</strong>er is a composite<br />

l<strong>in</strong>er consist<strong>in</strong>g of a geomembrane placed on a geosynthetic clay l<strong>in</strong>er (i.e. a ben<strong>to</strong>nite<br />

layer encapsulated between two <strong>layers</strong> of geotextile).<br />

The <strong>leakage</strong> <strong>collection</strong> layer considered <strong>in</strong> the study can be a layer of granular material<br />

(e.g. sand or gravel) or a layer of geosynthetic dra<strong>in</strong>age material (e.g. geonet or geocomposite<br />

consist<strong>in</strong>g of a geonet core and two geotextiles). The results of the study are<br />

particularly useful for the case of relatively th<strong>in</strong> <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong>, such as those<br />

consist<strong>in</strong>g of geosynthetic dra<strong>in</strong>age materials.<br />

2 ASSUMPTIONS<br />

2.1 General Assumptions<br />

The follow<strong>in</strong>g general assumptions are made:<br />

S The <strong>leakage</strong> <strong>collection</strong> layer, the primary l<strong>in</strong>er, and the secondary l<strong>in</strong>er have a uniform<br />

slope, β. The thickness of the <strong>leakage</strong> <strong>collection</strong> layer is t LCL (Figure 3).<br />

S The <strong>leachate</strong> <strong>collection</strong> layer is assumed <strong>to</strong> be a porous medium. Therefore, the <strong>flow</strong><br />

of <strong>leachate</strong> is governed by equations for <strong>flow</strong> <strong>in</strong> porous media, such as Darcy’s equation<br />

for the case of lam<strong>in</strong>ar <strong>flow</strong>. Furthermore, the porous medium is assumed <strong>to</strong> be<br />

homogeneous, i.e. it does not conta<strong>in</strong> large open spaces such as pipes and channels.<br />

Therefore, the <strong>flow</strong> of <strong>leachate</strong> is not treated us<strong>in</strong>g equations for <strong>flow</strong> <strong>in</strong> pipes and<br />

channels.<br />

S Flow <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer is lam<strong>in</strong>ar (i.e. Darcy’s equation is applicable)<br />

and the <strong>leakage</strong> <strong>collection</strong> layer material is characterized by its hydraulic conductiv-<br />

Q<br />

t LCL<br />

β<br />

Figure 3.<br />

General assumptions.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

219


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

ity, k. The lam<strong>in</strong>ar <strong>flow</strong> assumption is applicable <strong>to</strong> sand and approximately applicable<br />

<strong>to</strong> gravel and geonets. Furthermore, it is assumed that the hydraulic conductivity,<br />

k, of a given <strong>leakage</strong> <strong>collection</strong> layer material has a unique value, that is the hydraulic<br />

conductivity of the saturated material.<br />

S The <strong>leachate</strong> is assumed <strong>to</strong> have the same density and viscosity as water. This assumption<br />

should be satisfied <strong>in</strong> the case of all modern landfills <strong>due</strong> <strong>to</strong> the generally low<br />

concentration of chemicals <strong>in</strong> <strong>leachate</strong>. As a result, the values of the hydraulic conductivity,<br />

k, of the <strong>leakage</strong> <strong>collection</strong> layer material measured us<strong>in</strong>g water are applicable<br />

<strong>to</strong> <strong>leachate</strong> <strong>flow</strong>.<br />

S The <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er are assumed <strong>to</strong> have a small dimension <strong>in</strong> all directions<br />

of the plane of the geomembrane so that the result<strong>in</strong>g leaks can be treated as<br />

po<strong>in</strong>t source leaks. Examples of such <strong>defects</strong> are circular or quasi-circular holes <strong>in</strong><br />

geomembranes with a diameter (or an equivalent diameter) of less than approximately<br />

10 <strong>to</strong> 20 mm (i.e. a surface area less than approximately 1 <strong>to</strong> 3 cm 2 ). Examples of<br />

<strong>defects</strong> that are not consistent with the above assumption are <strong>defects</strong> with a surface<br />

area larger than approximately 3 cm 2 and <strong>defects</strong> with a great length such as cracks<br />

or a relatively long length of open seam <strong>in</strong> a geomembrane.<br />

S The rate of <strong>leachate</strong> migration through a given defect is Q under steady-state <strong>flow</strong><br />

conditions, which are assumed <strong>to</strong> exist <strong>in</strong> all cases.<br />

S It is assumed that <strong>flow</strong>s through various <strong>defects</strong> do not <strong>in</strong>terfere. In other words, the<br />

wetted zones related <strong>to</strong> different <strong>defects</strong> do not overlap. (Cases where wetted zones<br />

may overlap are discussed <strong>in</strong> Section 4.4.5.)<br />

S Capillarity <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer is not considered (which limits the validity<br />

of the study by exclud<strong>in</strong>g <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong> constructed with f<strong>in</strong>e sands) and<br />

the secondary l<strong>in</strong>er is assumed <strong>to</strong> be impermeable (i.e. it is a geomembrane with no<br />

<strong>defects</strong>, possibly on a clay layer, but not a clay layer alone). Therefore, all of the <strong>leachate</strong><br />

that passes through <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er <strong>flow</strong>s <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong><br />

layer.<br />

Other assumptions will be made as required at various steps <strong>in</strong> the analysis.<br />

2.2 AssumptionsSpecific <strong>to</strong> the Case Where the Leakage Collection Layer is not<br />

Full<br />

As mentioned <strong>in</strong> Section 1.2.2, two cases are discussed <strong>in</strong> this paper: the case where<br />

the <strong>leakage</strong> <strong>collection</strong> layer is not full and the case where the <strong>leakage</strong> <strong>collection</strong> layer<br />

is full. The former will be the lead case, and results for the case where the <strong>leakage</strong><br />

<strong>collection</strong> layer is full will then be derived from results for the case where the <strong>leakage</strong><br />

<strong>collection</strong> layer is not full.<br />

In the case where the <strong>leakage</strong> <strong>collection</strong> layer is not full, the <strong>flow</strong> rate through the<br />

considered <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er is assumed <strong>to</strong> be small enough that the maximum<br />

thickness of <strong>leachate</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer is less than the thickness of the <strong>leakage</strong><br />

<strong>collection</strong> layer. In this case, assumptions regard<strong>in</strong>g the hydraulic gradient and the<br />

shape of the phreatic surface can be made, as described below.<br />

As <strong>in</strong>dicated <strong>in</strong> Section 1.2.1, the <strong>leachate</strong> that, has passed through a defect <strong>in</strong> the primary<br />

l<strong>in</strong>er, first <strong>flow</strong>s more or less vertically through the <strong>leakage</strong> <strong>collection</strong> layer upper<br />

220 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

part, which is unsaturated. Then, when the <strong>leachate</strong> reaches the saturated portion of the<br />

<strong>leakage</strong> <strong>collection</strong> layer, it first <strong>flow</strong>s <strong>in</strong> all directions (Figure 1). It is therefore logical<br />

<strong>to</strong> assume that the <strong>leachate</strong> phreatic surface <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer is a cone with<br />

its apex at Po<strong>in</strong>t A located vertically beneath the defect <strong>in</strong> the primary l<strong>in</strong>er (Figure 4).<br />

Furthermore, for <strong>leachate</strong> <strong>to</strong> <strong>flow</strong> <strong>in</strong> all directions, the hydraulic gradient must be<br />

(a)<br />

Primary l<strong>in</strong>er<br />

Assumed phreatic<br />

surface<br />

Actual phreatic<br />

surface<br />

Defect<br />

β<br />

t LCL<br />

A<br />

t o<br />

β<br />

D o<br />

Secondary<br />

l<strong>in</strong>er<br />

β<br />

O<br />

Horizontal plane<br />

V<br />

(b)<br />

Assumed phreatic<br />

surface<br />

β<br />

D o<br />

A<br />

β<br />

2 D o /tanβ<br />

P<br />

O<br />

Horizontal plane<br />

Pi<br />

Figure 4. Assumed phreatic surface <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer <strong>in</strong> the case where the<br />

<strong>leakage</strong> <strong>collection</strong> layer is not filled with <strong>leachate</strong>: (a) cross section <strong>in</strong> a vertical plane along<br />

the slope and pass<strong>in</strong>g through the defect <strong>in</strong> the primary l<strong>in</strong>er; (b) cross section <strong>in</strong> a vertical<br />

plane perpendicular <strong>to</strong> the plane of the preced<strong>in</strong>g cross section and pass<strong>in</strong>g through the<br />

defect.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

221


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

approximately the same <strong>in</strong> all directions. S<strong>in</strong>ce the hydraulic gradient is closely related<br />

<strong>to</strong> the slope of the phreatic surface, it may then be assumed that the slope of the cone<br />

generatrices is the same <strong>in</strong> all directions. The slope of the phreatic surface (i.e. the slope<br />

of the cone generatrix) <strong>in</strong> the direction of the slope of the <strong>leakage</strong> <strong>collection</strong> layer is<br />

approximately known: it is close <strong>to</strong> the slope angle, β, s<strong>in</strong>ce the <strong>flow</strong> thickness is small<br />

compared <strong>to</strong> the length of the <strong>leakage</strong> <strong>collection</strong> layer. Therefore, it is assumed that the<br />

angle between all generatrices of the cone that form the phreatic surface of <strong>leachate</strong> and<br />

a horizontal plane is β (Figure 4).<br />

From the forego<strong>in</strong>g discussion, it appears that the wetted zone (Figure 1b) is parabolic<br />

s<strong>in</strong>ce the <strong>in</strong>tersection of a cone and a plane parallel <strong>to</strong> a generatrix of the cone is a parabola.<br />

However, the actual wetted zone is only approximately parabolic because several<br />

simplify<strong>in</strong>g assumptions were made, as <strong>in</strong>dicated <strong>in</strong> Section 2.1 and, above, <strong>in</strong> Section<br />

2.2.<br />

2.3 Assumptions Specific <strong>to</strong> the Case Where the Leakage Collection Layer is<br />

Full<br />

The case where “the <strong>leakage</strong> <strong>collection</strong> layer is full” is the case where the <strong>flow</strong> rate<br />

through the considered defect <strong>in</strong> the primary l<strong>in</strong>er is large enough that the thickness of<br />

<strong>leachate</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer is equal <strong>to</strong> the thickness of the <strong>leakage</strong> <strong>collection</strong><br />

layer <strong>in</strong> an area greater than zero around the defect <strong>in</strong> the primary l<strong>in</strong>er. At the periphery<br />

of this area, the <strong>leachate</strong> phreatic surface is <strong>in</strong> contact with the primary l<strong>in</strong>er.<br />

As <strong>in</strong>dicated <strong>in</strong> Section 2.2, the case where the <strong>leakage</strong> <strong>collection</strong> layer is not full is<br />

the lead case. Accord<strong>in</strong>gly, assumptions regard<strong>in</strong>g the hydraulic gradient and the shape<br />

of the phreatic surface (described <strong>in</strong> Section 2.2 for the case where the <strong>leakage</strong> <strong>collection</strong><br />

layer is not full) will be adapted <strong>to</strong> the case where the <strong>leakage</strong> <strong>collection</strong> layer is<br />

full, as shown <strong>in</strong> Section 3.2.<br />

3 RATEOFLEACHATEFLOW<br />

3.1 Rate of Leachate Flow When the Leakage Collection Layer is not Full<br />

The <strong>leakage</strong> <strong>collection</strong> layer is not full if the follow<strong>in</strong>g condition is met:<br />

t<br />

o<br />

£ t<br />

LCL<br />

(1)<br />

where: t o = maximum thickness of <strong>leachate</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer, which occurs<br />

at the defect of the primary l<strong>in</strong>er, i.e. at the apex of the phreatic surface (Figure 4a); and<br />

t LCL = thickness of the <strong>leakage</strong> <strong>collection</strong> layer (Figures 3 and 4a).<br />

In the case where the <strong>leakage</strong> <strong>collection</strong> layer is not full, the vertical cross section of<br />

the <strong>flow</strong> <strong>in</strong> a plane pass<strong>in</strong>g through the defect and conta<strong>in</strong><strong>in</strong>g the horizontal con<strong>to</strong>ur<br />

l<strong>in</strong>es of the l<strong>in</strong>ers (Figure 4b) is a triangle whose surface area is:<br />

S= 2 /tanb<br />

D o<br />

(2)<br />

222 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

where: D o = depth of <strong>leachate</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer at the primary l<strong>in</strong>er defect<br />

(i.e. at the apex of the phreatic surface); and β = angle of the slope of the <strong>leakage</strong> <strong>collection</strong><br />

layer, which is also the angle of the cone that forms the assumed phreatic surface.<br />

The <strong>leachate</strong> depth is measured vertically, whereas the <strong>leachate</strong> thickness is measured<br />

perpendicularly <strong>to</strong> the l<strong>in</strong>ers. The follow<strong>in</strong>g general (and classical) relationship exists<br />

between the <strong>leachate</strong> head on <strong>to</strong>p of a l<strong>in</strong>er, h, the <strong>leachate</strong> depth, D, and the <strong>leachate</strong><br />

thickness, t:<br />

h = t cosb<br />

= D cos<br />

2 b<br />

(3)<br />

Therefore, at the apex of the phreatic surface, the follow<strong>in</strong>g relationship exists between<br />

the <strong>leachate</strong> head on <strong>to</strong>p of the secondary l<strong>in</strong>er, h o , the <strong>leachate</strong> thickness, t o ,and<br />

the <strong>leachate</strong> depth, D o :<br />

h = t cosb<br />

= D<br />

o o o<br />

cos<br />

2 b<br />

(4)<br />

The <strong>flow</strong> cross section area perpendicular <strong>to</strong> the <strong>flow</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer,<br />

S F , is the projection of S, hence:<br />

S<br />

F<br />

=<br />

Scosb<br />

(5)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 2, 4 and 5 gives:<br />

S<br />

F<br />

= t<br />

2 /s<strong>in</strong>b<br />

o<br />

(6)<br />

Flow <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer is governed by Darcy’s equation:<br />

Q=<br />

kiS F<br />

(7)<br />

where: Q = steady-state rate of <strong>leachate</strong> <strong>flow</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer, which results<br />

from a defect <strong>in</strong> the primary l<strong>in</strong>er and which is, therefore, equal <strong>to</strong> the rate of <strong>leachate</strong><br />

migration through the defect; and i = hydraulic gradient <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong><br />

layer.<br />

As discussed <strong>in</strong> Section 2.2, the slope of the <strong>leachate</strong> phreatic surface <strong>in</strong> the <strong>leakage</strong><br />

<strong>collection</strong> layer is extremely close <strong>to</strong> the l<strong>in</strong>er slope angle β. Therefore, the hydraulic<br />

gradient is virtually equal <strong>to</strong> the classical value of the hydraulic gradient for <strong>flow</strong> parallel<br />

<strong>to</strong> a slope, which is:<br />

i = s<strong>in</strong> b<br />

(8)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 6, 7 and 8 gives:<br />

2<br />

Q=<br />

k t o<br />

(9)<br />

hence:<br />

t<br />

o<br />

=<br />

Q<br />

k<br />

(10)<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

223


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

It appears that, when the <strong>leakage</strong> <strong>collection</strong> layer is not full, there is an extremely simple<br />

relationship between the rate of <strong>leachate</strong> migration through the primary l<strong>in</strong>er defect,<br />

Q, and the thickness of <strong>leachate</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer beneath the defect, t o .<br />

It is <strong>in</strong>terest<strong>in</strong>g <strong>to</strong> note that this relationship does not depend on the size of the defect<br />

<strong>in</strong> the primary l<strong>in</strong>er or on the slope of the <strong>leakage</strong> <strong>collection</strong> layer.<br />

An approximation that was made <strong>to</strong> establish Equations 9 and 10 was <strong>to</strong> assume that<br />

the downslope <strong>flow</strong> l<strong>in</strong>e from A (i.e. AB <strong>in</strong> Figure 4a) is parallel <strong>to</strong> the l<strong>in</strong>er. This assumption<br />

is close <strong>to</strong> reality as discussed <strong>in</strong> Section 2.2. However, the actual <strong>flow</strong> l<strong>in</strong>e<br />

from A is below L<strong>in</strong>e AB as the <strong>flow</strong> thickness decreases <strong>in</strong> the downslope direction,<br />

as discussed at the end of Section 5.1.2. Therefore, t o should only be regarded as the <strong>flow</strong><br />

thickness at a primary l<strong>in</strong>er defect, and it is the maximum <strong>flow</strong> thickness.<br />

S<strong>in</strong>ce the simple relationship expressed by Equations 9 and 10 was demonstrated for<br />

the case when the <strong>leakage</strong> <strong>collection</strong> layer is not full, the condition expressed by Equation<br />

1 must be met for Equations 9 and 10 <strong>to</strong> be valid. Comb<strong>in</strong><strong>in</strong>g Equations 1 and 10<br />

gives the follow<strong>in</strong>g equation, which is another way <strong>to</strong> express the condition that should<br />

be met <strong>to</strong> ensure that the <strong>leakage</strong> <strong>collection</strong> layer is not full:<br />

t<br />

LCL<br />

≥ t =<br />

LCL full<br />

where t LCLfull is the m<strong>in</strong>imum thickness that a <strong>leakage</strong> <strong>collection</strong> layer with a hydraulic<br />

conductivity k should have <strong>to</strong> conta<strong>in</strong>, without be<strong>in</strong>g full at any location, the <strong>leachate</strong><br />

<strong>flow</strong> which results from a defect <strong>in</strong> the primary l<strong>in</strong>er.<br />

The follow<strong>in</strong>g equation, derived from Equation 11, is another way <strong>to</strong> express the condition<br />

that should be met <strong>to</strong> ensure that the <strong>leakage</strong> <strong>collection</strong> layer is not full:<br />

Q ≤ Q = kt<br />

full<br />

where Q full is the maximum steady-state rate of <strong>leachate</strong> migration through a defect <strong>in</strong><br />

the primary l<strong>in</strong>er that a <strong>leakage</strong> <strong>collection</strong> layer, with a thickness t LCL and a hydraulic<br />

conductivity k, can accommodate without be<strong>in</strong>g filled with <strong>leachate</strong>.<br />

It is important <strong>to</strong> remember that the subscript full corresponds <strong>to</strong> a m<strong>in</strong>imum thickness<br />

of the <strong>leakage</strong> <strong>collection</strong> layer and <strong>to</strong> a maximum rate of <strong>leachate</strong> migration (which is<br />

also the maximum <strong>flow</strong> rate <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer). It is noteworthy that the<br />

m<strong>in</strong>imum thickness of the <strong>leakage</strong> <strong>collection</strong> layer, t LCLfull , and the maximum <strong>flow</strong> rate,<br />

Q full , which are required <strong>to</strong> ensure that the <strong>leakage</strong> <strong>collection</strong> layer can conta<strong>in</strong>, without<br />

be<strong>in</strong>g full, the <strong>flow</strong> that results from a defect <strong>in</strong> the primary l<strong>in</strong>er, do not depend on the<br />

slope of the <strong>leakage</strong> <strong>collection</strong> layer.<br />

It is not impossible <strong>to</strong> design a <strong>leakage</strong> <strong>collection</strong> layer with a thickness less than the<br />

value t LCLfull given by Equation 11, i.e. where the <strong>flow</strong> rate is greater than Q full def<strong>in</strong>ed<br />

by Equation 12. In this case, the <strong>leakage</strong> <strong>collection</strong> layer is filled with <strong>leachate</strong> <strong>in</strong> a certa<strong>in</strong><br />

area around the defect of the primary l<strong>in</strong>er (i.e. “the <strong>leachate</strong> <strong>collection</strong> layer is<br />

full”). This case is discussed <strong>in</strong> Section 3.2.<br />

2<br />

LCL<br />

Q<br />

k<br />

(11)<br />

(12)<br />

224 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

3.2 Rate of Leachate Flow When the Leachate Collection Layer is Full<br />

If the thickness of the <strong>leakage</strong> <strong>collection</strong> layer is less than t LCLfull expressed by Equation<br />

11 (or if the rate of <strong>leachate</strong> migration through a primary l<strong>in</strong>er defect is greater than<br />

Q full expressed by Equation 12, which is equivalent), the <strong>leakage</strong> <strong>collection</strong> layer is<br />

filled with <strong>leachate</strong> <strong>in</strong> a certa<strong>in</strong> area around the defect. Follow<strong>in</strong>g the approach described<br />

<strong>in</strong> Section 2.2, it may then be assumed that the <strong>leachate</strong> phreatic surface <strong>in</strong> the<br />

<strong>leakage</strong> <strong>collection</strong> layer is a truncated cone (Figure 5). The virtual apex of the truncated<br />

cone, Ai, is above the <strong>leakage</strong> <strong>collection</strong> layer (i.e. above the primary l<strong>in</strong>er, which is<br />

the upper boundary of the <strong>leakage</strong> <strong>collection</strong> layer). The virtual <strong>leachate</strong> depth, D o ,and<br />

the virtual <strong>leachate</strong> thickness, t o , are related <strong>to</strong> the actual <strong>leachate</strong> head, h o , through<br />

Equation 4, and the virtual <strong>leachate</strong> thickness t o is greater than the thickness of the <strong>leachate</strong><br />

<strong>collection</strong> layer:<br />

t<br />

o<br />

> t<br />

LCL<br />

(13)<br />

The surface area of the vertical cross section of the <strong>flow</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer<br />

(Figure 5) is expressed by:<br />

2 2<br />

D D D<br />

o<br />

b o<br />

-<br />

LCLg<br />

DLCL ( 2 Do - DLCL<br />

)<br />

S = -<br />

=<br />

(14)<br />

tan b tan b tan b<br />

where D LCL is the depth of the <strong>leakage</strong> <strong>collection</strong> layer.<br />

The depth is measured vertically whereas the thickness is measured perpendicularly<br />

<strong>to</strong> the slope, hence, <strong>in</strong> accordance with Equation 3:<br />

t<br />

LCL<br />

= D cosb<br />

LCL<br />

(15)<br />

Us<strong>in</strong>g the demonstration presented <strong>in</strong> Section 2.2, i.e. comb<strong>in</strong><strong>in</strong>g Equations 4, 5, 7,<br />

8, 14 and 15, gives:<br />

Q= k t ( 2t - t )<br />

LCL o LCL<br />

(16)<br />

Primary l<strong>in</strong>er<br />

β<br />

A<br />

β<br />

D LCL<br />

D o<br />

Secondary l<strong>in</strong>er<br />

Figure 5. Vertical cross section of the assumed phreatic surface <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong><br />

layer <strong>in</strong> the case where the <strong>leakage</strong> <strong>collection</strong> layer is filled with <strong>leachate</strong> <strong>in</strong> a certa<strong>in</strong> area<br />

around the primary l<strong>in</strong>er defect.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

225


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

Know<strong>in</strong>g (or assum<strong>in</strong>g) the <strong>leachate</strong> head, h o , on <strong>to</strong>p of the secondary l<strong>in</strong>er vertically<br />

beneath the primary l<strong>in</strong>er defect, one may derive the virtual <strong>leachate</strong> thickness, t o ,us<strong>in</strong>g<br />

Equation 4. Then, know<strong>in</strong>g t o , t LCL and k, one may use Equation 16 <strong>to</strong> calculate the rate<br />

of <strong>leachate</strong> <strong>flow</strong> through a defect that the <strong>leakage</strong> <strong>collection</strong> layer can convey.<br />

The follow<strong>in</strong>g equation can be derived from Equation 16:<br />

t<br />

o<br />

F<br />

HG<br />

tLCL<br />

= +<br />

2<br />

Q<br />

kt<br />

1<br />

2<br />

LCL<br />

I<br />

KJ<br />

(17)<br />

The follow<strong>in</strong>g equation can be derived from Equations 13 and 16:<br />

F Q<br />

tLCL<br />

= <strong>to</strong><br />

1− 1−<br />

2<br />

kt<br />

HG<br />

o<br />

I<br />

KJ<br />

(18)<br />

Equation 18 is valid only if the follow<strong>in</strong>g condition is met:<br />

2<br />

Q ≤ k t o<br />

(19)<br />

It should be noted that if t LCL = t o , i.e. if the <strong>leakage</strong> <strong>collection</strong> layer is filled with <strong>leachate</strong><br />

at only one po<strong>in</strong>t, i.e. at the location of the primary l<strong>in</strong>er defect, Equation 16 is<br />

equivalent <strong>to</strong> Equation 9.<br />

3.3 Parametric Study<br />

Us<strong>in</strong>g the equations presented <strong>in</strong> Sections 3.1 and 3.2 it is possible <strong>to</strong> compare the<br />

<strong>flow</strong> capacity of different <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong> <strong>in</strong> case of a defect <strong>in</strong> the primary<br />

l<strong>in</strong>er. In Table 1, three different <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong> are compared:<br />

S a geonet with a thickness of 5 mm and a hydraulic transmissivity result<strong>in</strong>g <strong>in</strong> a hydraulic<br />

conductivity (obta<strong>in</strong>ed by divid<strong>in</strong>g the hydraulic transmissivity by the thickness)<br />

of 1 × 10 -1 m/s;<br />

S a gravel layer with a thickness of 300 mm and a hydraulic conductivity of 1 × 10 -1<br />

m/s; and<br />

S a sand layer with a thickness of 300 mm and a hydraulic conductivity of 1 × 10 -3 m/s.<br />

The first two <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong> have the same hydraulic conductivity and the<br />

last two have the same thickness. In the case of the geonet, the virtual <strong>leachate</strong> thickness,<br />

t o , considered <strong>in</strong> Table 1 is greater than, or equal <strong>to</strong>, the thickness of the <strong>leachate</strong><br />

<strong>collection</strong> layer, t LCL ; therefore, <strong>in</strong> all cases considered <strong>in</strong> Table 1, the geonet is filled<br />

with <strong>leachate</strong> over a certa<strong>in</strong> area around the defect (this area be<strong>in</strong>g zero for t o = 5 mm).<br />

In the case of the gravel and sand <strong>layers</strong>, the <strong>leachate</strong> thicknesses considered <strong>in</strong> Table<br />

1 are less than, or equal <strong>to</strong>, the thickness of the <strong>leakage</strong> <strong>collection</strong> layer; therefore, <strong>in</strong><br />

all cases considered <strong>in</strong> Table 1, the gravel and sand layer are not filled (or just filled)<br />

with <strong>leachate</strong>, and for these two materials the <strong>leachate</strong> thicknesses, t o ,shown<strong>in</strong>Table<br />

1 are actual (not virtual) thicknesses.<br />

226 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

Table 1. Rate of <strong>leachate</strong> <strong>flow</strong> <strong>in</strong> three different <strong>leachate</strong> <strong>collection</strong> <strong>layers</strong> result<strong>in</strong>g from a<br />

defect <strong>in</strong> the primary l<strong>in</strong>er.<br />

Leachate thickness<br />

(actual or virtual)<br />

Geonet<br />

t LCL =5mm<br />

k =1× 10 -1 m/s<br />

Leakage <strong>collection</strong> layer material<br />

Gravel<br />

t LCL = 300 mm<br />

k =1× 10 -1 m/s<br />

Sand<br />

t LCL = 300 mm<br />

k =1× 10 -3 m/s<br />

t o Q Q Q<br />

(m) (mm) (m 3 /s) (lpd) (m 3 /s) (lpd) (m 3 /s) (lpd)<br />

0.005 5 2.5 × 10 -6 216 2.5 × 10 -6 216 2.5 × 10 -8 2.16<br />

0.01 10 7.5 × 10 -6 648 1.0 × 10 -5 864 1.0 × 10 -7 8.64<br />

0.05 50 4.75 × 10 -5 4,104 2.5 × 10 -4 21,600 2.5 × 10 -6 216<br />

0.1 100 9.75 × 10 -5 8,424 1.0 × 10 -3 86,400 1.0 × 10 -5 864<br />

0.3 300 2.975 × 10 -4 25,704 9.0 × 10 -3 777,600 9.0 × 10 -5 7,776<br />

Notes: The <strong>leachate</strong> thickness, t o , can be derived from the <strong>leachate</strong> head on <strong>to</strong>p of the secondary l<strong>in</strong>er us<strong>in</strong>g<br />

Equation 4. The <strong>leachate</strong> thickness, t o , isthe actual <strong>leachate</strong> thickness if t o < t LCL and a virtual <strong>leachate</strong> thickness<br />

if t o > t LCL . The tabulated values of the rate of <strong>leachate</strong> <strong>flow</strong>, Q, were calculated us<strong>in</strong>g Equation 9 when t o <<br />

t LCL and Equation 16 when t o > t LCL . Units: 1 m 3 /s = 86,400,000 liters per day (lpd).<br />

It appears from Table 1, that for a given value of t o , i.e. a given value of the head of<br />

<strong>leachate</strong> on <strong>to</strong>p of the secondary l<strong>in</strong>er, h o (see Equation 4), the gravel and the geonet<br />

can convey significantly more <strong>leachate</strong> than the sand. It is <strong>in</strong>terest<strong>in</strong>g <strong>to</strong> compare the<br />

<strong>flow</strong> rates of Table 1 with rates of <strong>leachate</strong> migration through <strong>defects</strong> of geomembranes<br />

used alone (i.e. not part of a composite l<strong>in</strong>er) calculated us<strong>in</strong>g Bernoulli’s equation,<br />

which is expressed as follows:<br />

2 2<br />

Q= 06 . a 2gh = 06 . p( d / 4) 2gh ≈ ( 2/ 3)<br />

d gh<br />

prim prim prim<br />

(20)<br />

where: a = defect area; d = defect diameter; g = acceleration <strong>due</strong> <strong>to</strong> gravity; and h prim<br />

= head of <strong>leachate</strong> on <strong>to</strong>p of the primary l<strong>in</strong>er.<br />

Table 2 gives rates of <strong>leachate</strong> migration through geomembrane <strong>defects</strong> calculated<br />

us<strong>in</strong>g Equation 20. It appears that, with the <strong>leachate</strong> heads that typically exist on the<br />

primary l<strong>in</strong>ers of actively operat<strong>in</strong>g landfills (i.e. landfills that are receiv<strong>in</strong>g waste), and<br />

provided that the geomembrane is used alone (i.e. is not part of a composite l<strong>in</strong>er):<br />

S a small geomembrane defect (e.g. 1 <strong>to</strong> 2 mm diameter), which may occasionally be<br />

undetected dur<strong>in</strong>g construction, results <strong>in</strong> a rate of <strong>leakage</strong> on the order of 100 liters<br />

per day (lpd);<br />

S a geomembrane defect (e.g. 3 <strong>to</strong> 5 mm diameter), which may occasionally occur dur<strong>in</strong>g<br />

construction phases where defect detection may not be possible (e.g. placement<br />

of granular <strong>leachate</strong> <strong>collection</strong> material on geomembrane), results <strong>in</strong> a rate of <strong>leakage</strong><br />

on the order of 1000 lpd (1 m 3 /day); and<br />

S a large geomembrane defect (e.g. 10 mm diameter or more), which may occur under<br />

special circumstances, results <strong>in</strong> a rate of <strong>leakage</strong> of 10,000 lpd (10 m 3 /day) or more.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

227


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

Table 2. Rate of <strong>leachate</strong> migration through a defect <strong>in</strong> a geomembrane primary l<strong>in</strong>er as a<br />

function of the defect diameter and the head of <strong>leachate</strong> on <strong>to</strong>p of the primary l<strong>in</strong>er.<br />

Leachate head on <strong>to</strong>p of the<br />

Geomembrane primary l<strong>in</strong>er defect diameter, d (mm)<br />

primary l<strong>in</strong>er, h prim (mm) 1 2 3 5 10 20 50 100<br />

5 13 51 115 319 1,275 5,101 31,881 127,523<br />

10 18 72 162 451 1,803 7,214 45,086 180,345<br />

50 40 161 363 1,008 4,033 16,131 100,816 403,264<br />

100 57 228 513 1,426 5,703 22,812 142,575 570,301<br />

300 99 395 889 2,469 9.878 39,512 246,948 987,790<br />

Note: The tabulated values of the rate of <strong>leachate</strong> migration, Q, through a geomembrane defect were<br />

calculated us<strong>in</strong>g Bernoulli’s equation (Equation 20) and are expressed <strong>in</strong> liters per day (lpd).<br />

Table 1 shows that, <strong>in</strong> the case of a <strong>leachate</strong> head on <strong>to</strong>p of the secondary l<strong>in</strong>er on the<br />

order of 100 mm, which is possible and acceptable <strong>in</strong> the case of a large leak, the rates<br />

of <strong>leachate</strong> <strong>flow</strong> that can be conveyed by the various <strong>leachate</strong> <strong>collection</strong> <strong>layers</strong> are on<br />

the follow<strong>in</strong>g order: gravel, 100,000 lpd; geonet, 10,000 lpd; and sand, 1,000 lpd.<br />

Therefore, geonets and, <strong>to</strong> a greater extent, gravel are suitable for all of the defect scenarios<br />

mentioned above, whereas sand is not. However, it should be noted that, with a<br />

maximum head on the order of 100 mm, a geonet is full <strong>in</strong> a certa<strong>in</strong> area around the<br />

primary l<strong>in</strong>er defect, whereas a gravel <strong>leakage</strong> <strong>collection</strong> layer is not.<br />

If the primary l<strong>in</strong>er is a composite l<strong>in</strong>er (e.g. a geomembrane on a geosynthetic clay<br />

l<strong>in</strong>er) the rate of <strong>leachate</strong> migration through a geomembrane defect is several orders of<br />

magnitude less than through the same defect <strong>in</strong> a geomembrane used alone. Therefore,<br />

a geonet <strong>leakage</strong> <strong>collection</strong> layer is not likely <strong>to</strong> be filled with <strong>leachate</strong> migrat<strong>in</strong>g<br />

through a composite primary l<strong>in</strong>er.<br />

4 WETTED ZONE<br />

4.1 Shape of the Wetted Zone<br />

4.1.1 Equations of the Parabola<br />

From Section 2.2, it is already known that the wetted zone has the shape of a parabola.<br />

The equation of the projection of this parabola on a horizontal plane will be provided<br />

<strong>in</strong> this section, and any subsequent reference <strong>to</strong> the wetted zone (e.g. equation, surface<br />

area) will be related <strong>to</strong> the projection on a horizontal plane. However, it should be noted<br />

that the width of the parabola is the same <strong>in</strong> the actual parabola (on the plane <strong>in</strong>cl<strong>in</strong>ed<br />

at angle β ) and its projection on a horizontal plane.<br />

Several po<strong>in</strong>ts of the parabola (Figure 6) are known from Figure 4. Thus, Figure 4a<br />

and Equation 4 show that the distance between the projection, O, of the <strong>flow</strong> apex, A,<br />

and the vertex, V, of the parabola is:<br />

228 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

t o /(s<strong>in</strong>β)<br />

P<br />

O<br />

V<br />

Pi<br />

t o /(2 s<strong>in</strong>β)<br />

Y<br />

y<br />

Defect<br />

Wetted zone<br />

x<br />

X<br />

x<br />

W<br />

Figure 6.<br />

Projection on a horizontal plane of the parabolic boundary of the wetted zone.<br />

OV = ( D / 2) / tan b = t / ( 2s<strong>in</strong> b)<br />

o<br />

o<br />

(21)<br />

Figure 4b and Equation 4 show that:<br />

OP = OP ¢ = D / tan b = t / s<strong>in</strong>b<br />

o<br />

o<br />

(22)<br />

S<strong>in</strong>ce OP and OPi are twice the value of OV, O is the focus of the parabola, and<br />

t o /(2s<strong>in</strong>β ) is the focal distance, hence, from the classical equation of a parabola with<br />

the orig<strong>in</strong> of axes at the vertex:<br />

Y<br />

<strong>to</strong><br />

= X s<strong>in</strong> b<br />

2 2<br />

The orig<strong>in</strong> of axes VX and VY is the vertex of the parabola. The follow<strong>in</strong>g relationships<br />

exist between the coord<strong>in</strong>ates, X and Y, <strong>in</strong> the axes VX and VY, and the coord<strong>in</strong>ates,<br />

x and y, <strong>in</strong> the axes Ox and Oy which have their orig<strong>in</strong> at the focus of the parabola:<br />

(23)<br />

t o<br />

X = x + 2s<strong>in</strong>b<br />

(24)<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

229


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

Y<br />

= y<br />

(25)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 23, 24 and 25 gives the equation of the parabola <strong>in</strong> axes Ox and<br />

Oy as follows:<br />

y<br />

2<br />

2<strong>to</strong><br />

x <strong>to</strong><br />

= +<br />

2<br />

s<strong>in</strong>b<br />

s<strong>in</strong> b<br />

2<br />

(26)<br />

Equation 26 can also be written:<br />

y<br />

2<br />

2<br />

F<br />

HG<br />

<strong>to</strong><br />

x<br />

= 1+<br />

2<br />

2<br />

s<strong>in</strong> b<br />

s<strong>in</strong> b<br />

t<br />

o<br />

I<br />

KJ<br />

(27)<br />

4.1.2 Comment on the Development of the Equations<br />

It should be noted that the equation of the parabola was obta<strong>in</strong>ed with a m<strong>in</strong>imum<br />

amount of calculations because it was recognized <strong>in</strong> Section 2.2, us<strong>in</strong>g geometric considerations,<br />

that the curve had <strong>to</strong> be a parabola. Thus, it was straightforward <strong>to</strong> establish<br />

the equation of a parabola pass<strong>in</strong>g by three known po<strong>in</strong>ts, P, Pi and V (Figure 6). If it<br />

had not been recognized that the curve was a parabola, it would have been necessary<br />

<strong>to</strong> use the analytical method <strong>to</strong> determ<strong>in</strong>e the equation of an unknown curve, which consists,<br />

<strong>in</strong> this particular case, of determ<strong>in</strong><strong>in</strong>g <strong>in</strong> polar coord<strong>in</strong>ates the <strong>in</strong>tersection of a<br />

cone and an <strong>in</strong>cl<strong>in</strong>ed plane, and convert<strong>in</strong>g the obta<strong>in</strong>ed equation <strong>in</strong><strong>to</strong> cartesian coord<strong>in</strong>ates.<br />

The senior author has checked that this lengthy method yields Equation 27.<br />

4.1.3 Equations for the Case Where the Leakage Collection Layer is not Full<br />

Comb<strong>in</strong><strong>in</strong>g Equations 10, 23 and 26 gives the follow<strong>in</strong>g equations for the parabola<br />

that delimitates the wetted zone <strong>in</strong> the case where the <strong>leakage</strong> <strong>collection</strong> layer is not full:<br />

2 Q 2 X<br />

Y =<br />

k s<strong>in</strong> b<br />

(28)<br />

hence:<br />

y<br />

y<br />

2<br />

2<br />

2x Q/<br />

k Q<br />

= +<br />

2<br />

s<strong>in</strong> b k s<strong>in</strong> b<br />

F<br />

HG<br />

Q x<br />

1 2 s<strong>in</strong>b<br />

= +<br />

2<br />

k s<strong>in</strong> b Q/<br />

k<br />

I<br />

KJ<br />

(29)<br />

(30)<br />

230 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

4.1.4 Equations for the Case Where the Leakage Collection Layer is Full<br />

Comb<strong>in</strong><strong>in</strong>g Equations 17, 23 and 26 gives the follow<strong>in</strong>g equations for the parabola<br />

that delimitates the wetted zone <strong>in</strong> the case where the <strong>leakage</strong> <strong>collection</strong> layer is full<br />

<strong>in</strong> a certa<strong>in</strong> area around the primary l<strong>in</strong>er defect:<br />

hence:<br />

y<br />

y<br />

2<br />

2<br />

Y<br />

F<br />

HG<br />

2<br />

xtLCL<br />

= 1 +<br />

s<strong>in</strong>b<br />

F<br />

HG<br />

F<br />

HG<br />

I<br />

XtLCL<br />

= 1 +<br />

s<strong>in</strong>b<br />

Q<br />

2<br />

kt<br />

LCL<br />

2<br />

tLCL<br />

Q<br />

= 1+<br />

1<br />

2 2<br />

4 s<strong>in</strong> b kt<br />

LCL<br />

Q<br />

2<br />

kt<br />

LCL<br />

I<br />

KJ<br />

F<br />

HG<br />

2<br />

tLCL<br />

+ 1 +<br />

KJ<br />

4 s<strong>in</strong> b<br />

L<br />

2<br />

I<br />

+<br />

KJ N<br />

M<br />

Q<br />

kt<br />

2 2<br />

LCL<br />

t<br />

LCL<br />

4 x s<strong>in</strong>b<br />

F<br />

HG<br />

1 +<br />

Q<br />

2<br />

kt<br />

LCL<br />

I<br />

KJ<br />

2<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

(31)<br />

(32)<br />

(33)<br />

4.2 Width of the Wetted Zone<br />

4.2.1 Width of the Wetted Zone <strong>in</strong> the General Case<br />

The width of the wetted zone depends on the considered location which is def<strong>in</strong>ed<br />

by its horizontal distance X <strong>to</strong> the vertex, V, of the parabola, or the horizontal distance<br />

x <strong>to</strong> the focus, O, of the parabola (Figure 6).<br />

The width, W, of a parabola def<strong>in</strong>ed by an equation of the Y 2 = aX type is given by:<br />

W<br />

= 2 Y<br />

(34)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 23 and 34 gives:<br />

<strong>to</strong><br />

X<br />

W = 2 2 s<strong>in</strong> b<br />

(35)<br />

where X is the horizontal distance between the vertex of the parabola and the location<br />

where the width of the parabola (i.e. the width of the wetted zone) is evaluated.<br />

Comb<strong>in</strong><strong>in</strong>g Equations 24 and 35 gives:<br />

2<strong>to</strong><br />

x<br />

W = 1+<br />

2 s<strong>in</strong> b<br />

s<strong>in</strong> b t<br />

o<br />

(36)<br />

where x is the horizontal distance between the defect <strong>in</strong> the primary l<strong>in</strong>er and the location<br />

where the width of the wetted zone is evaluated.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

231


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

4.2.2 Width of the Wetted Zone at Special Locations<br />

The width, W o , of the parabola at the location of the defect <strong>in</strong> the primary l<strong>in</strong>er is<br />

given by Equation 36 for x = 0, and is also twice the value of OP given by Equation 22,<br />

hence:<br />

W<br />

o<br />

<strong>to</strong><br />

= 2<br />

s<strong>in</strong> b<br />

For a given <strong>leachate</strong> <strong>collection</strong> layer whose length along the slope has a horizontal<br />

projection L, the maximum value of the width of the wetted zone occurs when the defect<br />

<strong>in</strong> the primary l<strong>in</strong>er is at the high end of the <strong>leakage</strong> <strong>collection</strong> layer slope (Figure 7),<br />

i.e. when:<br />

(37)<br />

x = L<br />

(38)<br />

The maximum width of the wetted zone, W max , is then obta<strong>in</strong>ed by comb<strong>in</strong><strong>in</strong>g Equations<br />

36 and 38:<br />

W<br />

max<br />

2<strong>to</strong><br />

L<br />

= 1+<br />

2 s<strong>in</strong>b<br />

s<strong>in</strong> b t<br />

o<br />

(39)<br />

t o /(2 s<strong>in</strong>β)<br />

Defect<br />

L<br />

Maximum<br />

wetted zone<br />

A wmax<br />

W max<br />

Figure 7. Wetted zone when the defect <strong>in</strong> the primary l<strong>in</strong>er is at the high end of the <strong>leakage</strong><br />

<strong>collection</strong> layer slope (truncated parabola).<br />

Note: The case shown above is identical <strong>to</strong> the two cases shown <strong>in</strong> Figure 8 when x = L, x be<strong>in</strong>g the<br />

distance between the primary l<strong>in</strong>er defect and the lower end of the <strong>leakage</strong> <strong>collection</strong> layer.<br />

232 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

4.2.3 Width of the Wetted Zone <strong>in</strong> the Case Where the Leakage Collection Layer is not<br />

Full<br />

Comb<strong>in</strong><strong>in</strong>g Equations 10, 35, 36, 37 and 39 gives the follow<strong>in</strong>g equations for the case<br />

where the <strong>leakage</strong> <strong>collection</strong> layer is not full (t o < t LCL ), i.e. when the condition expressed<br />

by Equation 11 (or Equation 12, which is equivalent) is met:<br />

W= 2 ( X /s<strong>in</strong> b) ( Q/ k)<br />

32 / 12 / 14 /<br />

L<br />

N<br />

M<br />

Q<br />

W = 2<br />

k<br />

+ 2<br />

s<strong>in</strong> b<br />

Wo = 2<br />

s<strong>in</strong>b<br />

L<br />

N<br />

M<br />

2 Q<br />

Wmax = + 2<br />

s<strong>in</strong> b k<br />

Q<br />

k x s<strong>in</strong> b<br />

Q<br />

k<br />

Q<br />

k L<br />

O<br />

Q<br />

P<br />

12 /<br />

s<strong>in</strong>b<br />

O<br />

Q<br />

P<br />

12 /<br />

(40)<br />

(41)<br />

(42)<br />

(43)<br />

4.2.4 Width of the Wetted Zone <strong>in</strong> the Case Where the Leakage Collection Layer is Full<br />

Comb<strong>in</strong><strong>in</strong>g Equations 17, 35, 36, 37 and 39 gives the follow<strong>in</strong>g equations for the case<br />

where the <strong>leakage</strong> <strong>collection</strong> layer is full (t o > t LCL ), i.e. when the condition expressed<br />

by Equation 11 (or Equation 12, which is equivalent) is not met:<br />

F<br />

HG<br />

L<br />

N<br />

M<br />

XtLCL<br />

Q<br />

W = 2 1+<br />

2<br />

s<strong>in</strong>b<br />

kt<br />

W t Q<br />

LCL<br />

= 1+<br />

1<br />

2<br />

s<strong>in</strong>b<br />

kt<br />

W<br />

o<br />

LCL<br />

F<br />

HG<br />

L<br />

I<br />

+<br />

KJ N<br />

M<br />

F<br />

HG<br />

t<br />

LCL<br />

LCL<br />

IO<br />

KJ<br />

Q<br />

P<br />

12 /<br />

4 x s<strong>in</strong>b<br />

F Q<br />

1 +<br />

2<br />

kt<br />

HG<br />

tLCL<br />

Q<br />

= +<br />

s<strong>in</strong>b 1 2<br />

kt<br />

LCL<br />

I<br />

KJ<br />

LCL<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

12 /<br />

(44)<br />

(45)<br />

(46)<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

233


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

W<br />

max<br />

F<br />

HG<br />

tLCL<br />

Q<br />

= 1+<br />

1<br />

2<br />

s<strong>in</strong>b<br />

kt<br />

LCL<br />

L<br />

I<br />

+<br />

KJ N<br />

M<br />

t<br />

LCL<br />

4 L s<strong>in</strong>b<br />

F<br />

HG<br />

Q<br />

1 +<br />

2<br />

kt<br />

LCL<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

12 /<br />

(47)<br />

4.2.5 Parametric Study<br />

Widths of wetted zones calculated us<strong>in</strong>g equations given <strong>in</strong> Section 4.2 are presented<br />

<strong>in</strong> Table 3. It appears that the width of the wetted zone <strong>in</strong>creases for <strong>in</strong>creas<strong>in</strong>g rates of<br />

<strong>flow</strong> through the geomembrane defect and for decreas<strong>in</strong>g hydraulic conductivities and<br />

slopes of the <strong>leakage</strong> <strong>collection</strong> layer.<br />

4.3 Surface Area of the Wetted Zone<br />

4.3.1 Expressions for the Surface Area of the Wetted Zone<br />

The surface area of a parabola is given by the follow<strong>in</strong>g equation:<br />

A=( 23 / ) WX<br />

(48)<br />

Table 3. Width of the wetted zone at a 20 m horizontal distance from a defect <strong>in</strong> the<br />

geomembrane primary l<strong>in</strong>er for a 2% slope, W 20(2%) , and for a 1V:3H slope, W 20(1/3) .<br />

Rate of <strong>flow</strong><br />

through the<br />

geomembrane<br />

defect<br />

Geonet<br />

t LCL =5mm<br />

k =1× 10 -1 m/s<br />

Leakage <strong>collection</strong> layer material<br />

Gravel<br />

t LCL = 300 mm<br />

k =1× 10 -1 m/s<br />

Sand<br />

t LCL = 300 mm<br />

k =1× 10 -3 m/s<br />

10 lpd<br />

(1.16 × 10 -7 m 3 /s)<br />

Not full, t o<br />

W 20(2%)<br />

W 20(1/3)<br />

= 1.1 mm<br />

= 2.94 m<br />

= 0.74 m<br />

Not full, t o<br />

W 20(2%)<br />

W 20(1/3)<br />

= 1.1 mm<br />

= 2.94 m<br />

= 0.74 m<br />

Not full, t o<br />

W 20(2%)<br />

W 20(1/3)<br />

= 11 mm<br />

= 9.34 m<br />

= 2.33 m<br />

100 lpd<br />

(1.16 × 10 -6 m 3 /s)<br />

Not full, t o<br />

W 20(2%)<br />

W 20(1/3)<br />

= 3.4 mm<br />

= 5.23 m<br />

= 1.31 m<br />

Not full, t o<br />

W 20(2%)<br />

W 20(1/3)<br />

= 3.4 mm<br />

= 5.23 m<br />

= 1.31 m<br />

Not full, t o<br />

W 20(2%)<br />

W 20(1/3)<br />

= 34 mm<br />

= 16.84 m<br />

= 4.15 m<br />

1,000 lpd<br />

(1.16 × 10 -5 m 3 /s)<br />

Full,<br />

W 20(2%)<br />

W 20(1/3)<br />

t o =14mm<br />

= 10.70 m<br />

= 2.67 m<br />

Not full, t o<br />

W 20(2%)<br />

W 20(1/3)<br />

= 11 mm<br />

= 9.34 m<br />

= 2.33 m<br />

Not full, t o<br />

W 20(2%)<br />

W 20(1/3)<br />

= 108 mm<br />

= 31.24 m<br />

= 7.41 m<br />

10,000 lpd<br />

(1.16 × 10 -4 m 3 /s)<br />

Full,<br />

W 20(2%)<br />

W 20(1/3)<br />

t o =118mm<br />

= 32.94 m<br />

= 7.77 m<br />

Not full, t o<br />

W 20(2%)<br />

W 20(1/3)<br />

= 34 mm<br />

= 16.84 m<br />

= 4.15 m<br />

Full, t o = 343 mm<br />

W 20(2%) = 62.28 m<br />

= 13.29 m<br />

W 20(1/3)<br />

Notes: The values of t o were calculated us<strong>in</strong>g Equation 10 (when the <strong>leakage</strong> <strong>collection</strong> layer is not full) or<br />

Equation 17 (when the <strong>leakage</strong> <strong>collection</strong> layer is full). Values of W 20 were calculated us<strong>in</strong>g Equation 36. They<br />

could have been obta<strong>in</strong>ed us<strong>in</strong>g Equation 41 (when the <strong>leakage</strong> <strong>collection</strong> layer is not full) or Equation 45<br />

(when the <strong>leakage</strong> <strong>collection</strong> layer is full). The <strong>leakage</strong> <strong>collection</strong> layer is full when t o > t LCL (Equation 13).<br />

Units: lpd = liter per day = 1.16 × 10 -8 m 3 /s.<br />

234 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

where: W = width of the base of the parabola; and X = distance between the vertex and<br />

the base.<br />

Therefore, from Equations 35 and 48, the surface area of the wetted zone, A w , between<br />

the vertex, V, and the horizontal l<strong>in</strong>e at the distance X from the vertex is:<br />

A<br />

w<br />

= 4 3<br />

2<strong>to</strong><br />

32 /<br />

X<br />

s<strong>in</strong> b<br />

(49)<br />

The surface area of the wetted zone can also be expressed as follows by comb<strong>in</strong><strong>in</strong>g<br />

Equations 24, 36 and 48:<br />

A<br />

w<br />

F 2 <strong>to</strong><br />

=<br />

H G I K J<br />

F<br />

+<br />

3 s<strong>in</strong> b HG<br />

x<br />

1 2 s<strong>in</strong> b<br />

t<br />

o<br />

I<br />

KJ<br />

2 32 /<br />

However, as shown <strong>in</strong> Figure 8, Equations 49 and 50 are valid only if the follow<strong>in</strong>g<br />

conditions are met:<br />

<strong>to</strong><br />

L<br />

2s<strong>in</strong>b £<br />

<strong>to</strong><br />

X L<br />

2s<strong>in</strong>b £ £<br />

Comb<strong>in</strong><strong>in</strong>g Equations 24 and 52 gives the follow<strong>in</strong>g alternative expression for the<br />

condition expressed by Equation 52:<br />

(50)<br />

(51)<br />

(52)<br />

0<br />

£ x £ L -<br />

2<br />

t o<br />

s<strong>in</strong>b<br />

(53)<br />

If the two conditions expressed by Equations 51 and 52 (or 53, which is equivalent)<br />

are not met, the parabola is truncated (Figure 8). When the parabola is truncated (i.e.<br />

<strong>in</strong> the two cases illustrated <strong>in</strong> Figure 8), the surface area of the wetted zone is obta<strong>in</strong>ed<br />

by subtract<strong>in</strong>g the surface area of the truncated portion from the surface area expressed<br />

by Equation 49. The result<strong>in</strong>g equation is:<br />

A<br />

w<br />

4 <strong>to</strong><br />

= X - ( X - L)<br />

3 s<strong>in</strong>b<br />

2 32 / 32 /<br />

(54)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 24 and 54 gives:<br />

A<br />

w<br />

2 F<br />

=<br />

H G<br />

3<br />

<strong>to</strong><br />

s<strong>in</strong>b<br />

I LF<br />

+<br />

KJ 1<br />

NM<br />

HG<br />

I<br />

F<br />

HG<br />

2 3/ 2 3/<br />

2<br />

2 x s<strong>in</strong> b 2( L - x) s<strong>in</strong>b<br />

- 1 -<br />

<strong>to</strong><br />

KJ<br />

<strong>to</strong><br />

It should be noted that Equations 54 and 55, which give the surface area of the truncated<br />

wetted zone, are valid under two different sets of conditions:<br />

S Set 1 (Figure 8a):<br />

I<br />

KJ<br />

O<br />

QP<br />

(55)<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

235


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

(a)<br />

t t o<br />

< L L < X < L + o<br />

t L – o < x < L<br />

2s<strong>in</strong>β<br />

or<br />

2s<strong>in</strong>β 2s<strong>in</strong>β<br />

t o /(2 s<strong>in</strong>β)<br />

L<br />

x<br />

X<br />

(b)<br />

t o<br />

2s<strong>in</strong>β<br />

> L<br />

t o<br />

2s<strong>in</strong>β<br />

< X < L + or 0 <strong>in</strong>stead of ≤ and ≥).<br />

Notes: The dot represents the horizontal projection of the location of the primary l<strong>in</strong>er defect and L is the<br />

horizontal projection of the length of the <strong>leakage</strong> <strong>collection</strong> layer. The limit case for x = L can exist for any<br />

value of t o /(2L s<strong>in</strong>β); it is illustrated <strong>in</strong> Figure 7.<br />

<strong>to</strong><br />

L<br />

2s<strong>in</strong>b £<br />

and<br />

t o<br />

L £ X £ L + 2s<strong>in</strong>b<br />

(57)<br />

the condition expressed by Equation 57 be<strong>in</strong>g equivalent <strong>to</strong>:<br />

236 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

<strong>to</strong><br />

L - £ x £ L<br />

2s<strong>in</strong>b<br />

(58)<br />

S Set 2 (Figure 8b):<br />

<strong>to</strong><br />

L<br />

2s<strong>in</strong>b ≥<br />

(59)<br />

and<br />

<strong>to</strong><br />

<strong>to</strong><br />

£ X £ L +<br />

2 s<strong>in</strong>b<br />

2 s<strong>in</strong>b<br />

(60)<br />

the condition expressed by Equation 60 be<strong>in</strong>g equivalent <strong>to</strong>:<br />

0 ≤ x ≤<br />

L<br />

(61)<br />

4.3.2 Maximum Surface Area of the Wetted Zone<br />

For a given <strong>leachate</strong> <strong>collection</strong> layer whose length along the slope has a horizontal<br />

projection L, the maximum value of the surface area of the wetted zone, A wmax , occurs<br />

when the defect <strong>in</strong> the primary l<strong>in</strong>er is at the high end of the <strong>leakage</strong> <strong>collection</strong> layer<br />

slope (Figure 7), i.e. when x = L (Equation 38).<br />

In this case, the parabola is truncated (Figure 7) and the equation for the surface area<br />

of the wetted zone is obta<strong>in</strong>ed by comb<strong>in</strong><strong>in</strong>g Equations 38 and 55, hence:<br />

A<br />

wmax<br />

F 2 <strong>to</strong><br />

=<br />

H G I L<br />

K J F<br />

+<br />

3 s<strong>in</strong> b<br />

NM<br />

HG<br />

2 32<br />

L<br />

1 2 s<strong>in</strong> b<br />

1<br />

t<br />

o<br />

/<br />

I O<br />

-<br />

KJ QP<br />

The same equation would have been obta<strong>in</strong>ed by comb<strong>in</strong><strong>in</strong>g Equations 24, 38 and 54.<br />

(A table and a graph for calculat<strong>in</strong>g A wmax will be provided <strong>in</strong> Section 4.4.3.)<br />

4.3.3 Summary of the Cases<br />

Regard<strong>in</strong>g the geometry of the wetted zone, there are two major cases depend<strong>in</strong>g on<br />

whether the parabola is complete (Figures 1, 2 and 6) or truncated. When the parabola<br />

is truncated, there are two cases, as illustrated <strong>in</strong> Figure 8, with a limit case illustrated<br />

<strong>in</strong> Figure 7. Therefore, there is a <strong>to</strong>tal of four cases, one case of a complete parabola<br />

and three cases of truncated parabolas. (These cases will be considered aga<strong>in</strong> <strong>in</strong> Section<br />

5.1.1.)<br />

4.3.4 Actual and Projected Surface Areas<br />

It should be remembered that, as <strong>in</strong>dicated at the beg<strong>in</strong>n<strong>in</strong>g of Section 4.1.1, the projection<br />

of the wetted zone on a horizontal plane is considered <strong>in</strong> the analysis, which is<br />

(62)<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

237


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

more convenient for theoretical analyses as well as practical applications. However, if<br />

the actual surface area of the wetted zone, A w actual , were needed, it could be derived from<br />

the surface area given above us<strong>in</strong>g the follow<strong>in</strong>g equation:<br />

A = A /cosb<br />

(63)<br />

wactual<br />

The various widths of the wetted zone are unchanged <strong>in</strong> the projection.<br />

4.3.5 Surface Area of the Wetted Zone <strong>in</strong> the Case Where the Leakage Collection Layer<br />

is not Full<br />

Comb<strong>in</strong><strong>in</strong>g Equation 10 with Equations 49 <strong>to</strong> 62 gives the follow<strong>in</strong>g equations for the<br />

case where the <strong>leakage</strong> <strong>collection</strong> layer is not full (t o < t LCL ), i.e. when the condition expressed<br />

by Equation 11 (or Equation 12, which is equivalent) is met:<br />

S When the parabola is complete, i.e. when the follow<strong>in</strong>g conditions are met:<br />

w<br />

Q/<br />

k<br />

L<br />

2 s<strong>in</strong>b £<br />

(64)<br />

and<br />

Q/<br />

k<br />

X L<br />

2 s<strong>in</strong>b £ £<br />

(65)<br />

the latter be<strong>in</strong>g equivalent <strong>to</strong><br />

0<br />

£ x £ L -<br />

2<br />

Q/<br />

k<br />

s<strong>in</strong>b<br />

(66)<br />

the surface area of the wetted zone is expressed by<br />

A = ( 4/ 3)( 2/s<strong>in</strong> b) ( Q/ k)<br />

X<br />

w<br />

F<br />

HG<br />

12 / 14 / 32 /<br />

2Q<br />

x<br />

Aw = 1+<br />

2 s<strong>in</strong> b<br />

2<br />

3k<br />

s<strong>in</strong> b Q/<br />

k<br />

I<br />

KJ<br />

32 /<br />

(67)<br />

(68)<br />

S When the parabola is truncated, the surface area of the wetted zone is expressed by:<br />

Aw = ( 4/ 3)( 2/s<strong>in</strong> b) ( Q/ k) X - ( X - L)<br />

L<br />

MF<br />

NHG<br />

12 / 14 / 32 / 32 /<br />

2 Q 2 x s<strong>in</strong>b<br />

2( L - x) s<strong>in</strong>b<br />

Aw = 1 +<br />

- 1 -<br />

2<br />

3 k s<strong>in</strong> b M Q/<br />

kKJ Q/<br />

k<br />

I<br />

F<br />

HG<br />

I<br />

KJ<br />

32 / 32 /<br />

O<br />

QP<br />

(69)<br />

(70)<br />

238 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

Equations 69 and 70 are valid under two different sets of conditions. The first set is:<br />

Q/<br />

k<br />

L<br />

2 s<strong>in</strong>b £<br />

(71)<br />

and<br />

L £ X £ L +<br />

the latter condition be<strong>in</strong>g equivalent <strong>to</strong><br />

Q/<br />

k<br />

2 s<strong>in</strong>b<br />

(72)<br />

Q/<br />

k<br />

L - £ x £ L<br />

2 s<strong>in</strong>b<br />

(73)<br />

The second set of conditions is:<br />

Q/<br />

k<br />

L<br />

2 s<strong>in</strong>b ≥<br />

(74)<br />

and<br />

Q/<br />

k<br />

Q/<br />

k<br />

£ X £ L +<br />

2 s<strong>in</strong>b<br />

2 s<strong>in</strong>b<br />

(75)<br />

the later condition be<strong>in</strong>g equivalent <strong>to</strong><br />

0 < x <<br />

L<br />

(76)<br />

S In the limit case between the case where the parabola is truncated and the case where<br />

it is not, Equations 64 <strong>to</strong> 76 become:<br />

Q/<br />

k<br />

L X<br />

2 s<strong>in</strong>b = =<br />

x = 0<br />

A = 8 w<br />

L<br />

2 / 3<br />

(77)<br />

(78)<br />

(79)<br />

S The surface area of the maximum wetted zone (Figure 7) is derived from Equation<br />

70 for x = L, which gives:<br />

L<br />

F<br />

NM<br />

HG<br />

32 /<br />

I<br />

-<br />

KJ<br />

2Q<br />

L<br />

Awmax = 1+<br />

2 s<strong>in</strong>b<br />

1<br />

2<br />

3k<br />

s<strong>in</strong> b Q/<br />

k<br />

O<br />

QP<br />

(80)<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

239


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

4.3.6 Surface Area of the Wetted Zone <strong>in</strong> the Case Where the Leakage Collection Layer<br />

is Full<br />

Comb<strong>in</strong><strong>in</strong>g Equation 17 with Equations 49 <strong>to</strong> 62 gives the follow<strong>in</strong>g equations for the<br />

case where the <strong>leakage</strong> <strong>collection</strong> layer is full (t o > t LCL ), i.e. when the condition expressed<br />

by Equation 11 (or Equation 12, which is equivalent) is not met:<br />

S When the parabola is complete, i.e. when the follow<strong>in</strong>g conditions are met:<br />

and<br />

tLCL<br />

4 s<strong>in</strong>b<br />

tLCL<br />

4 s<strong>in</strong>b<br />

the latter be<strong>in</strong>g equivalent <strong>to</strong><br />

F<br />

HG<br />

F<br />

HG<br />

Q<br />

kt<br />

1 +<br />

2<br />

LCL<br />

Q<br />

kt<br />

1 +<br />

2<br />

LCL<br />

I<br />

I<br />

£<br />

KJ<br />

tLCL<br />

0 £ x £ L - +<br />

4 s<strong>in</strong>b<br />

L<br />

£ X £ L<br />

KJ<br />

F<br />

HG<br />

Q<br />

1<br />

2<br />

ktLCL<br />

the surface area of the wetted zone is expressed by<br />

A<br />

w<br />

L<br />

M<br />

A<br />

w<br />

L<br />

N<br />

M<br />

F<br />

HG<br />

L<br />

N<br />

M<br />

4 32 / tLCL<br />

= X 1 +<br />

3 s<strong>in</strong>b<br />

F<br />

IO<br />

2<br />

1 tLCL<br />

Q<br />

= 1+<br />

N HG<br />

ktLCLKJ<br />

Q<br />

P 1+<br />

2<br />

6 s<strong>in</strong>b<br />

t<br />

Q<br />

2<br />

kt<br />

LCL<br />

LCL<br />

I<br />

KJ<br />

IO<br />

KJ<br />

Q<br />

P<br />

12 /<br />

4 x s<strong>in</strong>b<br />

F Q<br />

1 +<br />

2<br />

kt<br />

S When the parabola is truncated, the surface area of the wetted zone is expressed by:<br />

A<br />

w<br />

L<br />

F<br />

A<br />

w<br />

F<br />

HG<br />

4 tLCL<br />

= +<br />

3 s<strong>in</strong>b<br />

IO<br />

R<br />

L<br />

S|<br />

M<br />

N<br />

M<br />

T|<br />

2<br />

1 tLCL<br />

Q<br />

= +<br />

N<br />

M 1<br />

HG<br />

ktLCLKJ<br />

Q<br />

P 1+<br />

2<br />

6 s<strong>in</strong>b<br />

| M<br />

t<br />

Q<br />

kt<br />

1<br />

2<br />

LCL<br />

LCL<br />

I<br />

HG<br />

LCL<br />

X - ( X - L)<br />

KJ<br />

32 / 32 /<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

32 /<br />

4 x s<strong>in</strong> b<br />

4( L - x) s<strong>in</strong>b<br />

- 1 -<br />

F Q I<br />

Q<br />

+ P<br />

M<br />

F<br />

1<br />

tLCL<br />

1 +<br />

2<br />

2<br />

kt<br />

kt<br />

HG<br />

LCL<br />

O<br />

P<br />

KJ<br />

Q<br />

L<br />

M<br />

N<br />

HG<br />

LCL<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

32 / 32 /<br />

Equations 86 and 87 are valid under two different sets of conditions. The first set is:<br />

U<br />

V|<br />

W|<br />

(81)<br />

(82)<br />

(83)<br />

(84)<br />

(85)<br />

(86)<br />

(87)<br />

240 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

and<br />

tLCL<br />

4 s<strong>in</strong>b<br />

F<br />

HG<br />

Q<br />

kt<br />

1 +<br />

2<br />

LCL<br />

F<br />

HG<br />

I<br />

£<br />

KJ<br />

tLCL<br />

L £ X £ L + +<br />

4 s<strong>in</strong>b<br />

the latter condition be<strong>in</strong>g equivalent <strong>to</strong><br />

The second set of conditions is:<br />

and<br />

tLCL<br />

4 s<strong>in</strong>b<br />

F<br />

HG<br />

F<br />

HG<br />

tLCL<br />

L - +<br />

4 s<strong>in</strong>b<br />

1 +<br />

tLCL<br />

4 s<strong>in</strong>b<br />

Q<br />

kt<br />

I<br />

F<br />

HG<br />

the latter condition be<strong>in</strong>g equivalent <strong>to</strong><br />

Q<br />

k<br />

1<br />

2<br />

LCL<br />

Q<br />

kt<br />

1 +<br />

2<br />

LCL<br />

L<br />

Q<br />

kt<br />

1<br />

2<br />

LCL<br />

I<br />

I<br />

KJ<br />

£ x £ L<br />

KJ<br />

I<br />

≥<br />

KJ<br />

L<br />

F<br />

HG<br />

tLCL<br />

£ X £ L + 1 +<br />

KJ<br />

4 s<strong>in</strong>b<br />

Q<br />

kt<br />

2 2<br />

LCL<br />

LCL<br />

0 ≤ x ≤<br />

L<br />

I<br />

KJ<br />

(88)<br />

(89)<br />

(90)<br />

(91)<br />

(92)<br />

(93)<br />

S In the limit case between the case where the parabola is truncated and the case where<br />

it is not, Equations 81 <strong>to</strong> 93 become:<br />

tLCL<br />

4 s<strong>in</strong> b<br />

F<br />

HG<br />

Q<br />

kt<br />

1 +<br />

2<br />

LCL<br />

x = 0<br />

I<br />

Aw = 8 L<br />

2 / 3<br />

= L = X<br />

KJ<br />

S The surface area of the maximum wetted zone (Figure 7) is derived from Equation<br />

87 for x = L, which gives:<br />

A<br />

wmax<br />

L<br />

F<br />

IO<br />

R<br />

L<br />

S|<br />

M<br />

N<br />

M<br />

T|<br />

2<br />

1 tLCL<br />

Q<br />

= +<br />

N<br />

M 1<br />

HG<br />

ktLCLKJ<br />

Q<br />

P 1+<br />

2<br />

6 s<strong>in</strong>b<br />

| M<br />

t<br />

LCL<br />

4 L s<strong>in</strong>b<br />

F Q<br />

1 +<br />

2<br />

kt<br />

HG<br />

LCL<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

32 /<br />

U<br />

V|<br />

W|<br />

- 1<br />

(94)<br />

(95)<br />

(96)<br />

(97)<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

241


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

4.4 Wetted Fraction<br />

4.4.1 Scope of Section 4.4<br />

To calculate the rate of <strong>leakage</strong> through the secondary l<strong>in</strong>er, it is useful <strong>to</strong> know what<br />

fraction of the <strong>to</strong>tal surface area of the secondary l<strong>in</strong>er is wetted and what is the average<br />

head of <strong>leachate</strong> over this fraction of the secondary l<strong>in</strong>er. The wetted fraction is determ<strong>in</strong>ed<br />

<strong>in</strong> Sections 4.4.3 and 4.4.4, and the average head will be determ<strong>in</strong>ed <strong>in</strong> Sections<br />

5.1 and 5.2.<br />

In the preced<strong>in</strong>g sections, only one defect <strong>in</strong> the primary l<strong>in</strong>er was considered. This<br />

is no longer the case <strong>in</strong> Section 4.4 because the wetted fraction depends on the number<br />

of <strong>defects</strong> per unit area. In Section 4.4, two scenarios of defect location will be considered:<br />

a scenario where the <strong>defects</strong> are located <strong>to</strong> give the maximum wetted fraction, and<br />

a scenario where the <strong>defects</strong> are at random.<br />

In Section 4.4, a <strong>leakage</strong> <strong>collection</strong> layer whose length <strong>in</strong> the direction of the <strong>flow</strong><br />

has a horizontal projection L, and whose width <strong>in</strong> the direction perpendicular is B, is<br />

considered (Figure 9). The projected surface area of this <strong>leakage</strong> <strong>collection</strong> layer is<br />

therefore:<br />

A<br />

LCL =<br />

LB<br />

(98)<br />

4.4.2 Def<strong>in</strong>itions<br />

Wetted Fraction. The wetted fraction, R w , is def<strong>in</strong>ed as the ratio between the surface<br />

area of the <strong>to</strong>tal wetted zone and the surface area of the <strong>leakage</strong> <strong>collection</strong> layer:<br />

R<br />

w<br />

n<br />

N<br />

=<br />

∑<br />

n<br />

= = 1<br />

A<br />

A<br />

LCL<br />

w<br />

(99)<br />

As shown by the numera<strong>to</strong>r of the fraction, the surface area of the <strong>to</strong>tal wetted zone<br />

is the sum of the surface areas of the wetted zones that correspond <strong>to</strong> every defect <strong>in</strong><br />

the primary l<strong>in</strong>er, the number of <strong>defects</strong> be<strong>in</strong>g N.<br />

Defect Frequency. The frequency of <strong>defects</strong>, F, <strong>in</strong> the primary l<strong>in</strong>er (i.e. the l<strong>in</strong>er overly<strong>in</strong>g<br />

the <strong>leakage</strong> <strong>collection</strong> layer) is def<strong>in</strong>ed as the ratio of the <strong>to</strong>tal number of <strong>defects</strong>,<br />

N, <strong>in</strong> the l<strong>in</strong>er and the surface area of the l<strong>in</strong>er, which is equal <strong>to</strong> the surface area of the<br />

<strong>leakage</strong> <strong>collection</strong> layer:<br />

F =<br />

N<br />

A LCL<br />

(100)<br />

In typical design calculations the frequency of the <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er, F, is<br />

assumed <strong>to</strong> be known. For example, if there are four <strong>defects</strong> per hectare (10,000 m 2 ),<br />

F = 4/(10,000 m 2 ) = (4/10,000) m -2 = (1/2,500) m -2 =4× 10 -4 m -2 .<br />

242 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

(a)<br />

B<br />

L<br />

(b)<br />

W max<br />

B<br />

L<br />

Figure 9. Leakage <strong>collection</strong> layer zones wetted by <strong>leachate</strong> migrat<strong>in</strong>g through several<br />

<strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er, assum<strong>in</strong>g no overlapp<strong>in</strong>g of wetted zones: (a) worst<br />

scenario where all the <strong>defects</strong> are located at the high end of the <strong>leachate</strong> <strong>collection</strong> layer<br />

slope; (b) random scenario where the <strong>defects</strong> are randomly distributed.<br />

Notes: L is the horizontal projection of the length of the <strong>leakage</strong> <strong>collection</strong> layer <strong>in</strong> the direction of the <strong>flow</strong>,<br />

and B is the width of the <strong>leakage</strong> <strong>collection</strong> layer. The dots represent the horizontal projection of the locations<br />

of the primary l<strong>in</strong>er <strong>defects</strong>.<br />

Scenarios. Two defect location scenarios will be considered: (i) the worst scenario<br />

where all of the <strong>defects</strong> are at the high end of the <strong>leakage</strong> <strong>collection</strong> layer slope (Figure<br />

9a); and (ii) the random scenario where the <strong>defects</strong> are randomly distributed (Figure<br />

9b). In both scenarios it is assumed that the frequency of <strong>defects</strong> is small enough that<br />

the wetted zones related <strong>to</strong> each <strong>in</strong>dividual defect do not overlap.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

243


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

4.4.3 Wetted Fraction <strong>in</strong> the Worst Scenario<br />

In the worst scenario (Figure 9a), the <strong>leachate</strong> <strong>flow</strong> through each defect generates a<br />

wetted zone whose surface area is A wmax (Figure 7) given by Equation 62 (which is<br />

equivalent <strong>to</strong> Equation 97 or 80 depend<strong>in</strong>g on whether the <strong>leakage</strong> <strong>collection</strong> layer is<br />

full or not, respectively). Therefore, the surface area of the <strong>to</strong>tal wetted zone for the scenario<br />

where all the <strong>defects</strong> are at the high end of the <strong>leakage</strong> <strong>collection</strong> layer slope is<br />

expressed as follows, if all of the leaks are assumed <strong>to</strong> be equal, which is generally the<br />

case <strong>in</strong> design:<br />

n=<br />

N<br />

∑ Aw<br />

=<br />

n = 1<br />

N A<br />

wmax<br />

(101)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 99 and 101 with R w = R w worst gives:<br />

R<br />

w worst<br />

NA<br />

=<br />

A<br />

wmax<br />

LCL<br />

(102)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 100 and 102 gives:<br />

R<br />

w worst<br />

= FA<br />

w max<br />

(103)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 62 and 103 gives the follow<strong>in</strong>g equation for the wetted fraction<br />

<strong>in</strong> the worst scenario:<br />

R<br />

wworst<br />

2F <strong>to</strong><br />

2 L s<strong>in</strong>b<br />

1<br />

3 s<strong>in</strong>b<br />

t<br />

=<br />

F H G<br />

I LF<br />

+<br />

KJ NM<br />

HG<br />

o<br />

/<br />

I<br />

-<br />

KJ<br />

2 3 2<br />

O<br />

QP<br />

1<br />

(104)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 80 and 103 gives the follow<strong>in</strong>g equation for the worst scenario<br />

when the <strong>leakage</strong> <strong>collection</strong> layer is not full (t o < t LCL ), i.e. when the condition expressed<br />

by Equation 11 (or Equation 12, which is equivalent) is met:<br />

2 FQ<br />

32 /<br />

R L<br />

wworst= 1+ 2L k Q -1O<br />

2 d s<strong>in</strong> b / i<br />

(105)<br />

3k<br />

s<strong>in</strong> b<br />

NM<br />

Comb<strong>in</strong><strong>in</strong>g Equations 97 and 103 gives the follow<strong>in</strong>g equation for the worst scenario<br />

when the <strong>leakage</strong> <strong>collection</strong> layer is full <strong>in</strong> a certa<strong>in</strong> area around the primary l<strong>in</strong>er defect<br />

(t o > t LCL ), i.e. when the condition expressed by Equation 11 (or Equation 12, which is<br />

equivalent) is not met:<br />

R<br />

wworst<br />

L<br />

F<br />

IO<br />

R<br />

L<br />

S|<br />

M<br />

N<br />

M<br />

T|<br />

2<br />

F tLCL<br />

Q<br />

= +<br />

N<br />

M 1<br />

HG<br />

ktLCLKJ<br />

Q<br />

P 1+<br />

2<br />

6 s<strong>in</strong>b<br />

| M<br />

t<br />

LCL<br />

4 L s<strong>in</strong>b<br />

F Q<br />

1 +<br />

2<br />

kt<br />

HG<br />

LCL<br />

QP<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

32 /<br />

- 1<br />

U<br />

V|<br />

W|<br />

(106)<br />

244 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

For practical calculations, it is convenient <strong>to</strong> use the follow<strong>in</strong>g dimensionless expression:<br />

R<br />

w worst<br />

=lworst<br />

F L<br />

2<br />

(107)<br />

where λ worst is a dimensionless fac<strong>to</strong>r derived from Equation 104 and def<strong>in</strong>ed as follows:<br />

L<br />

F<br />

NM<br />

HG<br />

l = 2 2<br />

worst<br />

m 1<br />

3<br />

+ 2<br />

m<br />

32 /<br />

I<br />

-<br />

KJ<br />

where μ is a dimensionless parameter def<strong>in</strong>ed as follows:<br />

O<br />

QP<br />

1<br />

(108)<br />

m =<br />

<strong>to</strong><br />

L s<strong>in</strong> b<br />

(109)<br />

Values of λ worst calculated us<strong>in</strong>g Equation 108 are given <strong>in</strong> Table 4 and Figure 10 as a<br />

function of the dimensionless parameter μ. It should be noted that λ worst can also be used<br />

<strong>to</strong> calculate A wmax us<strong>in</strong>g the follow<strong>in</strong>g equation derived from Equations 103 and 107:<br />

A<br />

wmax<br />

=lworst<br />

L<br />

2<br />

(110)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 10 and 109 gives μ for the case when the <strong>leakage</strong> <strong>collection</strong><br />

layer is not full:<br />

m =<br />

Q/<br />

k<br />

L s<strong>in</strong>b<br />

(111)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 17 and 109 gives μ for the case when the <strong>leakage</strong> <strong>collection</strong><br />

layer is full:<br />

F<br />

HG<br />

tLCL<br />

m = +<br />

2 Ls<strong>in</strong>b<br />

4.4.4 Wetted Fraction <strong>in</strong> the Random Scenario<br />

Q<br />

kt<br />

1<br />

2<br />

LCL<br />

I<br />

KJ<br />

(112)<br />

In the random scenario, the surface area of the <strong>to</strong>tal wetted zone is given by the follow<strong>in</strong>g<br />

equation, which is similar <strong>to</strong> Equation 101 for the worst scenario:<br />

n=<br />

N<br />

∑<br />

n = 1<br />

A<br />

w<br />

= N A<br />

w rand<br />

(113)<br />

where A w rand is the average surface area of the wetted zones generated by <strong>leachate</strong> <strong>flow</strong><br />

through <strong>defects</strong> located at random, assum<strong>in</strong>g that all of the leaks are equal, which is a<br />

typical assumption <strong>in</strong> design.<br />

Comb<strong>in</strong><strong>in</strong>g Equations 99 and 113 with R w = R w rand gives:<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

245


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

Table 4. Values of λ worst , λ rand , λ worst /λ rand , Crit(R wworst ) and Crit(R wrand ) as a function of the<br />

dimensionless parameter μ.<br />

μ λ worst λ rand λ worst /λ rand Crit (R w worst ) Crit (R w rand )<br />

1 × 10 -4 1.886 × 10 -2 7.543 × 10 -3 2.500 0.667 0.267<br />

2 × 10 -4 2.667 × 10 -2 1.067 × 10 -2 2.500 0.667 0.267<br />

3 × 10 -4 3.267 × 10 -2 1.307 × 10 -2 2.500 0.667 0.267<br />

5 × 10 -4 4.218 × 10 -2 1.688 × 10 -2 2.499 0.667 0.267<br />

1 × 10 -3 5.967 × 10 -2 2.388 × 10 -2 2.499 0.667 0.267<br />

2 × 10 -3 8.445 × 10 -2 3.382 × 10 -2 2.497 0.667 0.267<br />

3 × 10 -3 1.035 × 10 -1 4.147 × 10 -2 2.496 0.668 0.267<br />

5 × 10 -3 1.338 × 10 -1 5.367 × 10 -2 2.493 0.668 0.268<br />

1 × 10 -2 1.899 × 10 -1 7.637 × 10 -2 2.487 0.670 0.269<br />

2 × 10 -2 2.704 × 10 -1 1.094 × 10 -1 2.473 0.673 0.272<br />

3 × 10 -2 3.334 × 10 -1 1.356 × 10 -1 2.459 0.675 0.275<br />

5 × 10 -2 4.359 × 10 -1 1.794 × 10 -1 2.430 0.681 0.280<br />

1 × 10 -1 6.349 × 10 -1 2.692 × 10 -1 2.359 0.693 0.294<br />

2 × 10 -1 9.462 × 10 -1 4.259 × 10 -1 2.222 0.713 0.321<br />

3 × 10 -1 1.214 5.787 × 10 -1 2.097 0.731 0.348<br />

5 × 10 -1 1.697 8.984 × 10 -1 1.889 0.759 0.402<br />

1 2.797 1.812 1.544 0.808 0.523<br />

2 4.876 3.901 1.250 0.862 0.690<br />

3 6.910 5.941 1.163 0.892 0.767<br />

5 1.094 × 10 1 9.966 1.098 0.925 0.842<br />

1 × 10 1 2.097 × 10 1 1.998 × 10 1 1.049 0.957 0.912<br />

2 × 10 1 4.098 × 10 1 3.999 × 10 1 1.025 0.977 0.953<br />

3 × 10 1 6.099 × 10 1 5.999 × 10 1 1.017 0.984 0.968<br />

5 × 10 1 1.010 × 10 2 1.000 × 10 2 1.010 0.990 0.981<br />

1 × 10 2 2.010 × 10 2 2.000 × 10 2 1.005 0.995 0.990<br />

2 × 10 2 4.010 × 10 2 4.000 × 10 2 1.002 0.998 0.995<br />

3 × 10 2 6.010 × 10 2 6.000 × 10 2 1.002 0.998 0.997<br />

5 × 10 2 1.001 × 10 3 1.000 × 10 3 1.001 0.999 0.998<br />

1 × 10 3 2.001 × 10 3 2.000 × 10 3 1.001 1.000 0.999<br />

2 × 10 3 4.001 × 10 3 4.000 × 10 3 1.000 1.000 1.000<br />

3 × 10 3 6.001 × 10 3 6.000 × 10 3 1.000 1.000 1.000<br />

5 × 10 3 1.000 × 10 4 1.000 × 10 4 1.000 1.000 1.000<br />

Notes: The dimensionless parameter μ is def<strong>in</strong>ed by Equation 109. The follow<strong>in</strong>g equations were used <strong>to</strong><br />

calculate the tabulated values: λ worst , Equation 108; λ rand , Equation 123 for μ ≤ 2 and Equation 127 for μ ≥ 2;<br />

Crit(R w worst ), Equation 136; and Crit(R w rand ), Equation 138 for μ ≤ 2 and Equation 140 for μ ≥ 2. It is<br />

important <strong>to</strong> note that the tabulated values are valid only if the wetted areas related <strong>to</strong> various <strong>defects</strong> <strong>in</strong> the<br />

primary l<strong>in</strong>er do not overlap. Values of λ worst and λ rand are also presented <strong>in</strong> Figure 10, and values of<br />

Crit(R w worst )andCrit(R w rand ) <strong>in</strong> Figure 12.<br />

246 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

100<br />

10<br />

Dimensionless fac<strong>to</strong>r, λ<br />

1<br />

10 -1<br />

λ worst<br />

λ rand<br />

(114)<br />

10 -2<br />

10 -3 10 -4 10 -3 10 -2 10 -1 1 10<br />

Dimensionless parameter, μ<br />

Figure 10. Dimensionless fac<strong>to</strong>r λ used <strong>to</strong> calculate the wetted fraction.<br />

Notes: λ worst was calculated us<strong>in</strong>g Equation 108, and λ rand us<strong>in</strong>g Equation 123 for μ ≤ 2 and Equation 127<br />

for μ ≥ 2; μ is def<strong>in</strong>ed by Equation 109. Values of λ worst and λ rand are also presented <strong>in</strong> Table 4.<br />

R<br />

w rand<br />

=<br />

N A<br />

A<br />

w rand<br />

LCL<br />

Comb<strong>in</strong><strong>in</strong>g Equations 100 and 114 gives:<br />

R<br />

wrand<br />

= FA<br />

wrand<br />

(115)<br />

The average surface area of the wetted zones generated by <strong>leachate</strong> <strong>flow</strong> through <strong>defects</strong><br />

located at a random distance from the bot<strong>to</strong>m end of the <strong>leachate</strong> <strong>collection</strong> layer<br />

slope is given by the follow<strong>in</strong>g classical equation used <strong>to</strong> average functions:<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

247


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

A<br />

wrand<br />

1 L<br />

=<br />

Lz<br />

A x wd<br />

o<br />

(116)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 24 and 116 gives:<br />

A<br />

wrand<br />

1<br />

=<br />

L<br />

z<br />

L + <strong>to</strong><br />

/( 2 s<strong>in</strong> b )<br />

<strong>to</strong><br />

/( 2 s<strong>in</strong> b )<br />

A<br />

w<br />

dX<br />

(117)<br />

Equations for A w , and therefore <strong>in</strong>tegrations, are simpler with X than with x. Therefore,<br />

Equation 117 will be used <strong>in</strong>stead of Equation 116.<br />

Two cases must be considered for <strong>in</strong>tegration of Equation 117. The first case is def<strong>in</strong>ed<br />

by t o /(2 s<strong>in</strong>β) ≤ L (i.e. Equation 51). Comb<strong>in</strong><strong>in</strong>g Equations 51 and 109 gives the<br />

follow<strong>in</strong>g condition for the first case of <strong>in</strong>tegration:<br />

m£2<br />

(118)<br />

In this case, there are two different expressions for A w depend<strong>in</strong>g on X: Equation 49<br />

(complete parabola) if X meets the condition expressed by Equation 52; and Equation<br />

54 (truncated parabola) if X meets the condition def<strong>in</strong>ed by Equation 57. Therefore, if<br />

μ ≤ 2, Equation 117 can be written as follows:<br />

A<br />

wrand<br />

L + <strong>to</strong><br />

/( 2 s<strong>in</strong> b )<br />

z z L<br />

L<br />

= 1 Aw1<br />

dX<br />

+<br />

1<br />

L <strong>to</strong><br />

/( 2 s<strong>in</strong> b ) L<br />

A<br />

w2<br />

dX<br />

(119)<br />

where A w1 is the value of A w expressed by Equation 49 and A w2 is the value of A w expressed<br />

by Equation 54.<br />

Integration of Equation 119 gives:<br />

A<br />

w rand<br />

2<br />

15 L<br />

=<br />

F H G<br />

<strong>to</strong><br />

s<strong>in</strong>b<br />

I LF<br />

+<br />

KJ 1<br />

NM<br />

HG<br />

2 L s<strong>in</strong> b<br />

t<br />

o<br />

/<br />

I<br />

-<br />

KJ<br />

3 5 2<br />

2<br />

O<br />

QP<br />

(120)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 115 and 120 gives the follow<strong>in</strong>g expression for the average<br />

wetted fraction <strong>in</strong> the random scenario:<br />

R<br />

w rand<br />

2 F<br />

15 L<br />

=<br />

F H G<br />

<strong>to</strong><br />

s<strong>in</strong>b<br />

I LF<br />

+<br />

KJ 1<br />

NM<br />

HG<br />

2 L s<strong>in</strong> b<br />

t<br />

o<br />

/<br />

I<br />

-<br />

KJ<br />

3 5 2<br />

2<br />

O<br />

QP<br />

(121)<br />

For practical calculations, it is convenient <strong>to</strong> use the follow<strong>in</strong>g dimensionless expression:<br />

R<br />

w rand<br />

=lrand<br />

F L<br />

where λ rand is a dimensionless fac<strong>to</strong>r derived from Equation 121 and def<strong>in</strong>ed by:<br />

2<br />

(122)<br />

248 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

L<br />

F<br />

NM<br />

HG<br />

2 3 2<br />

lrand = m 1 +<br />

15 m<br />

52 /<br />

I<br />

-<br />

KJ<br />

O<br />

QP<br />

2 ( for m £ 2)<br />

(123)<br />

where μ is a dimensionless parameter def<strong>in</strong>ed by Equation 109.<br />

The second case for <strong>in</strong>tegration of Equation 117 is def<strong>in</strong>ed by t o /(2 s<strong>in</strong>β ) ≥ L (i.e.<br />

Equation 59). Comb<strong>in</strong><strong>in</strong>g Equations 59 and 109 gives the follow<strong>in</strong>g condition for the<br />

second case of <strong>in</strong>tegration:<br />

m≥2<br />

(124)<br />

In this case, <strong>in</strong>tegration of Equation 117 is performed us<strong>in</strong>g the expression of A w given<br />

by Equation 54, hence:<br />

A<br />

w rand<br />

2<br />

15 L<br />

=<br />

F H G<br />

<strong>to</strong><br />

s<strong>in</strong>b<br />

I LF<br />

+<br />

KJ 1<br />

NM<br />

HG<br />

Comb<strong>in</strong><strong>in</strong>g Equations 115 and 125 gives:<br />

R<br />

w rand<br />

2 F<br />

15 L<br />

=<br />

F H G<br />

<strong>to</strong><br />

s<strong>in</strong>b<br />

I<br />

F<br />

HG<br />

2 L s<strong>in</strong>b<br />

2 L s<strong>in</strong>b<br />

+ 1 -<br />

<strong>to</strong><br />

KJ<br />

<strong>to</strong><br />

I<br />

-<br />

KJ<br />

3 5/ 2 5/<br />

2<br />

I LF<br />

+<br />

KJ 1<br />

NM<br />

HG<br />

Comb<strong>in</strong><strong>in</strong>g Equations 122 and 126 gives:<br />

L<br />

F<br />

NM<br />

HG<br />

I<br />

F<br />

HG<br />

2 L s<strong>in</strong>b<br />

2 L s<strong>in</strong>b<br />

+ 1 -<br />

<strong>to</strong><br />

KJ<br />

<strong>to</strong><br />

I<br />

-<br />

KJ<br />

3 5/ 2 5/<br />

2<br />

2 3 2 2<br />

lrand = m 1 + + 1 -<br />

15 mKJ m<br />

I<br />

F<br />

HG<br />

I<br />

-<br />

KJ<br />

52 / 52 /<br />

O<br />

QP<br />

2 ( for m ≥ 2)<br />

2<br />

2<br />

O<br />

QP<br />

O<br />

QP<br />

(125)<br />

(126)<br />

(127)<br />

where μ is a dimensionless parameter def<strong>in</strong>ed by Equations 109, 111 and 112.<br />

It is important <strong>to</strong> note that λ rand is given by Equation 123 when μ ≤ 2, and Equation<br />

127 when μ ≥ 2. Values of λ rand , calculated us<strong>in</strong>g Equation 123 for μ ≤ 2 and Equation<br />

127 for μ ≥ 2, are given <strong>in</strong> Table 4 and Figure 10 as a function of the dimensionless<br />

parameter μ. It should be noted that λ rand can be used <strong>to</strong> calculate A w rand us<strong>in</strong>g the follow<strong>in</strong>g<br />

equation derived from Equations 115 and 122:<br />

A<br />

w rand<br />

=lrand<br />

L<br />

2<br />

(128)<br />

Comb<strong>in</strong><strong>in</strong>g Equation 10 with Equations 121 and 126, respectively, gives the follow<strong>in</strong>g<br />

values of R w rand for the case where the <strong>leakage</strong> <strong>collection</strong> layer is not full (t o ≤ t LCL ),<br />

i.e. the case where the condition expressed by Equation 11 (or Equation 12, which is<br />

equivalent) is met:<br />

S If μ ≤ 2(whereμ is def<strong>in</strong>ed by Equation 111)<br />

L<br />

F<br />

NM<br />

HG<br />

32 /<br />

2 F ( Q/ k)<br />

2 L s<strong>in</strong>b<br />

Rwrand = 1 +<br />

3<br />

15 L s<strong>in</strong> b Q/<br />

k<br />

52 /<br />

I<br />

-<br />

KJ<br />

2<br />

O<br />

QP<br />

(129)<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

249


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

S If μ ≥ 2(whereμ is def<strong>in</strong>ed by Equation 111)<br />

L<br />

MF<br />

NHG<br />

32 /<br />

2 F ( Q/ k)<br />

2 L s<strong>in</strong>b<br />

2 L s<strong>in</strong>b<br />

Rwrand = 1 +<br />

+ 1 -<br />

3<br />

15 L s<strong>in</strong> b M Q/<br />

kKJ Q/<br />

k<br />

I<br />

52 /<br />

F<br />

HG<br />

I<br />

KJ -<br />

2<br />

O<br />

QP<br />

(130)<br />

Comb<strong>in</strong><strong>in</strong>g Equation 17 with Equations 121 and 126, respectively, gives the follow<strong>in</strong>g<br />

values of R w rand for the case where the <strong>leakage</strong> <strong>collection</strong> layer is full (t o > t LCL ), i.e.<br />

the case where the condition expressed by Equation 11 (or Equation 12, which is equivalent)<br />

is not met:<br />

S If μ ≤ 2(whereμ is def<strong>in</strong>ed by Equation 112)<br />

R<br />

w rand<br />

L<br />

F<br />

IO<br />

R<br />

L<br />

S|<br />

M<br />

N<br />

M<br />

T|<br />

3<br />

F tLCL<br />

Q<br />

= +<br />

L N<br />

M 1<br />

HG<br />

ktLCLKJ<br />

Q<br />

P 1+<br />

2<br />

60 s<strong>in</strong>b<br />

| M<br />

t<br />

S If μ ≥ 2(whereμ is def<strong>in</strong>ed by Equation 112)<br />

R<br />

w rand<br />

L<br />

F<br />

IO<br />

R<br />

L<br />

S|<br />

M<br />

N<br />

M<br />

T|<br />

3<br />

F tLCL<br />

Q<br />

= +<br />

L N<br />

M 1<br />

HG<br />

ktLCLKJ<br />

Q<br />

P 1+<br />

2<br />

60 s<strong>in</strong>b<br />

| M<br />

t<br />

LCL<br />

4 L s<strong>in</strong>b<br />

F<br />

HG<br />

Q<br />

1 +<br />

2<br />

kt<br />

LCL<br />

LCL<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

4 L s<strong>in</strong>b<br />

F Q<br />

1 +<br />

2<br />

kt<br />

HG<br />

L<br />

N<br />

M<br />

+ 1 -<br />

t<br />

LCL<br />

LCL<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

52 /<br />

4 L s<strong>in</strong>b<br />

F<br />

HG<br />

Q<br />

1 +<br />

2<br />

kt<br />

- 2<br />

LCL<br />

U<br />

V|<br />

W|<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

52 / 52 /<br />

(131)<br />

- 2<br />

U<br />

V|<br />

W|<br />

(132)<br />

4.4.5 Critical Values of the Wetted Fraction <strong>in</strong> the Worst Scenario and the Random<br />

Scenario<br />

In Section 4.4, so far, it has been assumed that the wetted zones related <strong>to</strong> the various<br />

geomembrane <strong>defects</strong> do not overlap. The critical value of R w worst ,Crit(R w worst ), is the<br />

maximum value that R w worst can have without overlapp<strong>in</strong>g of the wetted zones related<br />

<strong>to</strong> the various <strong>in</strong>dividual primary l<strong>in</strong>er <strong>defects</strong>. This occurs when the parabolic wetted<br />

zones shown <strong>in</strong> Figure 9a are <strong>in</strong> contact at the low end of the <strong>leachate</strong> <strong>collection</strong> layer<br />

slope (Figure 11). This situation occurs when:<br />

W = max<br />

B / N<br />

Comb<strong>in</strong><strong>in</strong>g Equations 98, 100 and 133 gives:<br />

F =<br />

1<br />

LW max<br />

(133)<br />

(134)<br />

250 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

L<br />

W max<br />

B<br />

Figure 11. Configuration of the wetted zones for the maximum value of the worst scenario<br />

wetted fraction.<br />

Note: In this particular figure, the number of <strong>defects</strong> is N = 3. The dots represent the horizontal projection<br />

of the locations of the primary l<strong>in</strong>er <strong>defects</strong>.<br />

Comb<strong>in</strong><strong>in</strong>g Equations 39, 104 and 134, and call<strong>in</strong>g Crit(R w worst ) the value of R w worst<br />

thus obta<strong>in</strong>ed, give:<br />

L<br />

F<br />

NM<br />

HG<br />

<strong>to</strong><br />

2 L s<strong>in</strong>b<br />

2 L s<strong>in</strong>b<br />

Crit( Rwworst)<br />

= 1 + - 1 +<br />

3L<br />

s<strong>in</strong>b<br />

<strong>to</strong><br />

KJ<br />

<strong>to</strong><br />

I<br />

F<br />

HG<br />

I<br />

KJ<br />

-12<br />

/<br />

O<br />

QP<br />

(135)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 109 and 135 gives the follow<strong>in</strong>g expression for Crit(R w worst ):<br />

L<br />

F<br />

NM<br />

HG<br />

m<br />

Crit( R wworst<br />

) = 1 +<br />

3<br />

I<br />

F<br />

HG<br />

2<br />

- 1 +<br />

mKJ m<br />

I<br />

KJ<br />

- /<br />

2 12<br />

O<br />

QP<br />

(136)<br />

where μ is a dimensionless parameter def<strong>in</strong>ed by Equation 109.<br />

Values of Crit(R w worst ) are given <strong>in</strong> Table 4 and Figure 12. The two extreme values of<br />

Crit(R w worst ) can be expla<strong>in</strong>ed as follows consider<strong>in</strong>g the truncation of the parabolic<br />

wetted zone def<strong>in</strong>ed <strong>in</strong> Figure 7:<br />

S When μ is very small, t o is small (accord<strong>in</strong>g <strong>to</strong> Equation 109) and the parabolas <strong>in</strong><br />

Figure 11 are hardly truncated. Accord<strong>in</strong>g <strong>to</strong> Equation 48, full parabolas occupy 2/3<br />

of the rectangular area <strong>in</strong> Figure 11, hence the lower value of 2/3 for Crit(R w worst )<strong>in</strong><br />

Figure 12.<br />

S When μ is very large, t o is large (accord<strong>in</strong>g <strong>to</strong> Equation 109) and the parabolas <strong>in</strong> Figure<br />

11 are truncated <strong>to</strong> the po<strong>in</strong>t that they are quasi-rectangular. Therefore, the wetted<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

251


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

1.0<br />

Critical value of R w (dimensionless)<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Crit (R wworst )<br />

Crit (R wrand )<br />

0<br />

10 -3 10 -2 10 -1 1 10 100 1000<br />

Dimensionless parameter, μ<br />

Figure 12. Maximum values of the wetted fractions without overlapp<strong>in</strong>g of wetted zones<br />

<strong>in</strong> the worst scenario, R wworst , and <strong>in</strong> the random scenario, R wrand .<br />

Notes: Crit (R w worst ) was calculated us<strong>in</strong>g Equation 136, and Crit (R w rand ) us<strong>in</strong>g Equation 138 for μ ≤ 2and<br />

Equation 140 for μ ≥ 2; μ is def<strong>in</strong>ed by Equation 109. Values of Crit (R w worst )andCrit(R w rand )arealso<br />

presented <strong>in</strong> Table 4.<br />

zone occupies the entire <strong>leakage</strong> <strong>collection</strong> layer area <strong>in</strong> Figure 11, hence the upper<br />

valueof1forCrit(R w worst ) <strong>in</strong> Figure 12.<br />

Also represented <strong>in</strong> Figure 12 is the critical value of R w rand ,Crit(R w rand ), which is the<br />

maximum value that R w rand can have without overlapp<strong>in</strong>g of the wetted zones related<br />

<strong>to</strong> the various <strong>in</strong>dividual primary l<strong>in</strong>er <strong>defects</strong>. Select<strong>in</strong>g the value of the frequency F<br />

<strong>to</strong> be used <strong>in</strong> the calculation of Crit(R w rand ) is not easy. For the sake of consistency with<br />

the calculation of Crit(R w worst ), the same frequency (i.e. the frequency given by Equation<br />

134) is used. Accord<strong>in</strong>gly, comb<strong>in</strong><strong>in</strong>g Equations 39, 121 and 134 gives the follow<strong>in</strong>g<br />

value of Crit (R w rand )forμ ≤ 2:<br />

Crit ( R )<br />

w rand<br />

1 F<br />

=<br />

H G<br />

15<br />

<strong>to</strong><br />

L s<strong>in</strong>b<br />

I LF<br />

+<br />

KJ 1<br />

NM<br />

HG<br />

Comb<strong>in</strong><strong>in</strong>g Equations 109 and 137 gives:<br />

I<br />

2 2 -1/<br />

2<br />

F<br />

HG<br />

2 L s<strong>in</strong>b<br />

2 L s<strong>in</strong>b<br />

- 2 1+<br />

<strong>to</strong><br />

KJ<br />

<strong>to</strong><br />

I<br />

KJ<br />

O<br />

QP<br />

(137)<br />

252 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

L<br />

F<br />

NM<br />

HG<br />

2<br />

m<br />

Crit ( R w rand<br />

) = 1 +<br />

15<br />

I<br />

F<br />

HG<br />

I<br />

KJ<br />

2 -1/<br />

2<br />

2<br />

2<br />

- 2 1+<br />

mKJ m<br />

O<br />

QP<br />

(138)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 126 and 134 gives the follow<strong>in</strong>g value of Crit(R w rand )for<br />

μ ≥ 2:<br />

Crit ( R<br />

wrand<br />

)<br />

1 F<br />

=<br />

H G<br />

15<br />

t<br />

L s<strong>in</strong>b<br />

I<br />

KJ<br />

2<br />

F<br />

HG<br />

52 / 52 /<br />

2 L s<strong>in</strong>b<br />

2 L s<strong>in</strong>b<br />

1 +<br />

+ 1 -<br />

t KJ<br />

t<br />

2 L s<strong>in</strong>b<br />

1 +<br />

t<br />

o o o<br />

I<br />

F<br />

HG<br />

o<br />

I<br />

-<br />

KJ<br />

2<br />

(139)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 109 and 139 gives:<br />

F<br />

HG<br />

52 / 52 /<br />

2 2<br />

1 + + 1 -<br />

2<br />

m m<br />

Crit ( R wrand<br />

KJ<br />

m<br />

) =<br />

12 /<br />

15 F 2I<br />

1 +<br />

m<br />

I<br />

HG<br />

F<br />

HG<br />

KJ<br />

I<br />

-<br />

KJ<br />

2<br />

(140)<br />

If, <strong>in</strong> the design of a <strong>leakage</strong> <strong>collection</strong> layer, Equation 107 gives a value of R w worst<br />

greater than Crit(R w worst ) and/or Equation 122 gives a value of R w rand greater than Crit(R w<br />

rand), this means that wetted zones related <strong>to</strong> different <strong>defects</strong> overlap. If this happens,<br />

the equations presented earlier <strong>in</strong> Section 4.4 are no longer valid. In this case, the design<br />

(<strong>in</strong> particular the <strong>leachate</strong> head calculation) should be done by assum<strong>in</strong>g that the entire<br />

<strong>leakage</strong> <strong>collection</strong> layer area is wetted, i.e. R w = 1. This is further discussed <strong>in</strong> Section<br />

5.2.4.<br />

It should be recognized that even if the wetted fraction, R w , is small (i.e. smaller, or<br />

even much smaller, than Crit(R w rand ) given by Table 4 or Figure 12) there is always a<br />

possibility that the wetted zones related <strong>to</strong> two different <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er will<br />

overlap. For example, if, <strong>in</strong> a large primary l<strong>in</strong>er, there are only two small <strong>defects</strong> generat<strong>in</strong>g<br />

a small rate of <strong>leachate</strong> migration, the two wetted zones will overlap if the two<br />

<strong>defects</strong> are close <strong>to</strong> each other. Therefore, the design eng<strong>in</strong>eer can always elect <strong>to</strong> ignore<br />

the values of R w rand and R w worst calculated as <strong>in</strong>dicated above (i.e. assum<strong>in</strong>g no wetted<br />

zone overlapp<strong>in</strong>g if R w rand


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

S primary l<strong>in</strong>er defect frequency from 1 <strong>to</strong> 300 <strong>defects</strong> per hectare: 10 -4 m -2 < F


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

5 LEACHATE HEAD AND TIME REQUIRED FOR STEADY-STATE<br />

FLOW CONDITIONS<br />

5.1 Leachate Head on Top of the Secondary L<strong>in</strong>er Due <strong>to</strong> One Defect <strong>in</strong> the<br />

Primary L<strong>in</strong>er<br />

5.1.1 Method Used <strong>to</strong> Calculate the Head and Thickness of Leachate<br />

To calculate the rate of <strong>leakage</strong> through the secondary l<strong>in</strong>er, it is necessary <strong>to</strong> know<br />

the head of <strong>leachate</strong> on <strong>to</strong>p of the secondary l<strong>in</strong>er <strong>in</strong> the wetted zone. The <strong>leachate</strong> head<br />

is related <strong>to</strong> the <strong>leachate</strong> thickness through Equation 3. It is important <strong>to</strong> note that Equation<br />

3 is valid whether t is an actual <strong>leachate</strong> thickness (case where the <strong>leakage</strong> <strong>collection</strong><br />

layer is not full) or a virtual <strong>leachate</strong> thickness (case where the <strong>leakage</strong> <strong>collection</strong><br />

layer is full <strong>in</strong> a certa<strong>in</strong> area around the primary l<strong>in</strong>er defect).<br />

In Section 5.1, the average <strong>leachate</strong> thickness <strong>in</strong> the wetted zone, t avg , will be calculated<br />

<strong>in</strong> the case where only one defect <strong>in</strong> the primary l<strong>in</strong>er is considered. The average<br />

head of <strong>leachate</strong> on <strong>to</strong>p of the secondary l<strong>in</strong>er, h avg , can then be calculated us<strong>in</strong>g the<br />

follow<strong>in</strong>g equation derived from Equation 3:<br />

h = t cosb<br />

(141)<br />

avg<br />

avg<br />

The average <strong>leachate</strong> thickness <strong>in</strong> the wetted zone can be calculated as follows:<br />

t<br />

avg<br />

=<br />

V<br />

A<br />

w actual<br />

(142)<br />

where: V = volume of <strong>leakage</strong> <strong>collection</strong> layer that conta<strong>in</strong>s <strong>leachate</strong>; and A w actual =surface<br />

area of the actual wetted zone (whereas the surface areas noted A w given <strong>in</strong> Section<br />

4.3 are the surface areas of the projection of the wetted zone on a horizontal plane; see<br />

Section 4.3.3).<br />

It should be noted that V is the volume of <strong>leakage</strong> <strong>collection</strong> layer that conta<strong>in</strong>s <strong>leachate</strong>,<br />

not the volume of <strong>leachate</strong>. S<strong>in</strong>ce <strong>leachate</strong> only occupies the pores of the <strong>leakage</strong><br />

<strong>collection</strong> layer, the volume of <strong>leachate</strong> is:<br />

V<br />

<strong>leachate</strong> =<br />

n V<br />

(143)<br />

where n is the porosity of the <strong>leakage</strong> <strong>collection</strong> layer material.<br />

From Equations 63 and 142, the average thickness of <strong>leachate</strong> over the wetted zone is:<br />

t<br />

avg<br />

V<br />

=<br />

A / cosb<br />

w<br />

(144)<br />

Expressions of A w are given <strong>in</strong> Section 4.3 for all relevant cases. Therefore, only V<br />

needs <strong>to</strong> be calculated at this po<strong>in</strong>t. As po<strong>in</strong>ted out <strong>in</strong> Section 4.3.3, four cases were considered<br />

<strong>in</strong> Section 4.3 for the derivation of expressions for A w (the surface area of the<br />

wetted zone). The same four cases must be considered for the calculation of V. These<br />

four cases are illustrated <strong>in</strong> Figure 13. However, whereas for A w analytical expressions<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

255


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

(a)<br />

Case I μ ≤ 2, 0 ≤ x ≤ L(1 − μ 2 )<br />

(b)<br />

Case II μ ≤ 2, L(1 − μ 2 ) < x < L<br />

L<br />

L<br />

x<br />

(c)<br />

Case III μ ≥ 2<br />

(i.e. arrow greater than L )<br />

0


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

S the case where the defect <strong>in</strong> the primary l<strong>in</strong>er is located at the high end of the <strong>leakage</strong><br />

<strong>collection</strong> layer (x = L), regardless of μ (Case IV, Figure 13d).<br />

Furthermore, an <strong>in</strong>terpolation method will be provided for the Case II (Figure 13b),<br />

which is def<strong>in</strong>ed by Equation 145 (μ ≤ 2) and the follow<strong>in</strong>g equation derived from<br />

Equations 58 and 109:<br />

F m<br />

L 1 - x L<br />

(147)<br />

2<br />

HG I K J £ £<br />

In summary: (i) solutions are provided for μ ≤ 2 (analytical solution for Cases I and<br />

IV, and <strong>in</strong>terpolation method for Case II); and (ii) no solution will be provided for μ ><br />

2 (Case III, Figure 13c), with the exception of the solution for Case IV, which does not<br />

depend on μ.<br />

The reason no analytical solution is proposed for two cases (Cases II and III <strong>in</strong> Figure<br />

13) is that volume calculations are extremely complex. The considered volume is the<br />

cone formed by the <strong>leachate</strong> phreatic surface and truncated by three planes: the plane<br />

of the secondary l<strong>in</strong>er, and two vertical planes located at the high end and the low end<br />

of the <strong>leakage</strong> <strong>collection</strong> layer slope. (However, <strong>in</strong> Case I, the phreatic surface does not<br />

meet the vertical plane located at the high end of the <strong>leakage</strong> <strong>collection</strong> layer slope;<br />

therefore, <strong>in</strong> this case, the phreatic surface is truncated only by two planes, the plane<br />

of the secondary l<strong>in</strong>er and the vertical plane located at the low end of the <strong>leakage</strong> <strong>collection</strong><br />

layer slope.) The <strong>in</strong>tersection of the <strong>leachate</strong> phreatic surface with the secondary<br />

l<strong>in</strong>er plane is a parabola, as extensively discussed <strong>in</strong> Section 4, whereas the <strong>in</strong>tersections<br />

of the phreatic surface with vertical planes are hyperbolas.<br />

The volume <strong>to</strong> be calculated can be decomposed <strong>in</strong><strong>to</strong> two volumes: the volume of the<br />

<strong>leakage</strong> <strong>collection</strong> layer conta<strong>in</strong><strong>in</strong>g <strong>leachate</strong> downstream of the defect (x >0);andthe<br />

volume of the <strong>leakage</strong> <strong>collection</strong> layer conta<strong>in</strong><strong>in</strong>g <strong>leachate</strong> upstream of the defect (x <<br />

0). A simple expression (<strong>in</strong> spite of the hyperbolic truncation at the low end of the slope)<br />

can be obta<strong>in</strong>ed for the downstream volume us<strong>in</strong>g Darcy’s equation as shown <strong>in</strong> Section<br />

5.1.2. However, the hyperbolic truncation makes the calculation of the upstream volume<br />

quasi-<strong>in</strong>extricable. (The senior author has obta<strong>in</strong>ed the equation of the hyperbolic<br />

<strong>in</strong>tersection at the high end of the slope and has found that the <strong>in</strong>tegration of the hyperbola<br />

<strong>to</strong> obta<strong>in</strong> the volume of the cone could be done analytically but would require<br />

lengthy calculations that would be beyond the scope of this paper.) The only two cases<br />

where the upstream volume is simple are Cases I and IV (Figure 13): <strong>in</strong> Case I, the volume<br />

is that of a cone whose base and height are known; and, <strong>in</strong> Case IV, the volume is<br />

zero. In Case II, an <strong>in</strong>terpolation method will be proposed, and, <strong>in</strong> Case III, no solution<br />

will be proposed; however, Case III is rare s<strong>in</strong>ce μ is rarely greater than 2 as discussed<br />

<strong>in</strong> Section 4.5.<br />

5.1.2 Leachate Thickness <strong>in</strong> Case I<br />

In Case I (Figure 13a), the parabola is not truncated. The volume of the <strong>leakage</strong><br />

<strong>collection</strong> layer conta<strong>in</strong><strong>in</strong>g <strong>leachate</strong> (above the parabolic wetted zone) can be decomposed<br />

<strong>in</strong><strong>to</strong> two volumes, as expla<strong>in</strong>ed <strong>in</strong> Section 5.1.1: the volume located downstream<br />

of the defect, and the volume located upstream of the defect.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

257


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

Instead of us<strong>in</strong>g an extremely long <strong>in</strong>tegration, the downstream volume can be calculated<br />

us<strong>in</strong>g Darcy’s equation as follows:<br />

v=<br />

ki<br />

(148)<br />

where v is the apparent <strong>leachate</strong> <strong>flow</strong> velocity along the slope.<br />

S<strong>in</strong>ce the hydraulic gradient, i, has been assumed <strong>to</strong> be constant along the slope (as<br />

<strong>in</strong>dicated by Equation 8), and s<strong>in</strong>ce the hydraulic conductivity of the <strong>leakage</strong> <strong>collection</strong><br />

layer material, k, is a constant, the apparent <strong>leachate</strong> <strong>flow</strong> velocity, v, is a constant. S<strong>in</strong>ce<br />

the <strong>leakage</strong> rate, Q , is constant (as steady-state <strong>flow</strong> conditions were assumed) and the<br />

apparent <strong>leachate</strong> <strong>flow</strong> velocity, v, is constant (as mentioned above), the <strong>leachate</strong> <strong>flow</strong><br />

cross section area perpendicular <strong>to</strong> the <strong>flow</strong> direction is constant along the slope for x<br />

≥ 0. Therefore, the value of the <strong>leachate</strong> <strong>flow</strong> cross section area for x ≥ 0 is equal <strong>to</strong><br />

the value it has for x = 0, i.e. beneath the defect <strong>in</strong> the primary l<strong>in</strong>er. This value (S F )is<br />

given by Equation 6 for the case where the <strong>leakage</strong> <strong>collection</strong> layer is not full.<br />

S<strong>in</strong>ce the <strong>leachate</strong> <strong>flow</strong> cross section is constant for x ≥ 0, the volume of the <strong>leakage</strong><br />

<strong>collection</strong> layer that conta<strong>in</strong>s <strong>leachate</strong> <strong>in</strong> the portion of the wetted zone where the <strong>flow</strong><br />

is downslope (i.e. the portion of the parabolic area for x ≥ 0) is as follows:<br />

V1 = SF<br />

x /cosb<br />

(149)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 6 and 149 gives:<br />

V<br />

1<br />

t 2<br />

x o<br />

/cosb<br />

=<br />

s<strong>in</strong> b<br />

(150)<br />

Then, the upstream volume (i.e. the volume of the <strong>leakage</strong> <strong>collection</strong> layer that conta<strong>in</strong>s<br />

<strong>leachate</strong> <strong>in</strong> the portion of the parabolic wetted zone comprised between axes Oy<br />

and VY <strong>in</strong> Figure 6) is calculated as follows us<strong>in</strong>g the classical equation for the volume<br />

of a cone:<br />

V<br />

= ( 1/ 3)( t )( 2/ 3)( OV/ cos b )( PP¢<br />

)<br />

2 o<br />

(151)<br />

hence, from Figure 6:<br />

3<br />

F <strong>to</strong> <strong>to</strong> <strong>to</strong><br />

V2= <strong>to</strong><br />

H G<br />

I 2 2<br />

( 1/ 3)( )( 2/ 3)<br />

2<br />

2s<strong>in</strong>b cos b s<strong>in</strong> b 9s<strong>in</strong> b cos b<br />

KJ F H G I K J =<br />

(152)<br />

From Equations 150 and 152, the <strong>to</strong>tal volume of the <strong>leakage</strong> <strong>collection</strong> layer that<br />

conta<strong>in</strong>s <strong>leachate</strong> <strong>in</strong> the wetted zone <strong>in</strong> Case I (Figure 13a) is:<br />

xt<br />

2 o<br />

2t<br />

3<br />

o<br />

V = +<br />

(153)<br />

2<br />

s<strong>in</strong>bcosb 9s<strong>in</strong> b cos b<br />

Comb<strong>in</strong><strong>in</strong>g Equations 50, 144 and 153 gives:<br />

t<br />

avg<br />

3( x s<strong>in</strong> b + 2<strong>to</strong><br />

/ 9)<br />

=<br />

32<br />

21 [ + ( 2x<br />

s<strong>in</strong> b )/ t ] /<br />

o<br />

(154)<br />

258 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

The above calculations are valid whether t o is actual or virtual. If the <strong>leakage</strong> <strong>collection</strong><br />

layer is filled with <strong>leachate</strong> <strong>in</strong> a certa<strong>in</strong> area around the primary l<strong>in</strong>er defect, t o is<br />

the virtual <strong>leachate</strong> thickness <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer at the location of the primary<br />

l<strong>in</strong>er defect. The fact that virtual <strong>leachate</strong> thicknesses are considered is not a problem<br />

s<strong>in</strong>ce <strong>leakage</strong> through the secondary l<strong>in</strong>er is governed by the <strong>leachate</strong> head on <strong>to</strong>p of<br />

the secondary l<strong>in</strong>er, and the relationship between head and thickness is the same regardless<br />

whether the <strong>leachate</strong> thickness is the actual thickness or a virtual thickness.<br />

Comb<strong>in</strong><strong>in</strong>g Equations 10 and 154 gives the follow<strong>in</strong>g equation for the case where the<br />

<strong>leakage</strong> <strong>collection</strong> layer is not full:<br />

t<br />

avg<br />

=<br />

3<br />

2<br />

Q<br />

k<br />

( 2/ 9) + xs<strong>in</strong> b k / Q<br />

32 /<br />

1+<br />

2xs<strong>in</strong> b k / Q<br />

d<br />

i<br />

(155)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 17 and 154 gives the follow<strong>in</strong>g equation for the case where the<br />

<strong>leakage</strong> <strong>collection</strong> layer is full:<br />

t<br />

avg<br />

F<br />

HG<br />

Q<br />

( 1/ 6) tLCL<br />

1+<br />

+ 3/ 2 x s<strong>in</strong><br />

2<br />

ktLCLKJ =<br />

L<br />

N<br />

M<br />

1 +<br />

t<br />

LCL<br />

I<br />

4 x s<strong>in</strong>b<br />

F Q<br />

1 +<br />

2<br />

kt<br />

HG<br />

LCL<br />

b g b<br />

32 /<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

(156)<br />

F<strong>in</strong>ally, it should be noted that s<strong>in</strong>ce the cross sectional area of the <strong>flow</strong> is constant<br />

for x ≥ 0 (as noted earlier <strong>in</strong> Section 5.1.2) and s<strong>in</strong>ce the width of the parabola <strong>in</strong>creases<br />

as the distance x from the primary l<strong>in</strong>er defect <strong>in</strong>creases (Figure 6), the thickness of <strong>leachate</strong><br />

<strong>flow</strong> decreases as x <strong>in</strong>creases (x ≥ 0). Therefore the actual <strong>leachate</strong> phreatic surface<br />

is below l<strong>in</strong>e AB <strong>in</strong> Figure 4a. However, the impact of the difference between l<strong>in</strong>e<br />

AB and the actual phreatic surface on the hydraulic gradient is negligible because the<br />

<strong>leachate</strong> thickness is very small compared <strong>to</strong> the length of the <strong>leakage</strong> <strong>collection</strong> layer.<br />

5.1.3 Leachate Thickness <strong>in</strong> Case IV<br />

If the defect is at the high end of the <strong>leakage</strong> <strong>collection</strong> layer slope (Figures 7 and 13d),<br />

the volume of the <strong>leakage</strong> <strong>collection</strong> layer that conta<strong>in</strong>s <strong>leachate</strong> <strong>in</strong> the wetted zone,<br />

V max , is given by Equation 153 with x = L , and with the last term equal <strong>to</strong> zero, s<strong>in</strong>ce<br />

this last term is the volume of the truncated part. Therefore:<br />

V<br />

max<br />

2<br />

L<strong>to</strong><br />

=<br />

s<strong>in</strong>b<br />

cosb<br />

(157)<br />

In accordance with Equation 144, the average <strong>leachate</strong> thickness, t avg L , is given <strong>in</strong><br />

this case by:<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

259


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

t<br />

avg L<br />

=<br />

A<br />

wmax<br />

Vmax<br />

/cosb<br />

(158)<br />

It should be noted that the notation used for the average <strong>leachate</strong> thickness is t avg L (for<br />

x = L), and not t avg max , s<strong>in</strong>ce a large wetted zone leads <strong>to</strong> a relatively small value (not<br />

a maximum value) of t avg .<br />

Comb<strong>in</strong><strong>in</strong>g Equations 62, 157 and 158 gives:<br />

t = ( 3/ 2) Ls<strong>in</strong>b<br />

avg L<br />

(159)<br />

( + 32<br />

1 2Ls<strong>in</strong> b / t ) / - 1<br />

Comb<strong>in</strong><strong>in</strong>g Equations 10 and 159 gives the follow<strong>in</strong>g equation for the case where the<br />

<strong>leakage</strong> <strong>collection</strong> layer is not full:<br />

t<br />

avg L<br />

=<br />

( 3/ 2) Ls<strong>in</strong>b<br />

32 /<br />

1+ 2Ls<strong>in</strong> b k / Q)<br />

-1<br />

d<br />

o<br />

i<br />

(160)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 17 and 159 gives the follow<strong>in</strong>g equation for the case where the<br />

<strong>leakage</strong> <strong>collection</strong> layer is full:<br />

t<br />

avg L<br />

=<br />

L<br />

N<br />

M<br />

1 +<br />

t<br />

LCL<br />

( 3/ 2) L s<strong>in</strong>b<br />

4 L s<strong>in</strong>b<br />

F Q<br />

1 +<br />

2<br />

kt<br />

HG<br />

LCL<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

32 /<br />

- 1<br />

(161)<br />

5.1.4 Leachate Thickness <strong>in</strong> Case II<br />

Case II (Figure 13b) is a case that may frequently occur. S<strong>in</strong>ce it is not easy <strong>to</strong> develop<br />

an analytical solution for this case for the reasons <strong>in</strong>dicated <strong>in</strong> Section 5.1.1, an <strong>in</strong>terpolation<br />

method is proposed.<br />

The limit situation between Cases I and II (Figure 13) is illustrated <strong>in</strong> Figure 14a. This<br />

situation occurs when:<br />

<strong>to</strong><br />

F mI x = L - = L 1 - K J<br />

(162)<br />

2 s<strong>in</strong>b 2<br />

HG<br />

Comb<strong>in</strong><strong>in</strong>g Equations 154 and 162 gives:<br />

L s<strong>in</strong>b<br />

5<br />

-<br />

3 <strong>to</strong><br />

<strong>to</strong><br />

18<br />

tavg lim<br />

=<br />

32 /<br />

2 F 2 L s<strong>in</strong>bI<br />

t<br />

HG<br />

o<br />

KJ<br />

(163)<br />

260 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

(a)<br />

μ


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

t<br />

avg II<br />

t<br />

o<br />

tavg lim<br />

t<br />

ª a + ( 1 - a)<br />

t<br />

t<br />

o<br />

avg L<br />

o<br />

(166)<br />

where t avg lim is def<strong>in</strong>ed by Equation 164, t avg L by Equation 165, and α by:<br />

a =<br />

t<br />

o<br />

L - x 2 ( L - x) s<strong>in</strong>b<br />

=<br />

/( 2 s<strong>in</strong> b)<br />

t<br />

o<br />

(167)<br />

The dimensionless parameter α is related <strong>to</strong> the location of the primary l<strong>in</strong>er defect<br />

as illustrated <strong>in</strong> Figure 15. It should be noted that Equations 166 and 167 are valid only<br />

if:<br />

0 £ a £ 1<br />

(168)<br />

This condition is met if the conditions required for Case II <strong>to</strong> exist are met (Figure 13b).<br />

Numerical values of Equation 166 are given <strong>in</strong> Table 5. It should be noted that both<br />

Equations 164 and 165 approach the same limit when μ approaches 0:<br />

Lim<br />

F<br />

HG<br />

t<br />

avg lim<br />

t<br />

o<br />

I<br />

F t<br />

= Lim<br />

KJ H G<br />

t<br />

avg L<br />

m = 0 o m = 0<br />

I<br />

3 m<br />

= =<br />

KJ<br />

4 2<br />

0.<br />

530<br />

m<br />

(169)<br />

In Table 5, one may expect <strong>to</strong> see the value t avg /t o = 1/3, which is the classical value<br />

for the average height of a cone (see Equation 151), s<strong>in</strong>ce the phreatic surface has been<br />

assumed <strong>to</strong> be a cone (see Figures 1 and 4). In fact, the value t avg /t o = 1/3 appears only<br />

once <strong>in</strong> Table 5: for α =1andμ = 2. This case is illustrated <strong>in</strong> Figure 14b. This is the<br />

only case where the truncation does not affect the cone volume. In all other cases, the<br />

phreatic surface is a truncated cone and the average height of a truncated cone is not<br />

equal <strong>to</strong> one third of its <strong>to</strong>tal height.<br />

t o /(2 s<strong>in</strong>β)<br />

α<br />

0.0<br />

0.2<br />

0.4<br />

0.6<br />

0.8<br />

1.0<br />

t o /(2 s<strong>in</strong>β)<br />

x<br />

Primary l<strong>in</strong>er defect<br />

L<br />

Figure 15. Def<strong>in</strong>ition of the dimensionless parameter α used <strong>in</strong> Equation 166 and <strong>in</strong><br />

Table 5.<br />

Note: In the case illustrated above, α = 0.43.<br />

262 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

Table 5. Values of t avg II /t o for Case II def<strong>in</strong>ed <strong>in</strong> Figure 13b.<br />

μ<br />

α<br />

0 0.2 0.4 0.6 0.8 1.0<br />

1.0 × 10 -4 0.005 0.005 0.005 0.005 0.005 0.005<br />

1.0 × 10 -3 0.017 0.017 0.017 0.017 0.017 0.017<br />

2, Case II does not exist. Values <strong>in</strong> the column for α = 0 are identical <strong>to</strong> values of t avg worst /t o <strong>in</strong> Table 6,<br />

except that <strong>in</strong> Table 6 there is no limitation at μ =2.<br />

5.1.5 Leachate Thickness <strong>in</strong> Case III<br />

As <strong>in</strong>dicated <strong>in</strong> Section 5.1.1, no solution is proposed for the average <strong>leachate</strong> thickness<br />

(and head) <strong>in</strong> Case III (Figure 13). However, it should be noted that Case III is rare<br />

because μ rarely exceeds 2 as discussed <strong>in</strong> Section 4.5.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

263


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

5.2 Leachate Head on Top of the Secondary L<strong>in</strong>er Due <strong>to</strong> Several Defects <strong>in</strong> the<br />

Primary L<strong>in</strong>er<br />

5.2.1 Scope of Section 5.2<br />

The size of the wetted zone <strong>in</strong> the case where there are several <strong>defects</strong> <strong>in</strong> the primary<br />

l<strong>in</strong>er was discussed <strong>in</strong> Section 4.4. In this case, the wetted zone consists of several parabolic<br />

wetted zones, each of these parabolic zones be<strong>in</strong>g related <strong>to</strong> a primary l<strong>in</strong>er defect.<br />

When the frequency of <strong>defects</strong> (i.e. the number of <strong>defects</strong> per unit area) is small, the<br />

probability for the various parabolic wetted zones <strong>to</strong> overlap is small and it may be assumed<br />

that they do not overlap. In contrast, when the frequency of <strong>defects</strong> is high, the<br />

parabolic wetted zones will likely overlap.<br />

In Section 4.4, the wetted fraction was def<strong>in</strong>ed as the ratio between the surface area<br />

of the <strong>to</strong>tal wetted zone and the surface area of the <strong>leakage</strong> <strong>collection</strong> layer. The wetted<br />

fraction was calculated <strong>in</strong> the worst scenario, i.e. the scenario where all primary l<strong>in</strong>er<br />

<strong>defects</strong> are at the high end of the <strong>leakage</strong> <strong>collection</strong> layer slope, and <strong>in</strong> the random scenario,<br />

i.e. the scenario where primary l<strong>in</strong>er <strong>defects</strong> are distributed at random.<br />

In Section 5.2, the worst scenario and the random scenario will be considered <strong>to</strong> calculate<br />

the average <strong>leachate</strong> thickness <strong>in</strong> the wetted zone. The cases where the wetted<br />

zones, related <strong>to</strong> different <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er, do not overlap are considered first<br />

(Sections 5.2.2 and 5.2.3) followed by the case where the wetted zones overlap (Section<br />

5.2.4). F<strong>in</strong>ally, comments on the <strong>in</strong>fluence of primary l<strong>in</strong>er defect frequency on average<br />

<strong>leachate</strong> thickness will be presented <strong>in</strong> Section 5.2.5.<br />

5.2.2 Average Leachate Thickness <strong>in</strong> the Worst Scenario With no Overlap<br />

In the worst scenario (def<strong>in</strong>ed <strong>in</strong> Section 4.4.2), if the primary l<strong>in</strong>er defect frequency<br />

is small enough that the parabolic wetted zones do not overlap, all of the parabolic zones<br />

are identical (Figure 9a). Therefore, the average <strong>leachate</strong> head <strong>in</strong> the <strong>to</strong>tal wetted zone<br />

<strong>in</strong> the worst scenario, t avg worst , is identical <strong>to</strong> the average <strong>leachate</strong> head <strong>in</strong> any of the parabolic<br />

zones, hence:<br />

t<br />

avg worst<br />

Comb<strong>in</strong><strong>in</strong>g Equations 159 and 170 gives:<br />

t<br />

avg worst<br />

Comb<strong>in</strong><strong>in</strong>g Equations 165 and 170 gives:<br />

t<br />

avg worst<br />

t<br />

o<br />

= t<br />

avg L<br />

( 3/ 2) L s<strong>in</strong>b<br />

=<br />

32<br />

( 1+ 2 L s<strong>in</strong> b / t ) / -1<br />

3<br />

=<br />

2<br />

2 m 1+<br />

m<br />

L<br />

F<br />

NM<br />

HG<br />

o<br />

32 /<br />

I<br />

-<br />

KJ<br />

O<br />

QP<br />

1<br />

(170)<br />

(171)<br />

(172)<br />

264 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

where μ is def<strong>in</strong>ed by Equation 109. Values of t avg worst /t o as a function of μ are given<br />

<strong>in</strong> Table 6.<br />

Table 6. Values of t avg worst /t o , t avg rand /t o , t avg rand /t avg worst ,andt avg rand λ rand /(t avg worst λ worst ).<br />

μ<br />

t avgworst<br />

t o<br />

t avgrand<br />

t o<br />

t avgrand<br />

t avgworst<br />

t avgrand λ rand<br />

t avgworst λ worst<br />

1 × 10 -4 0.0053 0.0072 1.3572 0.5429<br />

2 × 10 -4 0.0075 0.0102 1.3572 0.5429<br />

3 × 10 -4 0.0092 0.0125 1.3571 0.5429<br />

5 × 10 -4 0.0119 0.0161 1.3571 0.5430<br />

1 × 10 -3 0.0168 0.0227 1.3570 0.5431<br />

2 × 10 -3 0.0237 0.0321 1.3567 0.5432<br />

3 × 10 -3 0.0290 0.0393 1.3564 0.5434<br />

5 × 10 -3 0.0374 0.0507 1.3558 0.5438<br />

1 × 10 -2 0.0527 0.0713 1.3543 0.5446<br />

2 × 10 -2 0.0740 0.0999 1.3512 0.5464<br />

3 × 10 -2 0.0900 0.1213 1.3478 0.5482<br />

5 × 10 -2 0.1147 0.1538 1.3408 0.5517<br />

1 × 10 -1 0.1575 0.2083 1.3225 0.5507<br />

2 × 10 -1 0.2114 0.2717 1.2855 0.5787<br />

3 × 10 -1 0.2472 0.3091 1.2507 0.5963<br />

5 × 10 -1 0.2947 0.3505 1.1892 0.6297<br />

6 × 10 -1 0.3117 0.3623 1.1624 0.6451<br />

7 × 10 -1 0.3259 0.3708 1.1379 0.6594<br />

8 × 10 -1 0.3380 0.3769 1.1152 0.6728<br />

9 × 10 -1 0.3484 0.3812 1.0942 0.6849<br />

1.000 0.3575 0.3841 1.0746 0.6959<br />

1.0696 0.3632 0.3855 1.0616 0.7029<br />

2 0.4102 0.43 1.04 0.83<br />

3 0.4342 0.45 1.03 0.89<br />

5 0.4570 0.47 1.02 0.93<br />

1 × 10 1 0.4769 0.48 1.01 0.96<br />

2 × 10 1 0.4880 0.49 1.01 0.98<br />

3 × 10 1 0.4919 0.49 1.00 0.98<br />

5 × 10 1 0.4951 0.50 1.00 0.99<br />

1 × 10 2 0.4975 0.50 1.00 0.99<br />

2 × 10 2 0.4988 0.50 1.00 1.00<br />

3 × 10 2 0.4992 0.50 1.00 1.00<br />

5 × 10 2 0.4995 0.50 1.00 1.00<br />

∞ 0.5000 0.5000 1.0000 1.0000<br />

Notes: The tabulated values were calculated us<strong>in</strong>g the follow<strong>in</strong>g equations: t avg worst /t o , Equation 172; and<br />

t avg rand /t o , Equation 189 for 0 < μ ≤ 1.0696. Values of t avg rand /t avg worst for μ > 1.0696 were <strong>in</strong>terpolated<br />

graphically between 1.0616 and 1.000. Values of t avg rand /t o for μ > 1.0696 were then derived. Values of t avg rand<br />

λ rand /(t avg worst λ worst ) were calculated us<strong>in</strong>g Equation 192 for μ ≤ 1.0696 and were calculated numerically<br />

(us<strong>in</strong>g values of λ rand and λ worst from Table 3) for μ > 1.0696. The dimensionless parameter μ is def<strong>in</strong>ed by<br />

Equation 108. It is important <strong>to</strong> note that the tabulated values are valid only if the wetted areas related <strong>to</strong> various<br />

<strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er do not overlap.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

265


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

Compar<strong>in</strong>g Equations 108 and 172 shows that:<br />

t<br />

avg worst<br />

t<br />

o<br />

m<br />

=<br />

l<br />

worst<br />

(173)<br />

Equation 173 could have been established <strong>in</strong> two steps. First, comb<strong>in</strong><strong>in</strong>g Equations<br />

109 and 157 gives:<br />

V cosb = L 2 m t<br />

max<br />

o<br />

(174)<br />

Then, comb<strong>in</strong><strong>in</strong>g Equations 110, 158, 170 and 174 gives Equation 173.<br />

If the <strong>leakage</strong> <strong>collection</strong> layer is not full (i.e. if the condition expressed by Equation<br />

11 is met), Equation 10 can be comb<strong>in</strong>ed with Equation 171, which gives:<br />

t<br />

avg worst<br />

=<br />

d<br />

( 3/ 2) L s<strong>in</strong>b<br />

32 /<br />

1+ 2 L s<strong>in</strong> b k / Q -1<br />

i<br />

(175)<br />

If the <strong>leakage</strong> <strong>collection</strong> layer is filled with <strong>leachate</strong> <strong>in</strong> a certa<strong>in</strong> area around the primary<br />

l<strong>in</strong>er defect (i.e. if the condition expressed by Equation 11 is not met), Equations<br />

17 and 171 can be comb<strong>in</strong>ed <strong>to</strong> give:<br />

t<br />

avg worst<br />

=<br />

L<br />

N<br />

M<br />

1 +<br />

t<br />

LCL<br />

( 3/ 2) L s<strong>in</strong>b<br />

4 L s<strong>in</strong>b<br />

F Q<br />

1 +<br />

2<br />

kt<br />

HG<br />

LCL<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

32 /<br />

- 1<br />

(176)<br />

Another expression for t avg worst can be obta<strong>in</strong>ed by comb<strong>in</strong><strong>in</strong>g Equations 105 and 171:<br />

t<br />

avg worst<br />

FLt<br />

=<br />

s<strong>in</strong> b R<br />

2<br />

o<br />

wworst<br />

(177)<br />

In the case where the <strong>leakage</strong> <strong>collection</strong> layer is not full, comb<strong>in</strong><strong>in</strong>g Equations 10 and<br />

177 gives:<br />

t<br />

avg worst<br />

=<br />

FLQ<br />

k s<strong>in</strong>b R<br />

wworst<br />

(178)<br />

5.2.3 Average Leachate Thickness <strong>in</strong> the Random Scenario With no Overlap<br />

In the random scenario, the size of the wetted zone is known from Section 4.4.4. However,<br />

contrary <strong>to</strong> the worst scenario where all parabolic zones are equal (Figure 9a), <strong>in</strong><br />

the random scenario, the parabolic zones are different (Figure 9b). To calculate the average<br />

<strong>leachate</strong> thickness without undertak<strong>in</strong>g complex <strong>in</strong>tegrations, it is necessary <strong>to</strong><br />

266 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

determ<strong>in</strong>e the “average parabolic zone” <strong>in</strong> the random scenario. This can be done as<br />

follows.<br />

The “average parabolic zone” <strong>in</strong> the random scenario is def<strong>in</strong>ed by the horizontal distance<br />

x rand between the primary l<strong>in</strong>er defect and the low end of the <strong>leakage</strong> <strong>collection</strong><br />

layer slope which is such that the wetted zone surface area calculated us<strong>in</strong>g x rand is equal<br />

<strong>to</strong> A w rand :<br />

A A<br />

(179)<br />

w ( x = xrand<br />

)<br />

=<br />

wrand<br />

Consider<strong>in</strong>g all of the cases discussed <strong>in</strong> Section 4.4, Equation 179 has an explicit<br />

solution only if the follow<strong>in</strong>g conditions are met:<br />

<strong>to</strong><br />

L<br />

(180)<br />

2s<strong>in</strong>b £ (181)<br />

t<br />

0 £ x £ L - o<br />

2 s<strong>in</strong>b<br />

<strong>to</strong><br />

X L<br />

2s<strong>in</strong>b £ £<br />

(182)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 50, 120 and 179 gives:<br />

L<br />

F<br />

NM<br />

HG<br />

53 /<br />

xrand m<br />

=<br />

23 /<br />

1 +<br />

L 10 2<br />

d<br />

i<br />

2<br />

m<br />

52 /<br />

I<br />

-<br />

KJ<br />

where x rand is def<strong>in</strong>ed by Equation 179 and μ is def<strong>in</strong>ed by Equation 109.<br />

Comb<strong>in</strong><strong>in</strong>g Equations 24 and 183 gives:<br />

L<br />

F<br />

NM<br />

HG<br />

53 /<br />

Xrand m<br />

=<br />

23 /<br />

1 +<br />

L 10 2<br />

d<br />

i<br />

2<br />

m<br />

2<br />

O<br />

QP<br />

52 /<br />

I<br />

-<br />

KJ<br />

23 /<br />

2<br />

O<br />

QP<br />

-<br />

23 /<br />

m<br />

2<br />

(183)<br />

(184)<br />

where X rand is the horizontal distance between the vertex of the parabolic zone and the<br />

low end of the <strong>leakage</strong> <strong>collection</strong> layer slope <strong>in</strong> the random scenario.<br />

Values of x rand /L and X rand /L are given <strong>in</strong> Table 7. It appears that the condition expressed<br />

by Equation 181 (or Equation 182 which is equivalent) is met only for:<br />

From Equation 153:<br />

0 £ m £ 10696 .<br />

(185)<br />

V<br />

rand<br />

2 3<br />

xrand <strong>to</strong> 2 <strong>to</strong><br />

= +<br />

2<br />

s<strong>in</strong>b cosb 9 s<strong>in</strong> b cosb<br />

(186)<br />

where V rand is the volume of the <strong>leakage</strong> <strong>collection</strong> layer that conta<strong>in</strong>s <strong>leachate</strong> <strong>in</strong> the<br />

random scenario.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

267


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

Table 7.<br />

Values of x rand /L and X rand /L.<br />

μ x rand /L X rand /L<br />

1 × 10 -4 0.543 0.543<br />

1 × 10 -3 0.543 0.543<br />

1 × 10 -2 0.542 0.547<br />

1 × 10 -1 0.538 0.588<br />

5 × 10 -1 0.519 0.769<br />

0.6 0.512 0.812<br />

0.7 0.504 0.854<br />

0.8 0.495 0.895<br />

0.9 0.485 0.935<br />

1.0 0.474 0.974<br />

1.0696 0.465 1.000<br />

Notes: The tabulated values were calculated us<strong>in</strong>g the follow<strong>in</strong>g equations: x rand /L, Equation 183; X rand /L,<br />

Equation 184. The dimensionless parameter μ is def<strong>in</strong>ed by Equation 109.<br />

From Equation 144:<br />

t<br />

avg rand<br />

=<br />

A<br />

Vrand<br />

/cosb<br />

w rand<br />

(187)<br />

where t avg rand is the average thickness of <strong>leachate</strong> <strong>in</strong> the wetted zone of the <strong>leakage</strong><br />

<strong>collection</strong> layer <strong>in</strong> the case where the <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er are distributed at random<br />

(random scenario).<br />

Comb<strong>in</strong><strong>in</strong>g Equations 120, 186 and 187 gives:<br />

b5 / 3g + b15 / 2gbxrand<br />

/ <strong>to</strong>gs<strong>in</strong>b L s<strong>in</strong>b<br />

tavg rand<br />

=<br />

52 /<br />

F 2 L s<strong>in</strong>bI<br />

(188)<br />

1 +<br />

2<br />

t<br />

Comb<strong>in</strong><strong>in</strong>g Equations 109 and 188 gives:<br />

t<br />

avg rand<br />

t<br />

o<br />

HG<br />

o<br />

KJ -<br />

( 5 / 3) + 15 /( 2m) xrand<br />

/ L<br />

=<br />

52 /<br />

L<br />

MF<br />

2I<br />

O<br />

m 1 + 2P<br />

m<br />

NM<br />

HG<br />

KJ -<br />

QP<br />

(189)<br />

where μ is def<strong>in</strong>ed by Equation 109 and x rand /L is given by Equation 183.<br />

Values of t avg rand /t o as a function of μ, calculated us<strong>in</strong>g Equation 189, are given <strong>in</strong> Table<br />

6for0≤ μ ≤ 1.0696.<br />

If the <strong>leakage</strong> <strong>collection</strong> layer is not full (i.e. if the condition expressed by Equation<br />

11 is met), Equations 10 and 188 can be comb<strong>in</strong>ed <strong>to</strong> give:<br />

268 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

t<br />

avg rand<br />

=<br />

b<br />

g<br />

( 5 / 3) + 15 / 2 x s<strong>in</strong> b k / Q L s<strong>in</strong>b<br />

d<br />

rand<br />

52 /<br />

1+ 2 L s<strong>in</strong> b k / Q - 2<br />

i<br />

(190)<br />

where x rand is given by Equation 183.<br />

If the <strong>leakage</strong> <strong>collection</strong> layer is filled with <strong>leachate</strong> <strong>in</strong> a certa<strong>in</strong> area around the primary<br />

l<strong>in</strong>er defect (i.e. if the condition expressed by Equation 11 is not met), Equations<br />

17 and 188 can be comb<strong>in</strong>ed <strong>to</strong> give:<br />

t<br />

avg rand<br />

=<br />

L<br />

N<br />

M<br />

( 5/ 3)<br />

+<br />

t<br />

L<br />

N<br />

M<br />

1 +<br />

t<br />

LCL<br />

15 xrand<br />

s<strong>in</strong>b<br />

F Q<br />

1 +<br />

2<br />

kt<br />

LCL<br />

HG<br />

4 L s<strong>in</strong>b<br />

F Q<br />

1 +<br />

2<br />

kt<br />

HG<br />

LCL<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

52 /<br />

O<br />

I<br />

KJ<br />

Q<br />

P<br />

LCL<br />

L s<strong>in</strong>b<br />

- 2<br />

(191)<br />

where x rand is given by Equation 183.<br />

It should be remembered that Equations 188 <strong>to</strong> 191 are valid only for μ ≤ 1.0696.<br />

Values of t avg rand /t o given <strong>in</strong> Table 6 for μ > 1.0696 were obta<strong>in</strong>ed as follows.<br />

If μ is large, the wetted fractions R w worst and R w rand converge (see Equations 107 and<br />

122) s<strong>in</strong>ce λ worst and λ rand tend <strong>to</strong> become equal when μ is large (see Table 4). The wetted<br />

zones be<strong>in</strong>g the same, the average <strong>leachate</strong> thickness must be the same and, therefore,<br />

t avg rand /t avg worst must tend <strong>to</strong>ward one when μ tends <strong>to</strong>ward <strong>in</strong>f<strong>in</strong>ity. Table 6 shows that<br />

t avg rand /t avg worst is equal <strong>to</strong> 1.0616 for μ = 1.0696. Therefore, between μ = 1.0696 and<br />

μ = ∞, t avg rand /t avg worst varies only between 1.0616 and 1.0. Interpolation of t avg rand /t avg worst<br />

was done graphically between μ = 1.0696 and μ = 100 (where t avg rand and t avg worst become<br />

virtually equal) follow<strong>in</strong>g the trend of the curve for values of μ smaller than 1.0696. The<br />

values of t avg rand /t avg worst thus obta<strong>in</strong>ed are given <strong>in</strong> Table 6. Values of t avg rand /t o were then<br />

derived from the values of t avg worst /t o and the values of t avg rand /t avg worst .<br />

Table 6 shows that the average thickness of <strong>leachate</strong> is between 0 and 33% greater<br />

<strong>in</strong> the random scenario than <strong>in</strong> the worst scenario. However, it should be remembered<br />

that the average thickness has been calculated over the wetted zone (there is no <strong>leachate</strong><br />

outside the wetted zone) and the wetted zone is between 0 and 150% greater <strong>in</strong> the worst<br />

scenario than <strong>in</strong> the random scenario, as shown <strong>in</strong> Table 4. Therefore, there is more <strong>leachate</strong><br />

<strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer <strong>in</strong> the worst scenario than <strong>in</strong> the random scenario.<br />

The ratio between the amount of <strong>leachate</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer <strong>in</strong> the random<br />

scenario and the worst scenario is expressed by the follow<strong>in</strong>g equation derived from<br />

Equations 123, 173, 183 and 189:<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

269


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

t<br />

t<br />

avg rand<br />

avg worst<br />

l<br />

l<br />

rand<br />

worst<br />

L<br />

F<br />

NM<br />

HG<br />

53 /<br />

2 m xrand<br />

m 2<br />

= + =<br />

23 /<br />

1+<br />

9 L 10 2 m<br />

d<br />

i<br />

52 /<br />

I<br />

-<br />

KJ<br />

2<br />

O<br />

QP<br />

23 /<br />

5m<br />

-<br />

18<br />

(192)<br />

Equation 192 is valid only for μ ≤ 1.0696. Values calculated us<strong>in</strong>g Equation 192 are<br />

given <strong>in</strong> Table 6. Values of t avg rand λ rand /(t avg worst λ worst ) given <strong>in</strong> Table 6 for μ > 1.0696 were<br />

calculated from numerical values of λ worst /λ rand given <strong>in</strong> Table 4 and numerical values<br />

of t avg rand /t avg worst given <strong>in</strong> Table 6.<br />

5.2.4 Average Leachate Thickness When Wetted Zones Overlap<br />

The values of the average <strong>leachate</strong> thickness given <strong>in</strong> Sections 5.2.2 and 5.2.3 are valid<br />

only if there is no overlapp<strong>in</strong>g of different wetted zones, i.e. if, as shown <strong>in</strong> Section<br />

4.4.5:<br />

R ≤ Crit ( R )<br />

(193)<br />

wworst<br />

w worst<br />

R<br />

wrand<br />

≤ Crit ( R )<br />

wrand<br />

(194)<br />

If the conditions expressed by Equations 193 and 194 are not satisfied, there is overlapp<strong>in</strong>g<br />

between adjacent wetted zones. In this case, the best approach, from a practical<br />

standpo<strong>in</strong>t, is <strong>to</strong> assume that the entire area of the <strong>leakage</strong> <strong>collection</strong> layer is wetted.<br />

Aga<strong>in</strong>, the worst scenario and the random scenario are considered. These two scenarios<br />

are def<strong>in</strong>ed <strong>in</strong> Section 4.4.2.<br />

Worst Scenario. In the worst scenario all of the primary l<strong>in</strong>er <strong>defects</strong> are located at<br />

the higher end of the <strong>leakage</strong> <strong>collection</strong> layer slope. S<strong>in</strong>ce the wetted zones have been<br />

assumed <strong>to</strong> overlap, it is approximately correct <strong>to</strong> consider that the entire <strong>leakage</strong><br />

<strong>collection</strong> layer area is wetted. As a result, the <strong>leachate</strong> thickness is approximately uniform<br />

over the entire <strong>leakage</strong> <strong>collection</strong> layer area provided that the <strong>defects</strong> are uniformly<br />

distributed at the high end of the <strong>leakage</strong> <strong>collection</strong> layer slope. The average <strong>leachate</strong><br />

thickness is then derived us<strong>in</strong>g the classical Darcy’s equation, result<strong>in</strong>g <strong>in</strong>:<br />

t<br />

avg worst<br />

=<br />

NQ<br />

kiB<br />

(195)<br />

where: N = <strong>to</strong>tal number of <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er; Q = rate of <strong>leachate</strong> migration<br />

through one defect of the primary l<strong>in</strong>er, all <strong>defects</strong> be<strong>in</strong>g assumed identical and subjected<br />

<strong>to</strong> the same <strong>leachate</strong> head over the entire surface area of the primary l<strong>in</strong>er; k =<br />

hydraulic conductivity of the <strong>leakage</strong> <strong>collection</strong> layer material; i = hydraulic gradient<br />

<strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer; and B = width of the <strong>leakage</strong> <strong>collection</strong> layer.<br />

Comb<strong>in</strong><strong>in</strong>g Equations 8 and 195 gives:<br />

t<br />

avg worst<br />

=<br />

NQ<br />

kBs<strong>in</strong>b<br />

(196)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 98, 100 and 197 gives:<br />

270 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

t<br />

avg worst<br />

=<br />

FLQ<br />

k s<strong>in</strong>b<br />

(197)<br />

Equations 195 <strong>to</strong> 197 are valid only if the <strong>leakage</strong> <strong>collection</strong> layer is not full, i.e. if<br />

the condition expressed by Equation 11 (or Equation 12 which is equivalent) is met. The<br />

case where the <strong>leakage</strong> <strong>collection</strong> layer is full over its entire surface area is complex:<br />

(i) Equations 16 <strong>to</strong> 18, which where established for the case where the <strong>leakage</strong> <strong>collection</strong><br />

layer is full <strong>in</strong> a limited area around the primary l<strong>in</strong>er defect, are not applicable;<br />

and (ii) assum<strong>in</strong>g that the virtual thickness of <strong>leachate</strong> is a constant (t avg ) over the entire<br />

area of the <strong>leakage</strong> <strong>collection</strong> layer allows Darcy’s equation <strong>to</strong> be written as follows:<br />

NQ<br />

= kBt LCL<br />

s<strong>in</strong>b<br />

(198)<br />

which shows that there is no relationship between Q and t avg .Inotherwords,t avg is then<br />

<strong>in</strong>determ<strong>in</strong>ate. Therefore, no solution is proposed for the average <strong>leachate</strong> head (and<br />

virtual thickness) for the case where the <strong>leakage</strong> <strong>collection</strong> layer is filled with <strong>leachate</strong>.<br />

Random Scenario. In the random scenario, the primary l<strong>in</strong>er <strong>defects</strong> are distributed<br />

at random. In the case where there are enough <strong>defects</strong> <strong>to</strong> assume that the entire <strong>leakage</strong><br />

<strong>collection</strong> layer area is wetted, the design of a <strong>leakage</strong> <strong>collection</strong> layer becomes similar<br />

<strong>to</strong> the design of a <strong>leachate</strong> <strong>collection</strong> layer subjected <strong>to</strong> a uniform rate of <strong>leachate</strong> generation.<br />

As shown by Giroud and Houlihan (1995), <strong>in</strong> most practical cases, an average<br />

value of the <strong>leachate</strong> thickness is :<br />

t  Q/( L B)<br />

avg<br />

= (199)<br />

L 2 k s<strong>in</strong>b<br />

With the notations used <strong>in</strong> this paper, Equation 199 becomes:<br />

NQ<br />

tavg rand<br />

= 2 kB s<strong>in</strong>b<br />

Comb<strong>in</strong><strong>in</strong>g Equations 98, 100 and 200 gives:<br />

FLQ<br />

t = avg rand<br />

2 k s<strong>in</strong>b<br />

(200)<br />

(201)<br />

Compar<strong>in</strong>g Equations 197 and 200 shows that the average <strong>leachate</strong> thickness is twice<br />

greater <strong>in</strong> the worst scenario than <strong>in</strong> the random scenario. (It should be remembered that<br />

it has been assumed that, <strong>in</strong> both cases, the entire surface area of the <strong>leakage</strong> <strong>collection</strong><br />

layer is wetted.)<br />

Equations 199 <strong>to</strong> 201 are valid only if the <strong>leakage</strong> <strong>collection</strong> layer is not full, i.e. if<br />

the condition is expressed by Equation 11 (or Equation 12 which is equivalent) is met.<br />

Also, for the reasons <strong>in</strong>dicated after Equation 197, no solution is proposed for the case<br />

where the <strong>leakage</strong> <strong>collection</strong> layer is full.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

271


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

5.2.5 Influence of Primary L<strong>in</strong>er Defect Frequency on Average Leachate Thickness<br />

An important difference between Sections 5.2.2 and 5.2.3 on one hand, and Section<br />

5.2.4 on the other hand should be noted. Equations for t avg worst and t avg rand do not depend<br />

on the defect frequency, F, <strong>in</strong> Sections 5.2.2 and 5.2.3, whereas they depend on F <strong>in</strong><br />

Section 5.2.4. The reason for that is the follow<strong>in</strong>g:<br />

S In Sections 5.2.2 and 5.2.3, the wetted zones, that correspond <strong>to</strong> various <strong>defects</strong> <strong>in</strong><br />

the primary l<strong>in</strong>er, do not overlap. The average <strong>leachate</strong> thickness is the same <strong>in</strong> any<br />

of these <strong>in</strong>dividual wetted zones and it is calculated for any of them. Consequently,<br />

the average <strong>leachate</strong> thickness does not depend on the frequency of <strong>defects</strong>. However,<br />

the frequency of <strong>defects</strong> governs the wetted fraction (i.e. the ratio between the <strong>to</strong>tal<br />

surface area of all wetted zones and the surface area of the <strong>leakage</strong> <strong>collection</strong> layer).<br />

S In Section 5.2.4, it is assumed that the entire surface area of the <strong>leakage</strong> <strong>collection</strong><br />

layer is wetted. In other words, it is assumed that the wetted fraction is equal <strong>to</strong> one.<br />

Therefore, the average <strong>leachate</strong> thickness is a function of all of the <strong>defects</strong> <strong>in</strong> the primary<br />

l<strong>in</strong>er and, consequently, is a function of the defect frequency.<br />

It is important <strong>to</strong> note that, when the wetted fraction exceeds the critical value (Section<br />

4.4.5), the design eng<strong>in</strong>eer must assume that the <strong>in</strong>dividual wetted zones (i.e. the<br />

wetted zones that correspond <strong>to</strong> the <strong>in</strong>dividual <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er) overlap and<br />

must use the equations given <strong>in</strong> Section 5.2.4 <strong>to</strong> calculate the average <strong>leachate</strong> thickness.<br />

In contrast, when the wetted fraction does not exceed the critical value, the design<br />

eng<strong>in</strong>eer may either use the equations given <strong>in</strong> Section 5.2.4 or use the equations given<br />

<strong>in</strong> Sections 5.2.2 and 5.2.3. The approach described <strong>in</strong> Section 5.2.4 is simpler: it consists<br />

of assum<strong>in</strong>g that the entire <strong>leakage</strong> <strong>collection</strong> layer area is wetted. The approach<br />

described <strong>in</strong> Sections 5.2.2 and 5.2.3 is more complex but closer <strong>to</strong> reality: only a fraction<br />

of the <strong>leakage</strong> <strong>collection</strong> layer is wetted and, <strong>in</strong> addition <strong>to</strong> calculat<strong>in</strong>g the average<br />

<strong>leachate</strong> thickness as shown <strong>in</strong> Sections 5.2.2 and 5.2.3, it is necessary <strong>to</strong> determ<strong>in</strong>e the<br />

size of this fraction us<strong>in</strong>g equations provided <strong>in</strong> Section 4.4. The use of both approaches<br />

is illustrated by Example 6 <strong>in</strong> Section 6.1.<br />

The two approaches give values of the <strong>leachate</strong> thickness (and head) that are different<br />

and, when the wetted zones do not overlap, only the approach described <strong>in</strong> Sections<br />

5.2.2 and 5.2.3 gives a correct value of the <strong>leachate</strong> thickness (or head). However, <strong>in</strong><br />

general, the average <strong>leachate</strong> thickness is only calculated as a first step <strong>in</strong> the calculation<br />

of the rate of <strong>leakage</strong> through the secondary l<strong>in</strong>er. In this case, both approaches are<br />

acceptable: the approach described <strong>in</strong> Section 5.2.4 gives a <strong>leachate</strong> thickness that is<br />

small and uniformly distributed over the entire secondary l<strong>in</strong>er, while the approach described<br />

<strong>in</strong> Sections 5.2.2 and 5.2.3 gives a greater <strong>leachate</strong> thickness <strong>in</strong> the wetted area<br />

and no <strong>leachate</strong> outside the wetted area. The <strong>leakage</strong> rates calculated us<strong>in</strong>g the <strong>leachate</strong><br />

thickness determ<strong>in</strong>ed as <strong>in</strong>dicated <strong>in</strong> Section 5.2.4 are conservative (i.e. greater than<br />

those calculated us<strong>in</strong>g the <strong>leachate</strong> thickness determ<strong>in</strong>ed as <strong>in</strong>dicated <strong>in</strong> Sections 5.2.2<br />

and 5.2.3 and multiplied by the wetted fraction) because <strong>leakage</strong> rates typically vary<br />

proportionally <strong>to</strong> the head <strong>to</strong> a power less than one. This will be illustrated quantitatively<br />

<strong>in</strong> Section 6.1, after Example 6.<br />

272 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

5.3 Time Required <strong>to</strong> Reach Steady-State Flow Conditions<br />

5.3.1 Equations<br />

The volume of liquid <strong>in</strong> a porous medium is less than the volume of porous medium<br />

that conta<strong>in</strong>s the liquid. As <strong>in</strong>dicated by Equation 143, the volume of <strong>leachate</strong> <strong>in</strong> the<br />

<strong>leakage</strong> <strong>collection</strong> layer is equal <strong>to</strong> the volume of the <strong>leakage</strong> <strong>collection</strong> layer that conta<strong>in</strong>s<br />

the <strong>leachate</strong> multiplied by the porosity, n, of the <strong>leakage</strong> <strong>collection</strong> layer material.<br />

The time required for such a volume <strong>to</strong> pass through the primary l<strong>in</strong>er defect, t req ,gives<br />

a lower boundary of the time required <strong>to</strong> reach steady-state <strong>flow</strong> conditions, hence:<br />

t<br />

req<br />

><br />

nV<br />

Q<br />

(202)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 10, 153 and 202 gives the follow<strong>in</strong>g equation for the case<br />

where the <strong>leakage</strong> <strong>collection</strong> layer is not full:<br />

12 /<br />

nx<br />

2 nQ<br />

treq > +<br />

k s<strong>in</strong> b cos b 9s<strong>in</strong> b cos b k<br />

2 3/<br />

2<br />

(203)<br />

The last term is generally negligible, because it represents the time required <strong>to</strong> fill the<br />

volume of the <strong>leakage</strong> <strong>collection</strong> layer that conta<strong>in</strong>s <strong>leachate</strong> between axes Oy and VY<br />

(Figure 6). This volume is either small or reduced by truncation (Figure 8). Therefore:<br />

t > nx<br />

req (204)<br />

k s<strong>in</strong> b cosb<br />

Equation 204 may be written as follows:<br />

t<br />

req<br />

><br />

x /cosb<br />

ks<strong>in</strong> b / n<br />

(205)<br />

Comb<strong>in</strong><strong>in</strong>g Equations 8 and 205 gives:<br />

t<br />

req<br />

><br />

x /cos b<br />

ki/<br />

n<br />

(206)<br />

where the numera<strong>to</strong>r is the distance between the primary l<strong>in</strong>er defect and the low end<br />

of the <strong>leakage</strong> <strong>collection</strong> layer slope, and the denom<strong>in</strong>a<strong>to</strong>r is the actual liquid velocity<br />

derived from Darcy’s equation. Therefore, the right hand member of Equation 204 is<br />

the travel time, t travel<br />

, i.e. the time required by a drop of <strong>leachate</strong> <strong>to</strong> travel from the primary<br />

l<strong>in</strong>er defect <strong>to</strong> the low end of the <strong>leakage</strong> <strong>collection</strong> layer, assum<strong>in</strong>g that <strong>flow</strong> is<br />

not hampered by capillarity <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer:<br />

t<br />

req<br />

> t =<br />

travel<br />

nx<br />

k s<strong>in</strong> b cos b<br />

(207)<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

273


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

S<strong>in</strong>ce the approximate equations presented above (Equations 203 <strong>to</strong> 207) do not depend<br />

on the <strong>flow</strong> rate, Q, they are assumed <strong>to</strong> be applicable <strong>to</strong> all cases (i.e. regardless<br />

whether the <strong>leakage</strong> <strong>collection</strong> layer is full or not).<br />

5.3.2 Parametric Study<br />

Three types of <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong> are considered:<br />

S a geonet with a porosity of 0.8 and a hydraulic transmissivity result<strong>in</strong>g <strong>in</strong> a hydraulic<br />

conductivity (obta<strong>in</strong>ed by divid<strong>in</strong>g the hydraulic transmissivity by the thickness) of<br />

1 × 10 -1 m/s;<br />

S a gravel layer with a porosity of 0.3 and a hydraulic conductivity of 1 × 10 -1 m/s; and<br />

S a sand layer with a porosity of 0.3 and a hydraulic conductivity of 1 × 10 -3 m/s.<br />

The first two <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong> have the same hydraulic conductivity and the<br />

last two have the same porosity. For a 50 m long <strong>leakage</strong> <strong>collection</strong> layer on a 2% slope,<br />

the follow<strong>in</strong>g times were obta<strong>in</strong>ed us<strong>in</strong>g Equation 204: 2 hours for the gravel, 6 hours<br />

for the geonet, and 208 hours (9 days) for the sand. It appears that the time required <strong>to</strong><br />

reach steady-state <strong>flow</strong> conditions (i.e. approximately the time required for <strong>leachate</strong> <strong>to</strong><br />

travel from the primary l<strong>in</strong>er defect <strong>to</strong> the lower end of the <strong>leakage</strong> <strong>collection</strong> layer<br />

where it can be detected) is on the order of several hours for gravel and geonet <strong>leakage</strong><br />

<strong>collection</strong> <strong>layers</strong> and on the order of several days for a sand <strong>leakage</strong> <strong>collection</strong> layer.<br />

As landfill <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong> are often moni<strong>to</strong>red once a week or even more frequently,<br />

a <strong>leachate</strong> travel time of 9 days is not acceptable.<br />

6 APPLICATIONS AND DISCUSSION<br />

6.1 Design Examples<br />

The design examples presented below have been selected <strong>to</strong> represent a variety of situations<br />

where the solutions presented <strong>in</strong> Sections 3, 4 and 5 can be used.<br />

Example 1. A <strong>leakage</strong> <strong>collection</strong> layer underly<strong>in</strong>g a geomembrane primary l<strong>in</strong>er is<br />

be<strong>in</strong>g conservatively designed <strong>to</strong> accommodate a large rate of <strong>leakage</strong> through the geomembrane<br />

of 10 m 3 /day. Three materials are considered: gravel (hydraulic conductivity,<br />

k =1× 10 -1 m/s, and thickness, t LCL =0.3m);sand(k =1× 10 -3 m/s, t LCL =0.3m);<br />

and geonet (k =1× 10 -1 m/s, t LCL = 5 mm). Determ<strong>in</strong>e if these materials can be considered<br />

adequate.<br />

Equation 11 is used <strong>to</strong> calculate the m<strong>in</strong>imum thickness that the <strong>leakage</strong> <strong>collection</strong><br />

layer should have <strong>to</strong> ensure that the <strong>leakage</strong> <strong>collection</strong> layer is not full. The follow<strong>in</strong>g<br />

value is obta<strong>in</strong>ed for k =1× 10 -1 m/s:<br />

t LCL full<br />

=<br />

10/ 86,<br />

400<br />

= 0. 034 m = 34 mm<br />

−1<br />

1 × 10<br />

274 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

It appears that, accord<strong>in</strong>g <strong>to</strong> the calculation, the gravel should not be full because its<br />

thickness is greater than the calculated value (i.e. 0.3 m = 300 mm > 34 mm), and the<br />

geonet is full because 5 mm < 34 mm.<br />

For k =1× 10 -3 m/s, Equation 11 gives:<br />

t LCL full<br />

=<br />

10/ 86,<br />

400<br />

= 0. 340 m<br />

−3<br />

1 × 10<br />

Therefore, the considered sand <strong>leakage</strong> <strong>collection</strong> layer can be expected <strong>to</strong> be full because<br />

its thickness is less than the required value of 0.34 m.<br />

The maximum <strong>leachate</strong> thickness, t o , <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer is calculated us<strong>in</strong>g<br />

Equation 10 for the gravel <strong>leakage</strong> <strong>collection</strong> layer as follows:<br />

t o<br />

=<br />

10/ 86,<br />

400<br />

= 0. 034 m = 34 mm<br />

−1<br />

1 × 10<br />

In the cases of the geonet and the sand <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong>, t o is calculated us<strong>in</strong>g<br />

Equation 17 because, <strong>in</strong> these two cases, the thickness of the <strong>leakage</strong> <strong>collection</strong> layer<br />

is less than t LCLfull . In the case of the geonet <strong>leakage</strong> <strong>collection</strong> layer, t o is calculated us<strong>in</strong>g<br />

Equation 17 as follows:<br />

t o<br />

=<br />

6 × 10<br />

2<br />

−3<br />

L<br />

NM<br />

1 +<br />

10/ 86,<br />

400<br />

× × QP = 0. 099 m = 99 mm<br />

−1 −3 2<br />

( 1 10 ) ( 6 10 )<br />

In the case of the sand <strong>leakage</strong> <strong>collection</strong> layer, t o is calculated us<strong>in</strong>g Equation 17 as<br />

follows:<br />

L<br />

NM<br />

03 . 10 / 86,<br />

400<br />

t o<br />

= 1 +<br />

−<br />

2 ( 1 × 10 ) ( 03 . )<br />

3 2<br />

O<br />

O<br />

QP =<br />

0.343 m<br />

A (virtual) <strong>leachate</strong> thickness greater than 0.3 m is considered unacceptable by many<br />

regulations.<br />

In conclusion, the gravel <strong>leakage</strong> <strong>collection</strong> layer is the best because it is not expected<br />

<strong>to</strong> be full accord<strong>in</strong>g <strong>to</strong> the calculation and the calculated <strong>leachate</strong> depth is small: 34 mm.<br />

The geonet <strong>leakage</strong> <strong>collection</strong> layer is acceptable because the calculated (virtual) <strong>leachate</strong><br />

thickness is acceptable (99 mm) although the <strong>leakage</strong> <strong>collection</strong> layer is expected<br />

<strong>to</strong> be full <strong>in</strong> a certa<strong>in</strong> area around the primary l<strong>in</strong>er defect, which is not an ideal situation.<br />

The sand <strong>leakage</strong> <strong>collection</strong> layer is not acceptable because the calculated (virtual) <strong>leachate</strong><br />

thickness is <strong>to</strong>o large. It should be noted that the use of the virtual thickness is<br />

appropriate s<strong>in</strong>ce the <strong>leachate</strong> head (which governs <strong>leakage</strong> through the secondary l<strong>in</strong>er)<br />

is related <strong>to</strong> the <strong>leachate</strong> thickness (actual or virtual) through Equation 3.<br />

The same gravel, geonet and sand <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong> will be the subject of Example<br />

8, which will show that sand is not recommended for another reason.<br />

ENDOF EXAMPLE 1<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

275


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

It should be noted that 10 m 3 /day is not a typical value observed <strong>in</strong> moni<strong>to</strong>r<strong>in</strong>g a landfill,<br />

but it is a reasonable rate of liquid migration through the primary l<strong>in</strong>er <strong>to</strong> consider<br />

when conservatively design<strong>in</strong>g a <strong>leakage</strong> <strong>collection</strong> layer: it is approximately the rate<br />

of <strong>leakage</strong> through a 1 cm 2 (10 -4 m 2 ) defect <strong>in</strong> a geomembrane underla<strong>in</strong> by a highly<br />

permeable material, such as gravel or a geonet, and subjected <strong>to</strong> a head of 0.1 m, as<br />

shown by Bernoulli’s equation (Equation 20):<br />

−4 −5 3<br />

3<br />

Q = ( 0. 6)( 10 ) ( 2)( 9. 81)( 01 . ) = 8. 4 × 10 m / s = 7.3 m / day<br />

Example 2. A geonet has a thickness of 5 mm and a hydraulic conductivity of 0.2 m/s.<br />

This geonet is used as a <strong>leakage</strong> <strong>collection</strong> layer beneath a geomembrane. Calculate a<br />

theoretical value for the maximum rate of <strong>leakage</strong> through a geomembrane defect that<br />

this geonet may accommodate without be<strong>in</strong>g filled with <strong>leachate</strong>.<br />

Equation 12 is used as follows:<br />

-3 2 -<br />

Q full<br />

= ( 02 . )( 5¥ 10 ) = 5¥<br />

10 6 3 3<br />

m / s = 043 . m / day = 430 liters / day<br />

This rate of <strong>leakage</strong> corresponds approximately <strong>to</strong> a geomembrane defect with a diameter<br />

of 2 <strong>to</strong> 3 mm for a head of the order of 100 mm (see Table 2).<br />

ENDOF EXAMPLE 2<br />

Example 3. A geonet hav<strong>in</strong>g a thickness of 6 mm and a hydraulic conductivity of 0.4<br />

m/s is used as a <strong>leakage</strong> <strong>collection</strong> layer between two geomembranes placed on a 2%<br />

slope. The length of the <strong>leakage</strong> <strong>collection</strong> layer is 30 m. Calculate theoretical values<br />

for the width and the surface area of the wetted zone for the case where a 1 m 3 /day leak<br />

occurs at the high end of the <strong>leakage</strong> <strong>collection</strong> layer slope.<br />

First, it is necessary <strong>to</strong> check if t o can be expected <strong>to</strong> be smaller or greater than t LCL ,<br />

which can be done by check<strong>in</strong>g if t LCL is greater or smaller than t LCLfull us<strong>in</strong>g Equation<br />

11 as follows:<br />

1/ 86,<br />

400<br />

t LCL full<br />

= = 0. 0054 m = 5.<br />

4 mm<br />

04 .<br />

Accord<strong>in</strong>g <strong>to</strong> the above calculation, the <strong>leakage</strong> <strong>collection</strong> layer which is 6 mm thick<br />

should not be expected <strong>to</strong> be filled with <strong>leachate</strong> and, therefore, equations for the case<br />

where the <strong>leakage</strong> <strong>collection</strong> layer is not full should be used.<br />

The wetted zone is bounded by a truncated parabola as shown <strong>in</strong> Figure 7. The width<br />

of the parabola at the high end of the <strong>leakage</strong> <strong>collection</strong> layer slope can be calculated<br />

as follows us<strong>in</strong>g Equation 42:<br />

2 1/ 86,<br />

400<br />

W o<br />

= = 0. 538 m<br />

( 002 . ) 04 .<br />

276 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

The width of the parabola at the low end of the <strong>leakage</strong> <strong>collection</strong> layer slope can be<br />

calculated as follows us<strong>in</strong>g Equation 43:<br />

L<br />

N<br />

M<br />

2 1/ 86,<br />

400<br />

W max<br />

= + 2<br />

002 . 04 .<br />

O<br />

Q<br />

12 /<br />

1/ 86,<br />

400<br />

( 30)( 0. 02) P = 8.<br />

05 m<br />

04 .<br />

The surface area of the wetted zone can be calculated as follows us<strong>in</strong>g Equation 80:<br />

L<br />

F<br />

NM<br />

HG<br />

( 2)( 1/ 86, 400)<br />

A wmax<br />

= 1 +<br />

2<br />

( 3)( 04 . )( 002 . )<br />

( 2)( 30)( 002 . )<br />

( 1/ 86, 400)/ 0.<br />

4<br />

ENDOF EXAMPLE 3<br />

32 /<br />

I<br />

-<br />

KJ<br />

O<br />

P<br />

Q<br />

1<br />

P = 1617 .<br />

m 2<br />

Example 4. Calculate a theoretical value for the average head of <strong>leachate</strong> on <strong>to</strong>p of<br />

the secondary l<strong>in</strong>er <strong>in</strong> the wetted zone <strong>in</strong> the case of Example 3.<br />

This example corresponds <strong>to</strong> Case IV (see Figure 13d). The average thickness of <strong>leachate</strong><br />

for this case can be calculated as follows us<strong>in</strong>g Equation 160:<br />

t avg L<br />

=<br />

( 3/ 2)( 30)( 0. 02)<br />

= 268 . × 10<br />

32 /<br />

1 + ( 2)( 30)( 0. 02) ( 0. 4)/( 1/ 86, 400)<br />

− 1<br />

− 4 m<br />

The average head is then derived from the average thickness us<strong>in</strong>g Equation 141 as<br />

follows:<br />

-<br />

h avg L<br />

= ( 268 . ¥ 10 4 ) cosb<br />

The angle β is so small (tanβ = 0.02) that cosβ is equal <strong>to</strong> 1.00 and, consequently:<br />

h<br />

avgL<br />

−<br />

≈ t = 268 . × 10 4 m<br />

avgL<br />

This head is very small. However, such small heads are typical <strong>in</strong> the design of <strong>leakage</strong><br />

<strong>collection</strong> <strong>layers</strong>.<br />

ENDOF EXAMPLE 4<br />

Example 5. A sand layer hav<strong>in</strong>g a thickness of 300 mm and a hydraulic conductivity<br />

of 1 × 10 -3 m/s is used as a <strong>leakage</strong> <strong>collection</strong> layer between two geomembranes on a<br />

2% slope. The length of the <strong>leakage</strong> <strong>collection</strong> layer is 15 m. Calculate the width and<br />

the surface area of the wetted zone and the average <strong>leachate</strong> thickness <strong>in</strong> the wetted<br />

zone, if a 6.3 m 3 /day leak occurs at 5 m from the <strong>to</strong>p of the <strong>leakage</strong> <strong>collection</strong> slope.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

277


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

First, it is necessary <strong>to</strong> check if t o can be expected <strong>to</strong> be smaller or greater than t LCL ,<br />

which can be done by check<strong>in</strong>g that t LCL is greater or smaller than t LCLfull us<strong>in</strong>g Equation<br />

11 as follows:<br />

t LCL full<br />

=<br />

6./ 3 86,<br />

400<br />

= 027 . m = 270 mm<br />

−3<br />

1 × 10<br />

Accord<strong>in</strong>g <strong>to</strong> the above calculation, t LCLfull is less than t LCL (300 mm). Therefore, equations<br />

for the case where the <strong>leakage</strong> <strong>collection</strong> layer is not full should be used. Accord<strong>in</strong>gly,<br />

Equation 10 would give t o = 0.27 m, like the above calculation.<br />

At the base of the <strong>leakage</strong> <strong>collection</strong> layer slope, x = 10 m and the width of the wetted<br />

zone can be calculated us<strong>in</strong>g Equation 36 as follows:<br />

( 2) ( 027 . ) ( 2) ( 10) ( 002 . )<br />

W = 1 + =<br />

002 .<br />

027 .<br />

42.<br />

5 m<br />

The width of the wetted zone at the base of the <strong>leakage</strong> <strong>collection</strong> layer slope can also<br />

be calculated us<strong>in</strong>g Equation 41 as follows:<br />

W =<br />

2<br />

002 .<br />

L<br />

N<br />

M<br />

12 /<br />

6./ 3 86, 400 6./ 3 86,<br />

400<br />

+ 2<br />

( 10) ( 0. 02) P = 42.<br />

5 m<br />

−3 −3<br />

1 × 10 1 × 10<br />

At the <strong>to</strong>p of the <strong>leakage</strong> <strong>collection</strong> layer slope, x = - 5 m, and the width of the wetted<br />

zone can be calculated us<strong>in</strong>g Equation 36 as follows:<br />

( 2) ( 027 . ) ( 2) ( 5) ( 002 . )<br />

W = 1 − = 13.<br />

7 m<br />

002 .<br />

027 .<br />

It appears that the parabola is truncated (Figure 8a). The conditions expressed by<br />

Equations 56 and 58 are met:<br />

027 .<br />

( 2) ( 002 . )<br />

= 675 . m ≤ 15 m<br />

15 - 6. 75 < 10 m < 15 m<br />

Therefore, the surface area of the wetted zone can be calculated us<strong>in</strong>g Equation 55<br />

as follows:<br />

2<br />

A w<br />

F 027 .<br />

= H G I K J<br />

LF<br />

( 2) ( 10) ( 002 . )<br />

I<br />

+<br />

HG K J F<br />

1<br />

− 1 −<br />

3 002 .<br />

NM<br />

027 . HG<br />

2 3/ 2 3/<br />

2<br />

O<br />

Q<br />

( 2) ( 15 − 10) ( 002 . )<br />

027 .<br />

I K J<br />

O<br />

P<br />

Q<br />

P = 459 m<br />

To determ<strong>in</strong>e the average <strong>leachate</strong> thickness, it is necessary <strong>to</strong> first calculate μ us<strong>in</strong>g<br />

Equation 109 as follows:<br />

2<br />

278 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

027 .<br />

m= = 09 .<br />

( 15) ( 0. 02)<br />

With x =10m,L =15m,andμ = 0.9, Equation 147 gives:<br />

F I<br />

HG K J < <<br />

09 .<br />

15 1 −<br />

2<br />

825 . < 10 < 15<br />

10 15<br />

Therefore, the condition expressed by Equation 147 is met and Case II shown <strong>in</strong> Figure<br />

13b should be considered. In this case, the average <strong>leachate</strong> thickness can be calculated<br />

us<strong>in</strong>g Equation 166 where α is given by Equation 167 as follows:<br />

Equation 164 gives:<br />

Equation 165 gives:<br />

t<br />

t<br />

t<br />

t<br />

( 2) ( 15 - 10) ( 002 . )<br />

a=<br />

= 074 .<br />

027 .<br />

avg lim<br />

avg L<br />

o<br />

o<br />

F I<br />

HG K J =<br />

3 09 . 5 ¥ 09 .<br />

= 1 -<br />

4 2 18<br />

3<br />

=<br />

32 /<br />

LF<br />

2 I<br />

( 2) ( 09 . ) M 1+<br />

HG K J - 1<br />

09 .<br />

Equation 166 can then be used as follows:<br />

NM<br />

O<br />

Q<br />

P<br />

0.<br />

3773<br />

= 0.<br />

3484<br />

hence:<br />

t avg II<br />

= ( 0. 74)( 0. 3773) + ( 1 - 0. 74)( 0. 3484) = 0.<br />

3698<br />

027 .<br />

t avg II<br />

= ( 0. 27)( 0. 3698) = 01 . m<br />

ENDOF EXAMPLE 5<br />

Example 6. A geosynthetic <strong>leakage</strong> <strong>collection</strong> layer be<strong>in</strong>g designed has a hydraulic<br />

conductivity of 0.4 m/s, a thickness of 7.5 mm, a slope of 2%, and a length of 30 m. A<br />

frequency of one defect per 4000 m 2 is assumed <strong>in</strong> the geomembrane overly<strong>in</strong>g the considered<br />

<strong>leakage</strong> <strong>collection</strong> layer, and it is assumed that the liquid migration rate through<br />

each defect is 1 m 3 /day. Calculate theoretical values for the wetted fraction and the average<br />

head of <strong>leachate</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

279


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

First, it is recommended <strong>to</strong> check whether the considered geosynthetic <strong>leakage</strong><br />

<strong>collection</strong> layer can be expected <strong>to</strong> be full or not, us<strong>in</strong>g Equation 11 as follows:<br />

1/ 86,<br />

400<br />

t LCLfull<br />

= = 0. 0054 m = 5. 4 mm<br />

04 .<br />

The considered geosynthetic <strong>leakage</strong> <strong>collection</strong> layer is not expected <strong>to</strong> be full because<br />

its thickness is greater than the calculated value of 5.4 mm. Therefore, equations<br />

for the case where the <strong>leakage</strong> <strong>collection</strong> layer is not full should be used.<br />

Then, two defect location scenarios should be considered: the worst scenario where<br />

all leaks are assumed <strong>to</strong> be located at the high end of the <strong>leachate</strong> <strong>collection</strong> layer slope,<br />

and the random scenario where the leaks are distributed at random. First, the dimensionless<br />

parameter μ is calculated us<strong>in</strong>g Equation 111 as follows:<br />

( 1/ 86, 400)/ 0.<br />

4<br />

-<br />

m= = 90 . ¥ 10 3<br />

( 30)( 0. 02)<br />

Then, λ worst , for the worst scenario, is calculated us<strong>in</strong>g Equation 108 as follows:<br />

F l worst<br />

=<br />

H G 2 I K J LF<br />

¥ -<br />

c h<br />

HG + ¥<br />

NM<br />

3 2 -3<br />

3 9 10 1 2<br />

9 10<br />

32 /<br />

I<br />

-<br />

KJ<br />

O<br />

P<br />

Q<br />

1<br />

P = 0180 .<br />

It should be noted that this value of λ worst is consistent with the values given <strong>in</strong> Table<br />

4. Then, the wetted fraction for the worst scenario is calculated us<strong>in</strong>g Equation 107 as<br />

follows:<br />

2<br />

R w worst<br />

= ( 0180 . )( 1/ 4000)( 30) = 0.<br />

041<br />

It appears that, even <strong>in</strong> the worst scenario, the wetted zone is small, i.e. 4.1% of the<br />

<strong>leakage</strong> <strong>collection</strong> layer surface area.<br />

In the random scenario, accord<strong>in</strong>g <strong>to</strong> Equation 123:<br />

F l rand<br />

=<br />

H G 2 I L<br />

-<br />

K J c F<br />

9 ¥ 10 h<br />

1+<br />

15<br />

NM<br />

HG<br />

2<br />

9 ¥ 10<br />

3 3 -3<br />

52 /<br />

I<br />

-<br />

KJ<br />

O<br />

P<br />

Q<br />

2<br />

P = 0.<br />

072<br />

It should be noted that this value of λ rand is consistent with the values given <strong>in</strong> Table<br />

4. Then, accord<strong>in</strong>g <strong>to</strong> Equation 122:<br />

2<br />

R w rand<br />

= (. 0072 )(/ 1 4000)( 30) = 0.<br />

016<br />

Therefore, when the leaks are located at random (“random scenario”), the wetted<br />

zone occupies 1.6% of the surface area of the <strong>leakage</strong> <strong>collection</strong> layer.<br />

In the worst scenario, the average <strong>leachate</strong> thickness <strong>in</strong> the wetted zone can be calculated<br />

us<strong>in</strong>g Equation 171. First, t o must be calculated as follows, us<strong>in</strong>g Equation 10:<br />

280 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

1/ 86,<br />

400<br />

t o<br />

= =<br />

04 .<br />

0. 0054 m<br />

Then, t avg worst can be calculated us<strong>in</strong>g Equation 171 as follows:<br />

t avg worst<br />

=<br />

L<br />

NM<br />

1 +<br />

( 32 / )( 30)( 002 . )<br />

( 2) ( 30) ( 002 . )<br />

0.<br />

0054<br />

32 /<br />

O<br />

−<br />

QP<br />

It is also possible <strong>to</strong> use Equation 172 as follows:<br />

t avg worst<br />

=<br />

0.<br />

0054<br />

L<br />

F<br />

NM<br />

HG<br />

−3<br />

( 9 × 10 ) 1 +<br />

( 32 / )<br />

1<br />

2<br />

9 × 10<br />

−<br />

= 27 . × 10<br />

4 m = 0.27 mm<br />

−3<br />

32 /<br />

I<br />

−<br />

KJ<br />

O<br />

QP<br />

1<br />

= 0.<br />

050<br />

It should be noted that this value is consistent with the values of t avg worst /t o given <strong>in</strong> Table<br />

6. Then:<br />

−<br />

t avg worst<br />

= ( 0. 05)( 0. 0054) = 2. 7 × 10 4 m = 0.<br />

27 mm<br />

A third method <strong>to</strong> calculate t avg worst consists of us<strong>in</strong>g Equation 178 as follows:<br />

(/ 1 4000)( 30)(/ 1 86, 400)<br />

−4<br />

t avg worst<br />

= = 2. 699 × 10 m ≈ 0.<br />

27 mm<br />

( 04 . )( 002 . )( 0041 . )<br />

In the random scenario, the value of x rand /L must be determ<strong>in</strong>ed first, <strong>in</strong> order <strong>to</strong> calculate<br />

t avg rand . To that end, Equation 183 is used as follows:<br />

x<br />

L<br />

rand<br />

=<br />

−<br />

( 9×<br />

10 )<br />

/<br />

10 2<br />

e<br />

3 5/<br />

3<br />

j<br />

L<br />

F<br />

NM<br />

HG<br />

2<br />

1+ 9 × 10<br />

23 −3<br />

52 /<br />

I K J −<br />

2<br />

O<br />

QP<br />

23 /<br />

Then, t avg rand is calculated us<strong>in</strong>g Equation 189 as follows:<br />

t avg rand<br />

=<br />

0.<br />

0054<br />

−3<br />

( 5/ 3) + 15/( 2 × 9 × 10 ) 0.<br />

5425<br />

L<br />

F<br />

NM<br />

HG<br />

−3<br />

( 9 × 10 ) 1 +<br />

2<br />

9 × 10<br />

−3<br />

b<br />

52 /<br />

I<br />

−<br />

KJ<br />

− × −3<br />

9 10<br />

= 0.<br />

5425<br />

2<br />

2<br />

g<br />

O<br />

QP<br />

= 677 . × 10<br />

It should be noted that this value is consistent with the values of t avg rand /t o given <strong>in</strong> Table<br />

6. Then:<br />

−2 −<br />

t avg rand<br />

= ( 0. 0054)( 6. 77 × 10 ) = 3. 656 × 10 4 m ≈ 0.<br />

37 mm<br />

F<strong>in</strong>ally, the follow<strong>in</strong>g ratio can be calculated:<br />

−2<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

281


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

t<br />

t<br />

avg rand<br />

avg worst<br />

=<br />

3.<br />

656 × 10<br />

2.<br />

699 × 10<br />

−4<br />

−4<br />

= 1355 .<br />

This value is consistent with the values of t avg rand /t avg worst given <strong>in</strong> Table 6.<br />

It appears that: (i) <strong>in</strong> the worst scenario, the wetted zone occupies 4.1% of the <strong>leakage</strong><br />

<strong>collection</strong> layer surface area, and the average <strong>leachate</strong> thickness <strong>in</strong> the wetted zone is<br />

0.27 mm; and (ii) <strong>in</strong> the random scenario, the wetted zone occupies 1.6% of the <strong>leakage</strong><br />

<strong>collection</strong> layer surface area, and the average <strong>leachate</strong> thickness <strong>in</strong> the wetted zone is<br />

0.37 mm. The wetted zone is 2.5 times larger <strong>in</strong> the worst scenario than <strong>in</strong> the random<br />

scenario, and the <strong>leachate</strong> thickness is 1.33 times larger <strong>in</strong> the random scenario than <strong>in</strong><br />

the worst scenario.<br />

The average <strong>leachate</strong> heads can then be derived from the average <strong>leachate</strong> thicknesses<br />

us<strong>in</strong>g Equation 141. S<strong>in</strong>ce β is very small (tanβ = 0.02), cosβ is equal <strong>to</strong> 1.00 and the<br />

heads are equal <strong>to</strong> the thicknesses.<br />

The <strong>leachate</strong> heads obta<strong>in</strong>ed above are then used <strong>to</strong> calculate the rate of <strong>leakage</strong><br />

through the secondary l<strong>in</strong>er. The <strong>leakage</strong> rate thus calculated must be multiplied by<br />

R w worst (<strong>in</strong> the worst scenario) <strong>to</strong> take <strong>in</strong><strong>to</strong> account the fact that only a fraction of the secondary<br />

l<strong>in</strong>er is wetted.<br />

As <strong>in</strong>dicated <strong>in</strong> Section 5.2.5, a design eng<strong>in</strong>eer who <strong>in</strong>tends <strong>to</strong> calculate the rate of<br />

<strong>leakage</strong> through the secondary l<strong>in</strong>er can use another approach which consists of assum<strong>in</strong>g<br />

that the <strong>leachate</strong> is uniformly distributed over the entire <strong>leakage</strong> <strong>collection</strong> layer,<br />

i.e. that the thickness of <strong>leachate</strong> on the secondary l<strong>in</strong>er is uniform. In the worst scenario,<br />

Equation 197 can then be used as follows:<br />

(/, 1 4 000)( 30)(/ 1 86, 400)<br />

−<br />

t avg worst<br />

= = 11 . × 10 5 m<br />

( 04 . ) ( 002 . )<br />

Equation 201 can be used as follows:<br />

( 1/ 4, 000) ( 30) ( 1/ 86, 400)<br />

−<br />

t avg rand<br />

= = 54 . × 10 6 m<br />

( 2) ( 04 . ) ( 002 . )<br />

The above values of t avg worst and t avg rand are much smaller than the values of t avg worst =<br />

0.27 mm and t avg rand = 0.37 mm calculated us<strong>in</strong>g the other approach. However, when<br />

<strong>leakage</strong> rates are calculated us<strong>in</strong>g t avg worst =0.27mmandt avg rand = 0.37 mm, they have <strong>to</strong><br />

be multiplied by 0.041 and 0.016, respectively, <strong>to</strong> take <strong>in</strong><strong>to</strong> account that only a fraction<br />

of the <strong>leakage</strong> <strong>collection</strong> layer is wetted, whereas <strong>leakage</strong> rates calculated us<strong>in</strong>g t avg worst<br />

=1.1× 10 -5 mandt avg rand =5.4× 10 -6 m do not have <strong>to</strong> be multiplied by a fac<strong>to</strong>r.<br />

ENDOF EXAMPLE 6<br />

It is <strong>in</strong>terest<strong>in</strong>g <strong>to</strong> cont<strong>in</strong>ue Example 6 by calculat<strong>in</strong>g the rate of <strong>leachate</strong> migration<br />

through a defect <strong>in</strong> the secondary l<strong>in</strong>er, assum<strong>in</strong>g that the secondary l<strong>in</strong>er is a composite<br />

l<strong>in</strong>er. The rate of <strong>leachate</strong> migration through a defect <strong>in</strong> the geomembrane component<br />

of a composite l<strong>in</strong>er can be calculated us<strong>in</strong>g the follow<strong>in</strong>g equation (Giroud 1997):<br />

282 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

Q<br />

2<br />

L F<br />

= 021 . 1+ 01 .<br />

H G<br />

NM<br />

h<br />

t<br />

UM<br />

I<br />

KJ<br />

095 .<br />

O<br />

QP<br />

a h k<br />

01 . 09 . 074 .<br />

2 UM<br />

(208)<br />

where: Q 2 = rate of <strong>leachate</strong> migration through a defect <strong>in</strong> the secondary l<strong>in</strong>er; a 2 =area<br />

of the defect <strong>in</strong> the secondary l<strong>in</strong>er; t UM = thickness of the low-permeability soil component<br />

of the secondary l<strong>in</strong>er (i.e. the medium underly<strong>in</strong>g the secondary l<strong>in</strong>er geomembrane,<br />

hence the subscript UM); and k UM = hydraulic conductivity of the low-permeability<br />

soil component of the secondary l<strong>in</strong>er.<br />

The follow<strong>in</strong>g values of the parameters are assumed: a 2 = π×10 -6 m 2 (i.e. a defect<br />

with a diameter of 2 mm), t UM =0.6m,andk UM =1× 10 -9 m/s.<br />

Calculations are presented only for the random scenario def<strong>in</strong>ed <strong>in</strong> Section 4.4.2. In<br />

the case of the first approach (i.e. the approach that consists of calculat<strong>in</strong>g the size of<br />

the wetted area and the average <strong>leachate</strong> thickness <strong>in</strong> the wetted area), the average head<br />

on <strong>to</strong>p of the secondary l<strong>in</strong>er (which is virtually equal <strong>to</strong> the average <strong>leachate</strong> thickness)<br />

is 0.37 mm over a wetted area that is only 1.6% of the surface area of the l<strong>in</strong>er, accord<strong>in</strong>g<br />

<strong>to</strong> Example 6. Equation 208 can then be used as follows:<br />

L<br />

NM<br />

Q 2<br />

= 021 . 1+<br />

01 .<br />

hence:<br />

F<br />

HG<br />

37 . × 10<br />

06 .<br />

−4<br />

I<br />

KJ<br />

095 .<br />

O<br />

− − −<br />

π × 10 3.<br />

7 × 10 1 × 10<br />

QP<br />

d i d i d i<br />

−<br />

Q 2<br />

= 106 . × 10 11 3<br />

m s<br />

6 01 .<br />

4 09 .<br />

9 074 .<br />

However, s<strong>in</strong>ce the probability for a defect <strong>in</strong> the secondary l<strong>in</strong>er geomembrane <strong>to</strong><br />

be <strong>in</strong> contact with <strong>leachate</strong> is only 1.6%, Q 2 should be multiplied by 0.016, hence:<br />

−11 −13<br />

3<br />

Q 2<br />

′ = 106 . × 10 × 0. 016 = 169 . × 10 m s<br />

In the case of the second approach, an average head on <strong>to</strong>p of the entire secondary<br />

l<strong>in</strong>er is considered. This average head (which is virtually equal <strong>to</strong> the average <strong>leachate</strong><br />

thickness) is 5.4 × 10 -6 m accord<strong>in</strong>g <strong>to</strong> Example 6. Equation 208 can then be used as<br />

follows:<br />

L<br />

NM<br />

Q 2<br />

= 021 . 1+<br />

01 .<br />

hence:<br />

F<br />

HG<br />

54 . × 10<br />

06 .<br />

−6<br />

I<br />

KJ<br />

095 .<br />

O<br />

− − −<br />

π × 10 5.<br />

4 × 10 1 × 10<br />

QP<br />

d i d i d i<br />

−<br />

Q 2<br />

= 235 . × 10 13 3<br />

m s<br />

6 01 .<br />

6 09 .<br />

9 074 .<br />

It appears that Q 2 calculated us<strong>in</strong>g the second approach is greater than Q ′ 2 calculated<br />

us<strong>in</strong>g the first approach. This is consistent with the general prediction, made at the end<br />

of Section 5.2.5, that the second approach is conservative.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

283


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

Similar calculations, us<strong>in</strong>g the first and the second approach, can be done for the<br />

worst scenario. Accord<strong>in</strong>g <strong>to</strong> Example 6, the wetted zone for the worst scenario occupies<br />

4.1% of the l<strong>in</strong>er surface area and the average head <strong>in</strong> the wetted zone is 0.27 mm.<br />

Calculations done with the first approach give a rate of <strong>leachate</strong> migration through a<br />

defect of 7.95 × 10 -12 m 3 /s. Multiply<strong>in</strong>g this by 0.041 gives 3.26 × 10 -3 m 3 /s. For the<br />

second approach, the average head is 1.1 × 10 -5 m accord<strong>in</strong>g <strong>to</strong> Example 6. The calculated<br />

rate of <strong>leachate</strong> migration through a defect is then 4.46 × 10 -13 m 3 /s. Aga<strong>in</strong>, the<br />

second approach is conservative. Also, it should be noted that the calculated rates of<br />

<strong>leachate</strong> migration are greater <strong>in</strong> the worst scenario than <strong>in</strong> the random scenario.<br />

Example 7. A 300 mm thick gravel <strong>leakage</strong> <strong>collection</strong> layer has a hydraulic conductivity<br />

of 0.4 m/s, a slope of 2% and a length of 60 m. A frequency of 20 <strong>defects</strong> per hectare<br />

(10,000 m 2 ) is assumed <strong>in</strong> the geomembrane l<strong>in</strong>er overly<strong>in</strong>g the considered <strong>leakage</strong><br />

<strong>collection</strong> layer, and it is assumed that the <strong>leachate</strong> migration rate through each defect<br />

is 1 m 3 /day. Calculate theoretical values for the wetted fraction and the average head<br />

of <strong>leachate</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer.<br />

The maximum <strong>leachate</strong> thickness <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer is calculated us<strong>in</strong>g<br />

Equation 10 as follows:<br />

1/ 86,<br />

400<br />

t o<br />

= = 0. 0054 m<br />

04 .<br />

As the maximum <strong>leachate</strong> thickness (5.4 mm) is less than the <strong>leakage</strong> <strong>collection</strong> layer<br />

thickness (300 mm), the dimensionless parameter μ can be calculated us<strong>in</strong>g Equation<br />

111 as follows:<br />

( 1/ 86, 400)/ 0.<br />

4<br />

-<br />

m= = 448 . ¥ 10 3<br />

( 60)( 0. 02)<br />

Then, λ worst can be calculated us<strong>in</strong>g Equation 108 as follows:<br />

{ }<br />

3 2 3 3 / 2<br />

- -<br />

l worst<br />

= ( 2 / 3)( 4. 48 ¥ 10 ) 1 + 2 /( 4. 48 ¥ 10 - 1 = 0127 .<br />

It should be noted that this value of λ worst is consistent with the values given <strong>in</strong> Table<br />

4. Then, the wetted fraction, R w worst , can be calculated us<strong>in</strong>g Equation 107 as follows:<br />

2<br />

R wworst<br />

= ( 0127 . )( 20/ 10, 000)( 60) = 0.<br />

914<br />

This value is greater than the value of Crit(R w worst )forμ =4.48× 10 -3 given <strong>in</strong> Figure<br />

12, or calculated us<strong>in</strong>g Equation 136 as follows:<br />

4.48 × 10 -3<br />

Crit( R w worst<br />

) =<br />

3<br />

L<br />

F<br />

NM<br />

HG<br />

I<br />

F<br />

HG<br />

2<br />

2<br />

1 +<br />

− 1 +<br />

−<br />

−<br />

448 . × 10 KJ<br />

448 . × 10<br />

3 3<br />

I<br />

KJ<br />

−12<br />

/<br />

O<br />

P<br />

Q<br />

.<br />

P = 0 668<br />

Therefore, <strong>in</strong> this case, both the wetted fraction <strong>in</strong> the worst case, R w worst ,andthe<br />

wetted fraction <strong>in</strong> the random case, R w rand , must be considered equal <strong>to</strong> 1. The average<br />

284 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

<strong>leachate</strong> thickness <strong>in</strong> the worst scenario can be calculated us<strong>in</strong>g Equation 197 as follows:<br />

( 20/ 10, 000)( 60)( 1/ 86, 400)<br />

−4<br />

t avg worst<br />

= = 174 . × 10 m = 0174 .<br />

( 04 . )( 002 . )<br />

mm<br />

The average <strong>leachate</strong> thickness <strong>in</strong> the random scenario can be calculated us<strong>in</strong>g Equation<br />

201 as follows:<br />

( 20/ 10, 000) ( 60) ( 1/ 86, 400)<br />

−<br />

t avg rand<br />

= = 87 . × 10 5 m = 0.087 mm<br />

( 2) ( 04 . ) ( 002 . )<br />

It should be noted that t avg rand /t avg worst = 0.5, as mentioned after Equation 201. This value<br />

is for the case when wetted areas overlap. It is different from the values given <strong>in</strong> Table<br />

6 which are valid only when the wetted areas do not overlap.<br />

The average <strong>leachate</strong> heads can then be derived from the average <strong>leachate</strong> thicknesses<br />

us<strong>in</strong>g Equation 141. S<strong>in</strong>ce β is very small (tanβ = 0.02), cosβ is equal <strong>to</strong> 1.00 and the<br />

heads are equal <strong>to</strong> the thicknesses.<br />

ENDOF EXAMPLE 7<br />

Example 8. Calculate a theoretical value for the time required for steady-state <strong>flow</strong><br />

conditions <strong>to</strong> be reached <strong>in</strong> the case of a 60 m long <strong>leakage</strong> <strong>collection</strong> layer with a 2%<br />

slope consider<strong>in</strong>g the three <strong>leakage</strong> <strong>collection</strong> layer materials described <strong>in</strong> Example 1.<br />

To be conservative, the case of a primary l<strong>in</strong>er defect located at the <strong>to</strong>p of the <strong>leakage</strong><br />

<strong>collection</strong> layer slope is considered, i.e. x = 60 m will be used <strong>in</strong> Equation 204.<br />

The porosity of the geosynthetic material used <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer is not<br />

given; a value of 0.8 will be assumed. Equation 204 can then be used as follows <strong>to</strong> calculate<br />

a lower boundary of the time required for steady-state <strong>flow</strong> conditions <strong>to</strong> be reached<br />

<strong>in</strong> the case of the geosynthetic <strong>leakage</strong> <strong>collection</strong> layer:<br />

t req<br />

><br />

( 08 . )( 60)<br />

= 24, 000 s = 400 m<strong>in</strong> = 6 hr 40 m<strong>in</strong><br />

−1 ( 1 × 10 )( 0. 02)( 100 . )<br />

The porosity of the gravel <strong>leakage</strong> <strong>collection</strong> layer material is not provided; a value<br />

of 0.3 will be assumed. Equation 204 can then be used as follows <strong>to</strong> calculate a lower<br />

boundary of the time required for steady-state <strong>flow</strong> conditions <strong>to</strong> be reached <strong>in</strong> the case<br />

of the gravel <strong>leakage</strong> <strong>collection</strong> layer:<br />

t req<br />

><br />

( 03 . ) ( 60)<br />

= 9, 000 s = 150 m<strong>in</strong> = 2 hr 30 m<strong>in</strong><br />

−1 ( 1 × 10 ) ( 0. 02) ( 100 . )<br />

The porosity of the sand <strong>leakage</strong> <strong>collection</strong> layer material is not provided; a value of<br />

0.3 will be assumed. Equation 204 can then be used as follows <strong>to</strong> calculate a lower<br />

boundary of the time required for steady-state <strong>flow</strong> conditions <strong>to</strong> be reached <strong>in</strong> the case<br />

of the sand <strong>leakage</strong> <strong>collection</strong> layer:<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

285


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

t req<br />

><br />

( 03 . ) ( 60)<br />

= 900, 000 s = 250 hr = 10.<br />

4 days<br />

−3 ( 1 × 10 ) ( 0. 02) ( 100 . )<br />

As <strong>in</strong>dicated <strong>in</strong> Section 5.3, the above calculated lower boundary of the time required<br />

<strong>to</strong> reach steady-state <strong>flow</strong> conditions is also the time it takes for <strong>leakage</strong> <strong>to</strong> be detected.<br />

It appears from the above calculation that gravel and geosynthetic <strong>leakage</strong> detection<br />

material provide rapid <strong>leakage</strong> detection, whereas sand does not.<br />

ENDOF EXAMPLE 8<br />

6.2 Discussion<br />

The design examples presented <strong>in</strong> Section 6.1 illustrate a variety of situations where<br />

the solutions presented <strong>in</strong> Sections 3, 4 and 5 can be used. The most typical situations<br />

are the follow<strong>in</strong>g:<br />

S Selection of a <strong>leakage</strong> <strong>collection</strong> layer material (Example 1).<br />

S Evaluation of the performance of a given <strong>leakage</strong> <strong>collection</strong> layer material (Examples<br />

2 and 8).<br />

S Generation of data (size of wetted zone and average <strong>leachate</strong> head <strong>in</strong> the wetted zone)<br />

useful for the eventual determ<strong>in</strong>ation of the rate of <strong>leachate</strong> migration through the<br />

secondary l<strong>in</strong>er (Examples 3, 4, 5, 6 and 7).<br />

Based on the design examples presented <strong>in</strong> Section 6.1, the follow<strong>in</strong>g comments can<br />

be made:<br />

S The wetted zone often occupies a small fraction of the <strong>leakage</strong> <strong>collection</strong> layer area.<br />

To evaluate the rate of <strong>leachate</strong> migration through the secondary l<strong>in</strong>er, the design eng<strong>in</strong>eer<br />

may choose between two approaches. The first approach consists of consider<strong>in</strong>g<br />

the average <strong>leachate</strong> head over the wetted zone of the <strong>leakage</strong> <strong>collection</strong> layer<br />

(which is also the wetted zone of the secondary l<strong>in</strong>er). The second approach consists<br />

of assum<strong>in</strong>g that the entire surface area of the secondary l<strong>in</strong>er is wetted and <strong>to</strong> use the<br />

value of the <strong>leachate</strong> head obta<strong>in</strong>ed assum<strong>in</strong>g that the <strong>leachate</strong> is uniformly distributed<br />

<strong>in</strong> the entire <strong>leakage</strong> <strong>collection</strong> layer (i.e. that the thickness of <strong>leachate</strong> on <strong>to</strong>p<br />

of the secondary l<strong>in</strong>er is uniform). In the cases where there is a high frequency of <strong>defects</strong><br />

<strong>in</strong> the primary l<strong>in</strong>er and where the wetted zones related <strong>to</strong> different <strong>defects</strong> overlap,<br />

only the second of the two above approaches is possible.<br />

S A sand <strong>leakage</strong> <strong>collection</strong> layer is generally not adequate because the rate of <strong>leakage</strong><br />

through a relatively large defect <strong>in</strong> a geomembrane primary l<strong>in</strong>er, that is normally<br />

considered <strong>in</strong> a prudent design, generates <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer a head of <strong>leachate</strong><br />

that may exceed values authorized by regulations, and because it takes a very<br />

long time <strong>to</strong> detect <strong>leakage</strong> with a sand <strong>leakage</strong> <strong>collection</strong> layer regardless of the type<br />

of primary l<strong>in</strong>er. In contrast, a gravel <strong>leakage</strong> <strong>collection</strong> layer is generally adequate<br />

because both the head and the <strong>leakage</strong> detection times are small. Geonets, which are<br />

often used <strong>in</strong> <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong>, ensure rapid leak detection because they have<br />

a high hydraulic conductivity and the head of <strong>leachate</strong> is generally less than the maxi-<br />

286 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

mum value authorized by regulations (typically, 0.3 m). However, the head of <strong>leachate</strong><br />

is generally greater than the geonet thickness and, therefore, the geonet is full<br />

of <strong>leachate</strong> <strong>in</strong> a certa<strong>in</strong> area around the geomembrane defect. In contrast, a geonet<br />

<strong>leakage</strong> <strong>collection</strong> layer is not full if the primary l<strong>in</strong>er is a composite l<strong>in</strong>er (e.g. a geomembrane<br />

on a geosynthetic clay l<strong>in</strong>er) s<strong>in</strong>ce the potential rate of <strong>leakage</strong> through<br />

a composite l<strong>in</strong>er is significantly less than through a geomembrane used alone. Equation<br />

10 shows that a geosynthetic dra<strong>in</strong>age material with a thickness of approximately<br />

10 mm and a hydraulic conductivity of approximately 1 m/s would accommodate,<br />

without be<strong>in</strong>g filled with <strong>leachate</strong>, a 5 <strong>to</strong> 10 m 3 /day leak, i.e. a leak which is logical<br />

<strong>to</strong> consider <strong>in</strong> a conservative design when the primary l<strong>in</strong>er is a geomembrane. In other<br />

words, <strong>in</strong> the cases where the primary l<strong>in</strong>er is a geomembrane, geonets thicker than<br />

those currently available and hav<strong>in</strong>g a greater hydraulic conductivity would better<br />

accommodate the high <strong>leakage</strong> rates considered <strong>in</strong> conservative design when the primary<br />

l<strong>in</strong>er is a geomembrane, whereas the performance of currently available geonets<br />

(evaluated us<strong>in</strong>g the method presented <strong>in</strong> this paper) appears satisfac<strong>to</strong>ry for the<br />

<strong>leakage</strong> rates generally observed.<br />

7 CONCLUSIONS<br />

This paper presents analytical solutions that quantitatively describe several important<br />

aspects of the <strong>flow</strong> of <strong>leachate</strong> <strong>in</strong> a <strong>leakage</strong> <strong>collection</strong> layer when the source of the <strong>flow</strong><strong>in</strong>g<br />

<strong>leachate</strong> is a small defect <strong>in</strong> the l<strong>in</strong>er overly<strong>in</strong>g the <strong>leakage</strong> <strong>collection</strong> layer (i.e. the<br />

primary l<strong>in</strong>er). The equations presented <strong>in</strong> the paper make it possible <strong>to</strong> solve the follow<strong>in</strong>g<br />

problems:<br />

S Determ<strong>in</strong>ation of the maximum thickness (and head) of <strong>leachate</strong> <strong>in</strong> the <strong>leakage</strong><br />

<strong>collection</strong> layer.<br />

S Determ<strong>in</strong>ation of the wetted zone (i.e. the zone where <strong>leachate</strong> <strong>flow</strong>s), and, <strong>in</strong> particular,<br />

development of an analytical expression for its shape, width and surface area.<br />

S Determ<strong>in</strong>ation of the average <strong>leachate</strong> thickness (and head) <strong>in</strong> the wetted zone.<br />

S Determ<strong>in</strong>ation of the wetted zone and the average <strong>leachate</strong> thickness (and head) when<br />

there are several <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er located either at the high end of the <strong>leakage</strong><br />

<strong>collection</strong> layer slope (worst scenario) or located at random (random scenario).<br />

S Determ<strong>in</strong>ation of the time required for steady-state <strong>flow</strong> conditions <strong>to</strong> exist and for<br />

<strong>leachate</strong> <strong>flow</strong> <strong>to</strong> travel from the leak <strong>in</strong> the primary l<strong>in</strong>er <strong>to</strong> the lower end of the <strong>leakage</strong><br />

<strong>collection</strong> layer.<br />

The analytical solutions presented are useful for both the design of the <strong>leakage</strong> <strong>collection</strong><br />

layer and the evaluation of <strong>leachate</strong> migration through the l<strong>in</strong>er underly<strong>in</strong>g the<br />

<strong>leakage</strong> <strong>collection</strong> layer (i.e. the secondary l<strong>in</strong>er): the maximum <strong>leachate</strong> thickness is<br />

useful <strong>to</strong> determ<strong>in</strong>e if the considered <strong>leakage</strong> <strong>collection</strong> layer will conta<strong>in</strong> all the <strong>flow</strong>,<br />

whereas the size of the wetted zone and the average <strong>leachate</strong> head <strong>in</strong> the wetted zone<br />

are useful <strong>to</strong> determ<strong>in</strong>e the rate of <strong>leachate</strong> migration through the secondary l<strong>in</strong>er. Although<br />

fac<strong>to</strong>rs of safety are not discussed <strong>in</strong> this paper, design eng<strong>in</strong>eers may elect <strong>to</strong><br />

use an appropriate fac<strong>to</strong>r of safety with any of the analytical solutions presented.<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

287


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

Numerical applications (Section 6.1) and parametric studies (Sections 3.3, 4.5 and<br />

5.3.2) show the follow<strong>in</strong>g:<br />

S Geonet <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong> typically used <strong>in</strong> landfills may be filled by <strong>leachate</strong><br />

<strong>in</strong> a certa<strong>in</strong> area around a typical defect <strong>in</strong> a geomembrane l<strong>in</strong>er. However, if the primary<br />

l<strong>in</strong>er is a composite l<strong>in</strong>er composed of a geomembrane and a GCL, the <strong>leachate</strong><br />

<strong>flow</strong> through a defect <strong>in</strong> the geomembrane is not likely <strong>to</strong> fill the geonet. Even when<br />

the geonet is locally filled with <strong>leachate</strong>, the head of <strong>leachate</strong> on <strong>to</strong>p of the secondary<br />

l<strong>in</strong>er is generally small enough <strong>to</strong> be acceptable. Also, <strong>due</strong> <strong>to</strong> their high hydraulic conductivity,<br />

geonets ensure rapid <strong>leakage</strong> detection. Therefore, it appears that currently<br />

available geonets are generally satisfac<strong>to</strong>ry as <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong>, although<br />

geonets approximately twice thicker and with a greater hydraulic conductivity would<br />

be preferable <strong>in</strong> certa<strong>in</strong> cases.<br />

S Gravel <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong> are satisfac<strong>to</strong>ry <strong>in</strong> virtually all practical cases because<br />

they are not filled with <strong>leachate</strong> at any po<strong>in</strong>t and they provide rapid <strong>leakage</strong><br />

detection.<br />

S Sand <strong>leakage</strong> <strong>collection</strong> <strong>layers</strong> are generally not satisfac<strong>to</strong>ry. They do not provide rapid<br />

<strong>leakage</strong> detection and, often, the head of <strong>leachate</strong> on <strong>to</strong>p of the secondary l<strong>in</strong>er is<br />

<strong>to</strong>o high <strong>to</strong> be acceptable.<br />

The numerical applications and parametric studies also show that, <strong>in</strong> many cases, the<br />

fraction of the <strong>leakage</strong> <strong>collection</strong> layer where <strong>leachate</strong> <strong>flow</strong>s (i.e. the fraction of the secondary<br />

l<strong>in</strong>er that is wetted) is small (i.e. a few percent). The equations presented <strong>in</strong> this<br />

paper provide a means <strong>to</strong> take this fact <strong>in</strong><strong>to</strong> account, which is useful when an accurate<br />

evaluation of the migration of <strong>leachate</strong> through a secondary l<strong>in</strong>er is required (e.g. <strong>in</strong><br />

compar<strong>in</strong>g l<strong>in</strong>er systems).<br />

F<strong>in</strong>ally, from a research and education standpo<strong>in</strong>t, the remarkable simplicity of Equation<br />

10 should be noted. The maximum <strong>leachate</strong> thickness, t o , is equal <strong>to</strong> the square root<br />

of the <strong>leakage</strong> rate, Q, divided by the hydraulic conductivity, k, of the <strong>leakage</strong> <strong>collection</strong><br />

layer, and is <strong>in</strong>dependent of the size of the defect through the primary l<strong>in</strong>er and of the<br />

slope of the <strong>leakage</strong> <strong>collection</strong> layer.<br />

ACKNOWLEDGMENTS<br />

Some of the equations presented <strong>in</strong> this paper were developed by the senior author<br />

as part of an assignment for the U.S. Environmental Protection Agency (USEPA) and<br />

were published <strong>in</strong> an USEPA document (USEPA 1992). The support of GeoSyntec Consultants<br />

is acknowledged, and the authors are grateful <strong>to</strong> A. Mozzar, N. Pierce, K. Holcomb<br />

and S.L. Berdy for assistance <strong>in</strong> the preparation of this paper.<br />

REFERENCES<br />

Giroud, J.P., 1997, “Equations for Calculat<strong>in</strong>g the Rate of Liquid Migration Through<br />

Composite L<strong>in</strong>ers Due <strong>to</strong> Geomembrane Defects”, Geosynthetics International,Vol.<br />

4, Nos. 3-4, pp. 335-348.<br />

288 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

Giroud, J.P. and Houlihan, M.F., 1995, “Design of Leachate Collection Layers”, Proceed<strong>in</strong>gs<br />

of the Fifth International Landfill Symposium, Vol. 2, Sard<strong>in</strong>ia, Italy, Oc<strong>to</strong>ber<br />

1995, pp. 613-640.<br />

USEPA, 1992, “Action Leakage Rates for Leak Detection Systems”, EPA<br />

530-R-92-004, NTIS PB 92-128-214, January 1992, 69 p.<br />

NOTATIONS<br />

Depths, D, are measured vertically, whereas thicknesses, t, are measured perpendicularly<br />

<strong>to</strong> the slope. Leachate heads are related <strong>to</strong> <strong>leachate</strong> thicknesses through Equation<br />

58. Basic SI units are given <strong>in</strong> parentheses.<br />

A = surface area of a parabola (m 2 )<br />

A LCL = surface area of the <strong>leakage</strong> <strong>collection</strong> layer (projected on a horizontal<br />

plane) (m 2 )<br />

A w = surface area of the wetted zone (projected on a horizontal plane) (m 2 )<br />

A w actual = surface area of the actual wetted zone (m 2 )<br />

A w rand = average surface area of the wetted zones generated by <strong>leachate</strong> <strong>flow</strong><br />

through <strong>defects</strong> located at random <strong>in</strong> the case where the various<br />

wetted zones do not overlap (m 2 )<br />

A wmax = maximum surface area of the wetted zone (projected on a horizontal<br />

plane) (m 2 )<br />

a = area of defect <strong>in</strong> the primary l<strong>in</strong>er (m 2 )<br />

B<br />

= width of the <strong>leakage</strong> <strong>collection</strong> layer (m)<br />

Crit(R w worst ) = maximum value R w worst can have without overlapp<strong>in</strong>g of wetted<br />

zones related <strong>to</strong> <strong>defects</strong> located at the upper end of the <strong>leakage</strong><br />

<strong>collection</strong> layer (dimensionless)<br />

Crit(R w rand ) = maximum value R w rand can have without overlapp<strong>in</strong>g of wetted<br />

zones related <strong>to</strong> <strong>defects</strong> located at random (dimensionless)<br />

D<br />

= depth of <strong>leachate</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer (m)<br />

D LCL = depth of the <strong>leakage</strong> <strong>collection</strong> layer (m)<br />

D o<br />

= depth (actual or virtual) of <strong>leachate</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer<br />

at a defect <strong>in</strong> the primary l<strong>in</strong>er (m)<br />

d<br />

= diameter of defect <strong>in</strong> the primary l<strong>in</strong>er (m)<br />

F = frequency of <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er (m -2 )<br />

g = acceleration <strong>due</strong> <strong>to</strong> gravity (m/s 2 )<br />

h<br />

= head of <strong>leachate</strong> on <strong>to</strong>p of the l<strong>in</strong>er underly<strong>in</strong>g the <strong>leakage</strong> <strong>collection</strong><br />

layer (i.e. the secondary l<strong>in</strong>er) (m)<br />

h avg = average head of <strong>leachate</strong> on <strong>to</strong>p of the secondary l<strong>in</strong>er <strong>in</strong> the wetted<br />

zone of the <strong>leakage</strong> <strong>collection</strong> layer (m)<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

289


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

h avg L<br />

h prim<br />

h o<br />

i<br />

k<br />

L<br />

N<br />

n<br />

Q<br />

Q full<br />

R w<br />

R w rand<br />

R w worst<br />

S F<br />

t<br />

t avg<br />

t avg L<br />

t avg lim<br />

t avg rand<br />

t avg worst<br />

= average head of <strong>leachate</strong> <strong>in</strong> the wetted zone of the <strong>leakage</strong><br />

<strong>collection</strong> layer <strong>in</strong> the case where the wetted zone has its maximum<br />

surface area, i.e. Case IV def<strong>in</strong>ed <strong>in</strong> Figure 13 (m)<br />

= head of <strong>leachate</strong> on <strong>to</strong>p of the primary l<strong>in</strong>er (m)<br />

= head of <strong>leachate</strong> on <strong>to</strong>p of the secondary l<strong>in</strong>er at a primary l<strong>in</strong>er defect<br />

(m)<br />

= hydraulic gradient <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer (dimensionless)<br />

= hydraulic conductivity of the <strong>leakage</strong> <strong>collection</strong> layer material (m/s)<br />

= horizontal projection of the length of the <strong>leakage</strong> <strong>collection</strong> layer (m)<br />

= <strong>to</strong>tal number of <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er (dimensionless)<br />

= porosity of the <strong>leakage</strong> <strong>collection</strong> layer material (dimensionless)<br />

= steady-state rate of <strong>leachate</strong> <strong>flow</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer,<br />

which results from a defect <strong>in</strong> the primary l<strong>in</strong>er and which is equal<br />

<strong>to</strong> the rate of <strong>leachate</strong> migration through the defect (m 3 /s)<br />

= maximum steady-state rate of <strong>leachate</strong> migration through a defect<br />

<strong>in</strong> the primary l<strong>in</strong>er that a <strong>leakage</strong> <strong>collection</strong> layer can accommodate<br />

without be<strong>in</strong>g filled with <strong>leachate</strong> (m 3 /s)<br />

= wetted fraction of one <strong>leakage</strong> <strong>collection</strong> layer (def<strong>in</strong>ed by Equation<br />

99) (dimensionless)<br />

= wetted fraction <strong>in</strong> the scenario where primary l<strong>in</strong>er <strong>defects</strong> are<br />

distributed at random (random scenario) (dimensionless)<br />

= wetted fraction <strong>in</strong> the scenario where all primary l<strong>in</strong>er <strong>defects</strong> are at<br />

the high end of the <strong>leakage</strong> <strong>collection</strong> layer slope (worst scenario)<br />

(dimensionless)<br />

= <strong>flow</strong> cross section area perpendicular <strong>to</strong> the slope of the <strong>leakage</strong><br />

<strong>collection</strong> layer (m 2 )<br />

= thickness of <strong>leachate</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer (m)<br />

= average thickness of <strong>leachate</strong> <strong>in</strong> the wetted zone of the <strong>leakage</strong><br />

<strong>collection</strong> layer (m)<br />

= average thickness of <strong>leachate</strong> <strong>in</strong> the wetted zone of the <strong>leakage</strong><br />

<strong>collection</strong> layer <strong>in</strong> the case where the wetted zone has its maximum<br />

surface area, i.e. Case IV def<strong>in</strong>ed <strong>in</strong> Figure 13 (m)<br />

= average thickness of <strong>leachate</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong> layer <strong>in</strong> the<br />

limit situation def<strong>in</strong>ed by Equation 162 and illustrated <strong>in</strong> Figure 14<br />

(m)<br />

= average thickness of <strong>leachate</strong> <strong>in</strong> the wetted zone of the <strong>leakage</strong><br />

<strong>collection</strong> layer <strong>in</strong> the case where the <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er are<br />

distributed at random (random scenario) (m)<br />

= average thickness of <strong>leachate</strong> <strong>in</strong> the wetted zone of the <strong>leakage</strong><br />

<strong>collection</strong> layer <strong>in</strong> the case where all the <strong>defects</strong> <strong>in</strong> the primary l<strong>in</strong>er<br />

are located at the high end of the <strong>leakage</strong> <strong>collection</strong> layer slope<br />

(worst scenario) (m)<br />

290 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

t avg II<br />

= average thickness of <strong>leachate</strong> <strong>in</strong> the wetted zone of the <strong>leakage</strong><br />

<strong>collection</strong> layer <strong>in</strong> Case II def<strong>in</strong>ed <strong>in</strong> Figure 13 (m)<br />

t LCL = thickness of the <strong>leakage</strong> <strong>collection</strong> layer (m)<br />

t LCLfull = m<strong>in</strong>imum thickness that the <strong>leakage</strong> <strong>collection</strong> layer should have <strong>to</strong><br />

conta<strong>in</strong>, without be<strong>in</strong>g full, the <strong>leachate</strong> <strong>flow</strong> that results from a<br />

defect <strong>in</strong> the primary l<strong>in</strong>er (m)<br />

t o<br />

= thickness (actual or virtual) of <strong>leachate</strong> <strong>in</strong> the <strong>leakage</strong> <strong>collection</strong><br />

layer at a defect of the primary l<strong>in</strong>er (m)<br />

t req<br />

= lower boundary of the time required <strong>to</strong> reach steady-state conditions<br />

(s)<br />

t travel<br />

= time required by a drop of liquid <strong>to</strong> travel from the primary l<strong>in</strong>er<br />

defect <strong>to</strong> the low end of the <strong>leakage</strong> <strong>collection</strong> layer under steadystate<br />

conditions (s)<br />

V = volume of <strong>leakage</strong> <strong>collection</strong> layer that conta<strong>in</strong>s <strong>leachate</strong> (m 3 )<br />

V <strong>leachate</strong> = volume of <strong>leachate</strong> (m 3 )<br />

V rand = volume of the <strong>leakage</strong> <strong>collection</strong> layer that conta<strong>in</strong>s <strong>leachate</strong> when<br />

the <strong>defects</strong> <strong>in</strong> the primary are distributed at random (random<br />

scenario) (m 3 )<br />

V max = volume of <strong>leachate</strong> <strong>collection</strong> layer that conta<strong>in</strong>s <strong>leachate</strong> when the<br />

primary l<strong>in</strong>er defect is at the high end of the <strong>leakage</strong> <strong>collection</strong> layer<br />

slope (m 3 )<br />

v<br />

= apparent velocity of <strong>leachate</strong> <strong>flow</strong> along the slope (m/s)<br />

W<br />

= width of a parabola <strong>in</strong> general, and width of the wetted zone at a<br />

distance x from the primary l<strong>in</strong>er defect (m)<br />

W max = maximum width of the wetted zone (m)<br />

W o<br />

= width of the wetted zone at the location of the defect <strong>in</strong> the primary<br />

l<strong>in</strong>er (m)<br />

X<br />

= horizontal distance between the vertex of the parabola and the<br />

considered location, e.g. the location where the width of the parabola<br />

(i.e. the width of the wetted zone) is evaluated (m)<br />

X rand = horizontal distance between the vertex of the parabolic zone and the<br />

low end of the <strong>leakage</strong> <strong>collection</strong> layer slope <strong>in</strong> the random scenario<br />

(m).<br />

x<br />

= horizontal distance between the defect <strong>in</strong> the primary l<strong>in</strong>er and the<br />

considered location, e.g. the location where the width of the wetted<br />

zone is evaluated, generally the lower end of the <strong>leakage</strong> <strong>collection</strong><br />

layer (m)<br />

x rand = horizontal distance between the primary l<strong>in</strong>er defect and the low end<br />

of the <strong>leakage</strong> <strong>collection</strong> layer slope <strong>in</strong> the random scenario (m)<br />

Y<br />

= distance measured along an axis VY<br />

y<br />

= distance measured along axis Oy<br />

α<br />

= parameter def<strong>in</strong>ed by Equation 167 (dimensionless)<br />

GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4<br />

291


GIROUD et al. D Leachate Flow <strong>in</strong> Leakage Collection Layers Due <strong>to</strong> Geomembrane Defects<br />

β = angle of the slope of the <strong>leakage</strong> <strong>collection</strong> layer and the l<strong>in</strong>ers (°)<br />

λ rand = fac<strong>to</strong>r def<strong>in</strong>ed by Equation 123 when μ ≤ 2 and Equation 127 when<br />

μ ≥ 2 (dimensionless)<br />

λ worst = fac<strong>to</strong>r def<strong>in</strong>ed by Equation 108 (dimensionless)<br />

μ<br />

= parameter def<strong>in</strong>ed by Equation 109, 111 and 112 (dimensionless)<br />

292 GEOSYNTHETICS INTERNATIONAL S 1997, VOL. 4, NOS. 3-4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!