15.11.2013 Views

UV measurements in the centre of East Antarctic Plateau - GEWEX

UV measurements in the centre of East Antarctic Plateau - GEWEX

UV measurements in the centre of East Antarctic Plateau - GEWEX

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Eleventh BSRN Scientific Review and Workshop, Queenstown, New Zealand<br />

13-16 April 2010<br />

Measurements <strong>of</strong> <strong>the</strong> surface <strong>UV</strong> irradiance at <strong>the</strong><br />

central part <strong>of</strong> <strong>East</strong> <strong>Antarctic</strong> <strong>Plateau</strong><br />

B. Petkov, V. Vitale, C. Lanconelli, M. Mazzola, M. Busetto, A. Lupi<br />

Institute <strong>of</strong> Atmospheric Sciences and Climate (ISAC) <strong>of</strong> <strong>the</strong><br />

Italian National Research Council (CNR), Bologna, Italy


The results, presented below are obta<strong>in</strong>ed by<br />

UltraViolet narrow-band filter RADiometer (<strong>UV</strong>-RAD),<br />

designed at <strong>the</strong> Institute <strong>of</strong> Atmospheric Sciences<br />

and Climate (ISAC) <strong>of</strong> <strong>the</strong> Italian National Research<br />

Council (CNR) to measure <strong>the</strong> surface solar <strong>UV</strong><br />

irradiance <strong>in</strong> harsh <strong>Antarctic</strong> conditions.


On <strong>the</strong> left, diagram <strong>of</strong> <strong>the</strong> <strong>UV</strong>-RAD radiometer, with its ma<strong>in</strong> components: 1 –<br />

hemispherical diffuser; 2 – entrance optics with field stopper and collimat<strong>in</strong>g system<br />

(consist<strong>in</strong>g <strong>of</strong> two lenses); 3 – <strong>UV</strong>-VIS pass-band with <strong>the</strong> pair <strong>of</strong> colored glass filters<br />

(see also Fig. 3); 4 – filter-wheel; 5 – synchronous motor rotat<strong>in</strong>g <strong>the</strong> filter-wheel; 6 –<br />

photomultiplier; 7 – <strong>the</strong>rmoelectric (Peltier) heat pump; 8 – record<strong>in</strong>g and controll<strong>in</strong>g<br />

electronics. On <strong>the</strong> right, photograph <strong>of</strong> <strong>the</strong> <strong>in</strong>strument dur<strong>in</strong>g a measurement test <strong>in</strong><br />

<strong>Antarctic</strong>a. The radiometer sizes are 310x300x370 mm, with an overall weight <strong>of</strong> 12 kg.


COMPONENT TRANSMITTANCE (%)<br />

OVERALL<br />

TRANSMITTANCE (%)<br />

100<br />

75<br />

50<br />

25<br />

0<br />

100<br />

75<br />

50<br />

25<br />

0<br />

100<br />

75<br />

50<br />

25<br />

0<br />

100<br />

75<br />

50<br />

25<br />

0<br />

30<br />

20<br />

10<br />

0<br />

<strong>UV</strong>-VIS Pass-band<br />

<strong>UV</strong> short-pass<br />

Narrow-band Filter<br />

314.25 nm channel<br />

WAVELENGTH (nm)<br />

(a)<br />

(b)<br />

Colored Filter<br />

ORIEL 51 124<br />

(c)<br />

(d)<br />

(e)<br />

200 300 400 500 600 700 800<br />

The channel<br />

structure<br />

Photomultiplier Entranse optics<br />

<strong>UV</strong>-VIS Pass band<br />

Colored filter<br />

Colored filter<br />

<strong>UV</strong> short-pass<br />

F i l t e r<br />

N<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

<strong>UV</strong><br />

Shortpass<br />

<strong>UV</strong>-<br />

VIS<br />

Passband<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

Characteristics <strong>of</strong> <strong>the</strong> <strong>UV</strong>-RAD channels<br />

Number <strong>of</strong> <strong>the</strong> optical elements employed<br />

to def<strong>in</strong>e each <strong>UV</strong>-RAD channel<br />

Colored<br />

glass<br />

filter<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

2<br />

1<br />

1<br />

1<br />

1<br />

Narrowband<br />

filter<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

Peak<br />

transmittance<br />

wavelength<br />

(nm)<br />

299.60<br />

305.80<br />

309.60<br />

314.25<br />

325.50<br />

338.30<br />

364.05<br />

FWHM<br />

(nm)<br />

0.67<br />

0.71<br />

0.67<br />

0.73<br />

0.80<br />

0.86<br />

0.98<br />

Peak<br />

transmittance<br />

0.14<br />

0.15<br />

0.20<br />

0.26<br />

0.24<br />

0.27<br />

0.12<br />

From <strong>the</strong> left (i) spectral transmittance<br />

curves <strong>of</strong> <strong>the</strong> various components used to<br />

give form to <strong>the</strong> 314.25 nm <strong>UV</strong>-RAD channel<br />

(ii) sequence <strong>of</strong> <strong>the</strong> optical components<br />

used to def<strong>in</strong>e <strong>the</strong> overall <strong>UV</strong>-RAD channel<br />

structure follow<strong>in</strong>g <strong>the</strong> <strong>in</strong>com<strong>in</strong>g radiation<br />

direction (from <strong>the</strong> top to <strong>the</strong> bottom) and<br />

(iii) <strong>the</strong> characteristics <strong>of</strong> <strong>the</strong> <strong>UV</strong>-RAD<br />

channels


C o s i n e e r r o r<br />

1.08<br />

C O S I N E E R R O R<br />

1.06<br />

1.04<br />

1.02<br />

1.00<br />

CEg (299.60 nm)<br />

CEg (325.50 nm)<br />

CEg (364.05 nm) Angular dependence<br />

0.98<br />

0° 30° 60° 90°<br />

S O L A R Z E N I T H A N G L E<br />

curves <strong>of</strong> <strong>the</strong> cos<strong>in</strong>e<br />

error CE g <strong>of</strong> <strong>UV</strong>-RAD<br />

entrance optics, as a<br />

function <strong>of</strong> solar zenith<br />

angle for three different<br />

channels.


The performed by <strong>UV</strong>-RAD <strong>measurements</strong> allow:<br />

Retrieval <strong>of</strong> <strong>the</strong> total ozone amount us<strong>in</strong>g <strong>the</strong> Stamnes method (The<br />

ratio <strong>of</strong> irradiance at two wavelengths is compared with <strong>the</strong><br />

correspond<strong>in</strong>g one evaluated by radiative transfer model for different<br />

solar zenith angles and ozone amounts).<br />

Reconstruction <strong>of</strong> <strong>the</strong> surface solar <strong>UV</strong> spectrum<br />

Evaluation <strong>of</strong> <strong>the</strong> weighted dose rates and correspond<strong>in</strong>g daily doses


Reconstruction <strong>of</strong> <strong>the</strong> solar spectrum us<strong>in</strong>g <strong>the</strong> <strong>UV</strong>-RAD data<br />

IRRADIANCE (mW m -2 nm -1 )<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

model (T<strong>UV</strong>)<br />

measured (Brewer)<br />

0<br />

290 300 310 320 330 340 350 360 370<br />

WAVELENGTH (nm)<br />

The nowadays radiative transfer<br />

models are able to represent<br />

realistically <strong>the</strong> features <strong>of</strong> <strong>the</strong><br />

surface solar irradiance. The figure<br />

shows a comparison between<br />

measured by Brewer <strong>UV</strong> spectrum at<br />

ALOMAR, Norway and<br />

correspond<strong>in</strong>g one, evaluated<br />

through T<strong>UV</strong> model<br />

IRRADIANCE (mW m -2 nm -1 )<br />

200<br />

150<br />

100<br />

50<br />

0<br />

3<br />

290 300 310 320 330 340 350 360 370 380 390 400 410<br />

WAVELENGTH (nm)<br />

Bear<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d this and <strong>the</strong> spectral characteristics <strong>of</strong> <strong>the</strong><br />

<strong>UV</strong>-RAD channels, <strong>the</strong> solar spectrum is reconstructed<br />

through <strong>the</strong> follow<strong>in</strong>g steps:<br />

1. Measurements<br />

2<br />

2. Model evaluation (us<strong>in</strong>g T<strong>UV</strong>) with 1 nm resolution<br />

and FWHM = 0.8 nm, tak<strong>in</strong>g <strong>the</strong> retrieved total<br />

ozone as <strong>in</strong>put<br />

3. Fitt<strong>in</strong>g <strong>the</strong> evaluated spectrum to measured values<br />

1


Evaluation <strong>of</strong> <strong>the</strong> ery<strong>the</strong>mal dose rate<br />

200<br />

10 1<br />

dD<br />

dt<br />

=<br />

∫ ∞<br />

0<br />

F( λ)<br />

A(<br />

λ)<br />

dλ<br />

IRRADIANCE (mW m -2 nm -1 )<br />

150<br />

100<br />

50<br />

Solar spectrum at <strong>the</strong> ground<br />

CIE Ery<strong>the</strong>mal action spectrum<br />

10 0<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

ERITHEMA ACTION SPECTRUM<br />

0<br />

290 300 310 320 330 340 350 360 370 380 390 400 410<br />

WAVELENGTH (nm)<br />

10 -5<br />

F(λ) is measured solar spectrum<br />

A(λ) is <strong>the</strong> ery<strong>the</strong>mal action spectrum


<strong>UV</strong>-RAD was calibrated through a comparison with<br />

<strong>the</strong> Bentam spectroradiometer operat<strong>in</strong>g at<br />

ALOMAR (Arctic Lidar Observatory for Middle<br />

Atmosphere Research), Andenes, Norway. After<br />

that, <strong>UV</strong>-RAD was participated <strong>in</strong> several<br />

<strong>in</strong>tercomparison campaigns which help to control<br />

<strong>the</strong> quality <strong>of</strong> <strong>the</strong> <strong>in</strong>strument and to make <strong>the</strong><br />

necessary corrections.


Intercomparison campaign at ALOMAR, Norway<br />

September-November, 2004<br />

Brewer<br />

Bentham<br />

<strong>UV</strong>-RAD<br />

G<strong>UV</strong>


ERYTHEMAL<br />

DOSE RATE (mW m -2 )<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

1.2<br />

<strong>UV</strong>-RAD<br />

G<strong>UV</strong><br />

Brewer<br />

Daily time-patterns <strong>of</strong> <strong>the</strong> <strong>UV</strong> ery<strong>the</strong>mal dose<br />

rates measured at <strong>the</strong> ALOMAR<br />

Observatory, on 17 October, 2004, for<br />

predom<strong>in</strong>ant clear-sky conditions, with <strong>the</strong><br />

<strong>UV</strong>-RAD radiometer, G<strong>UV</strong> radiometer, and<br />

Brewer spectroradiometer.<br />

BREWER / <strong>UV</strong>-RAD<br />

G<strong>UV</strong> / <strong>UV</strong>-RAD<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

7 8 9 10 11 12 13 14 15 16 17<br />

LOCAL TIME<br />

Values <strong>of</strong> <strong>the</strong> difference between <strong>the</strong> <strong>UV</strong> dose rates<br />

determ<strong>in</strong>ed from <strong>the</strong> Brewer<br />

spectroradiometer and <strong>the</strong> <strong>UV</strong>-RAD<br />

radiometer <strong>measurements</strong>, carried out at<br />

different hours <strong>of</strong> <strong>the</strong> day dur<strong>in</strong>g <strong>the</strong><br />

ALOMAR campaign, giv<strong>in</strong>g overall mean<br />

value equal to 0.9%, toge<strong>the</strong>r with standard<br />

deviations <strong>of</strong> 2.4%.<br />

Scatter diagram <strong>of</strong> <strong>the</strong> <strong>UV</strong> dose rates determ<strong>in</strong>ed<br />

by G<strong>UV</strong> and <strong>UV</strong>-RAD at ALOMAR on <strong>the</strong><br />

different days <strong>of</strong> <strong>the</strong> October 2004 fieldcampaign,<br />

giv<strong>in</strong>g a mean value <strong>of</strong> 5% with<br />

standard deviation equal to 6%.


Intercomparison campaign at Aosta, Italy<br />

September, 2006<br />

IRRADIANCE (W m -2 )<br />

<strong>UV</strong>-RAD / BENTHAM<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

325 nm 338 nm<br />

<strong>UV</strong>-RAD<br />

Bentham<br />

0.0<br />

1.3<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

4 6 8 10 12 14 16 18 20 6 8 10 12 14 16 18 20<br />

TIME (hours UTC)<br />

Comparison between <strong>UV</strong><br />

irradiance, measured by <strong>UV</strong>-<br />

RAD at 325 and 338 nm<br />

channels, respectively at Aosta,<br />

Italy on 20 Sep 2006 and<br />

correspond<strong>in</strong>g ones given by<br />

Bentham spectroradiometer<br />

rout<strong>in</strong>ely operat<strong>in</strong>g at ARPA<br />

Aosta station. The lower panels<br />

show <strong>the</strong> ratio between two<br />

<strong>in</strong>struments.


Intercomparison campaign at Ny-Ålesund, Norway<br />

May-June, 2009


Solar <strong>UV</strong>-Index <strong>measurements</strong> from <strong>the</strong> AWI<br />

spectroradiometer, Brewer #050, <strong>the</strong> multifilter<br />

radiometer <strong>UV</strong>RAD, <strong>the</strong> multifilter radiometer<br />

G<strong>UV</strong>7275 and <strong>the</strong> QASUME reference<br />

spectroradiometer. The measurement period lasted<br />

from 27 May to 6 June 2009 and was located at Ny-<br />

Ålesund, Svalbard, Norway.<br />

Ratio between <strong>the</strong> <strong>UV</strong>-Indices<br />

determ<strong>in</strong>ed by <strong>UV</strong>RAD to <strong>the</strong> ones from<br />

<strong>the</strong> QASUME spectroradiometer.<br />

Gröbner et al., Photochem. Photobiol. Sci., 2009, DOI: 10.1039/B9PP00170K


Three radiometers <strong>UV</strong>-RAD has<br />

been operat<strong>in</strong>g


at ISAC-CNR Bologna, Italy station from 2005


at Dome Concordia <strong>Antarctic</strong> station from 2007


at Ny-Ålesund Arctic station from 2008


TOTAL OZONE AMOUNT, MEASURED AT NY-ÅLESUND AND<br />

DOME CONCORDIA<br />

R A T I O<br />

TOTAL OZONE (DU)<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

Ny-Ålesund<br />

MAY JUN JUL AUG<br />

<strong>UV</strong>-RAD/OMI<br />

<strong>UV</strong>-RAD/SAOZ<br />

JUN JUL AUG SEP OCT<br />

2008 2009<br />

<strong>UV</strong>-RAD<br />

SAOZ<br />

OMI<br />

RATIO<br />

TOTAL OZONE (DU)<br />

400<br />

360<br />

320<br />

280<br />

240<br />

200<br />

160<br />

120<br />

Nov Dec<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

Nov Dec<br />

2007<br />

Dome Concordia<br />

Jan Feb<br />

Jan Feb<br />

SAOZ<br />

OMI<br />

<strong>UV</strong>-RAD<br />

Oct Nov Dec Jan Feb Oct Nov<br />

Oct Nov Dec<br />

2008<br />

<strong>UV</strong>-RAD/OMI<br />

<strong>UV</strong>-RAD/SAOZ<br />

Jan Feb Oct Nov<br />

2009<br />

The figures present <strong>the</strong> total ozone amount measured by <strong>UV</strong>-RAD (<strong>in</strong> blue) at Ny-Ålesund<br />

(2008 and 2009) and Dome Concordia (2007-2009). For comparison <strong>the</strong> data taken from <strong>the</strong><br />

satellite <strong>in</strong>strument OMI (<strong>in</strong> green) and spectrophotometer SAOZ (<strong>in</strong> red) based at both<br />

stations are also given. The SAOZ data obta<strong>in</strong>ed as a result <strong>of</strong> observations performed <strong>in</strong> <strong>the</strong><br />

period, when <strong>the</strong> solar elevation exceeded 5° dur<strong>in</strong>g all <strong>the</strong> day are not considered. The lower<br />

panels show <strong>the</strong> ratio between <strong>UV</strong>-RAD and two o<strong>the</strong>r <strong>in</strong>struments.


DAILY ERYTHEMAL DOSE<br />

AT NY-ÅLESUND AND<br />

DOME CONCORDIA<br />

The daily ery<strong>the</strong>mal dose, def<strong>in</strong>ed by<br />

<strong>UV</strong>-RAD at two stations dur<strong>in</strong>g <strong>the</strong> 2007-<br />

2009 period. The clear sky values are<br />

determ<strong>in</strong>ed trough model evaluations<br />

tak<strong>in</strong>g <strong>the</strong> total ozone, retrieved from <strong>the</strong><br />

<strong>UV</strong>-RAD data as <strong>in</strong>put parameter.<br />

The figures demonstrate<br />

that <strong>the</strong> daily ery<strong>the</strong>mal<br />

dose at Ny-Ålesund is<br />

ma<strong>in</strong>ly affected by <strong>the</strong><br />

cloud cover conditions<br />

while <strong>the</strong> total ozone<br />

variations predom<strong>in</strong>antly<br />

cause <strong>the</strong> correspond<strong>in</strong>g<br />

ery<strong>the</strong>mal dose variations<br />

at Concordia station.<br />

ERYTHEMAL DOSE (kJ m -2 )<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Nov<br />

Dec<br />

2007<br />

ERYTHEMAL DOSE (kJ m -2 )<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

Dome Concordia<br />

Jan Feb<br />

MAY JUN JUL AUG<br />

2008<br />

2008<br />

Aug Sep Oct Nov Dec<br />

Clear sky Dose<br />

Measured Dose<br />

Ny-Ålesund<br />

JUN JUL AUG SEP<br />

Jan Feb Mar<br />

2009<br />

Clear sky Dose<br />

Measured Dose<br />

2009<br />

AugSepOctNov


TOTAL OZONE (DU)<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

(a)<br />

SAOZ<br />

OMI<br />

<strong>UV</strong>-RAD<br />

VARIATION OF THE<br />

SURFACE <strong>UV</strong> IRRADIANCE<br />

DURING THE 2008 AND<br />

2009 AUSTRAL SPRINGS AT<br />

DOME CONCORDIA<br />

I R R A D I A N C E ( W m -2 nm -1 )<br />

CLOUD TRANSMITTANCE<br />

T cloud<br />

6.0 10 -4<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

(b)<br />

0.0<br />

8.0 10 -2<br />

7.0<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

AUG<br />

306 nm<br />

364 nm<br />

(c)<br />

(d)<br />

SEP OCT NOV AUG SEP OCT NOV<br />

2008 2009<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

LONGWAVE<br />

IRRADIANCE (W m -2 )<br />

Comparison between (a) variations <strong>of</strong> <strong>the</strong><br />

total ozone amount determ<strong>in</strong>ed at<br />

Concordia station by different <strong>in</strong>struments,<br />

(b) time-patterns <strong>of</strong> <strong>the</strong> solar irradiance at<br />

306 nm and (c) 364 nm wavelengths<br />

respectively, measured by <strong>UV</strong>-RAD at z o<br />

= 85°. The yellow curve <strong>in</strong> (c) presents <strong>the</strong><br />

runn<strong>in</strong>g average <strong>of</strong> <strong>the</strong> <strong>measurements</strong><br />

performed over five days. Panel (d) shows<br />

variations <strong>of</strong> <strong>the</strong> cloud transmittance T cloud<br />

(green dots) as obta<strong>in</strong>ed follow<strong>in</strong>g <strong>the</strong><br />

Long and Ackerman methodology. The<br />

dark green curves represent <strong>the</strong> five-days<br />

runn<strong>in</strong>g averaged time-patterns <strong>of</strong> T cloud .<br />

In <strong>the</strong> same panel, <strong>the</strong> mean daily values<br />

<strong>of</strong> LWI down-well<strong>in</strong>g irradiation are also<br />

given (yellow triangles) toge<strong>the</strong>r with fivedays<br />

runn<strong>in</strong>g averaged time-patterns<br />

(dark yellow curves).<br />

Vitale et al., submitted to <strong>Antarctic</strong> Science


DEPENDENCE OF <strong>UV</strong>-B IRRADIANCE ON THE TOTAL OZONE<br />

AMOUNT DURING THE 2008 AND 2009 SPRINGS<br />

IRRADIANCE I(306 nm) (W m -2 )<br />

6.0 10 -4 I 306<br />

−4<br />

= 10.37 10<br />

−<br />

e<br />

R = - 0.75<br />

5.0<br />

4.0<br />

−3<br />

8.0 10 Q<br />

( )<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

100 150 200 250 300<br />

TOTAL OZONE AMOUNT Q (DU)<br />

Irradiance I(306) measured by<br />

<strong>UV</strong>-RAD versus total ozone<br />

amount determ<strong>in</strong>ed by SAOZ<br />

and OMI <strong>in</strong>struments. The<br />

irradiance values presented<br />

refer to <strong>the</strong> case <strong>in</strong> which <strong>the</strong><br />

solar zenith angle was equal to<br />

85°. The best curve (solid) is<br />

presented toge<strong>the</strong>r with its<br />

analytical expression and two<br />

dashed curves show<strong>in</strong>g <strong>the</strong><br />

standard error <strong>of</strong> estimation.<br />

The correspond<strong>in</strong>g regression<br />

coefficient R is also <strong>in</strong>dicated.<br />

Vitale et al., submitted to <strong>Antarctic</strong> Science


Thank you for <strong>the</strong> attention!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!