15.11.2013 Views

The Continual Intercomparison of Radiation Codes (CIRC) - GEWEX

The Continual Intercomparison of Radiation Codes (CIRC) - GEWEX

The Continual Intercomparison of Radiation Codes (CIRC) - GEWEX

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Continual</strong> <strong>Intercomparison</strong> <strong>of</strong><br />

<strong>Radiation</strong> <strong>Codes</strong> (<strong>CIRC</strong>)<br />

Lazaros Oreopoulos 1 , Eli Mlawer 2 ,<br />

Jennifer Delamere 2 , Timothy Shippert 3<br />

With contibutions from: T. Charlock, B. Fomin, M. Iacono, Z. Jin, S.<br />

Kato, D. Kratz, J. Manners, P. Raisanen, and F. Rose<br />

1<br />

NASA-GSFC, Greenbelt, MD, USA<br />

2<br />

AER, Lexington, MA, USA<br />

3<br />

PNNL, Richland, WA, USA


Historical Perspective (1)<br />

ICRCCM-I (1984 - 1991): InterComparison <strong>of</strong> <strong>Radiation</strong> <strong>Codes</strong> for<br />

Climate Models, WCRP/IRC)<br />

- LW: Ellingson and Fouquart (1991)<br />

-~60 idealized cases (mostly cloudless)<br />

- SW: Fouquart et al. (1991)<br />

-~60 idealized cases (again, mostly cloudless)<br />

- LBL vs. approximate models<br />

Overall message : for cloudless skies, errors can be alarmingly large<br />

LW


Historical Perspective (2)<br />

•ICRCCM-II (1991): SPECTRE (FIRE II)<br />

Emphasis on LW and cloudless skies<br />

Ellingson and Wiscombe (BAMS, 1996)<br />

Overall message : using observations to<br />

assess models can be fruitful, but is HARD<br />

... Genesis <strong>of</strong> the ARM program.


Historical Perspective (3)<br />

ICRCCM-III SW: (Barker et al. 2003)<br />

- Interpretation and handling <strong>of</strong> unresolved clouds<br />

- CSRM domains; benchmarks set by 3D MC codes<br />

-Compares 3D with PPH and ICA<br />

-Overall message : standard assumptions are <strong>of</strong>ten<br />

inadequate and no 1D single method is adequate for all.


Historical Perspective (4)<br />

ICRCCM-III LW: (IRC; Ellingson et al., ongoing)<br />

- Interpretation and handling <strong>of</strong> unresolved clouds<br />

-CSRM domains; benchmarks set by a 3D MC code<br />

-Compares 3D with PPH and ICA<br />

Overall message : TBD; So far, proven the inadequacy <strong>of</strong><br />

standard overlap assumptions<br />

solid: ICA<br />

dashed: MRO<br />

dotted: RO


Historical Perspective (5)<br />

RTMIP (RT Model <strong>Intercomparison</strong> Project, Collins et al., 2006<br />

- Focusing on well-mixed greenhouse gases<br />

- RT codes <strong>of</strong> IPCC AR4 GCMs<br />

- SW and LW with several LBL references<br />

Take home message : LBL codes agree, means <strong>of</strong> GCM codes<br />

good, but spread too wide (worse at the SFC for SW)<br />

2xCO2 forcing


So, what is the <strong>Continual</strong> <strong>Intercomparison</strong> <strong>of</strong><br />

<strong>Radiation</strong> <strong>Codes</strong> (<strong>CIRC</strong>)?<br />

• RT model intercomparison aspiring to become the standard for<br />

documenting the performance <strong>of</strong> RT codes used in Large-Scale Models<br />

• Supported by DOE’s ARM program and endorsed by GRP and IRC<br />

• Goal is to have RT codes <strong>of</strong> GCMs (incl. IPCC) report performance<br />

against <strong>CIRC</strong><br />

• Phase I was launched on June 4, 2008<br />

How <strong>CIRC</strong> differs from previous intercomparisons:<br />

• Observation-tested (LW) LBL calculations are used as radiative benchmarks<br />

• Benchmark results are publicly available<br />

• Observationally-based input (from an ARM product named BBHRP, mostly)<br />

• Flexible structure and longer lifespan than previous intercomparisons


<strong>CIRC</strong> website<br />

http://www.circ-project.org<br />

http://circ.gsfc.nasa.gov


Challenges we faced<br />

• For input and reference calculations to be credible, a reasonable level <strong>of</strong><br />

agreement with observations is desirable<br />

• Our designated data source (ARM BBHRP v.1.4.1) is small; very few<br />

BBHRP cases satisfy our criteria:<br />

homogeneous* (1D)<br />

closure at both SFC and TOA for both SW and LW<br />

• LBL calculations are not standard in BBHRP<br />

• Input for LBL calculations is not necessarily available from BBHRP (e.g.,<br />

spectral surface albedo)<br />

• Validation <strong>of</strong> LBL calculations<br />

• We nevertheless came up with a bunch <strong>of</strong> (semi-validated) cases<br />

* See also SPECTRE paper by Ellingson and Wiscombe (BAMS 1996)


<strong>CIRC</strong>’s main data source:<br />

BBHRP at SGP March 2000-February 2001<br />

daytime datapoints with TOA and SFC fluxes:<br />

375<br />

overcast liquid clouds:<br />

8<br />

appropriate for <strong>CIRC</strong><br />

(homogeneous, closure)<br />

1<br />

25<br />

SGP SW total at SFC<br />

Clear-sky cases: 150<br />

(~60 % have SZA > 60°)<br />

number <strong>of</strong> datapoints<br />

20<br />

15<br />

10<br />

5<br />

mean≈ – 2.5<br />

sdev≈ 6<br />

Direct component is for normal surface<br />

0<br />

-20 -15 -10 -5 0 5 10 15 20<br />

residual=obs-RRTM


<strong>CIRC</strong> Phase I cases<br />

Case<br />

SZA<br />

PWV<br />

(cm)<br />

τ aer<br />

LWP<br />

(gm -2 )<br />

LW SFC<br />

obs - LBL (%)<br />

LW TOA<br />

SW SFC<br />

SW TOA<br />

(1) SGP 9/25/00<br />

47.9°<br />

1.23<br />

0.04<br />

0.5<br />

-0.9<br />

0.5<br />

-3.1<br />

(2) SGP 7/19/00<br />

64.6°<br />

4.85<br />

0.18<br />

0.6<br />

-1.4<br />

-1.1<br />

8.4<br />

(3) SGP 5/4/00<br />

40.6°<br />

2.31<br />

0.09<br />

1.0<br />

-1.2<br />

-0.1<br />

-8.7<br />

(4, 5) NSA<br />

5/3/04 2xCO 2<br />

)<br />

55.1°<br />

0.29<br />

0.13<br />

1.2<br />

-0.6<br />

-0.8<br />

0.7<br />

(6) SGP 3/17/00<br />

45.5°<br />

1.90<br />

0.24<br />

263.4<br />

1.1<br />

-3.0<br />

4.9<br />

-0.9<br />

(7) PYE 7/6/05<br />

41.2°<br />

2.42<br />

39.1<br />

0.2<br />

0.6<br />

-0.4<br />

-0.1


LW QC: LBLRTM spectral comparisons with AERI<br />

10<br />

AERI-LBLRTM, Case 2<br />

radiance difference<br />

mW/(m -2 sr cm -1 )<br />

5<br />

0<br />

-5<br />

-10<br />

600 700 800 900 1000 1100 1200 1300 1400<br />

wavenumber (cm -1 )<br />

errors < 1 Wm -2


SW QC: Spectral comparison with RRTM<br />

sum (<br />

)<br />

≈ 0.14 Wm -2<br />

downwelling SFC<br />

sum ( )<br />

≈ 1.18 Wm -2<br />

upwelling TOA & SFC<br />

7/19/2000, SGP: Warm and moist


<strong>CIRC</strong> modus operandi (Phase I)<br />

• Input & output (TOA and SFC fluxes at 1 cm -1 ) and instructions on how to<br />

run the cases are openly available at the <strong>CIRC</strong> website<br />

• Only registered users (considered as formal participants) have privileges<br />

such as:<br />

e-mail notifications about changes, updates, and corrections to the <strong>CIRC</strong><br />

dataset.<br />

priority to participate in workshops and publications<br />

• Registered users may have to submit results within predetermined<br />

deadlines.<br />

• Submitted results and intercomparison analysis will be posted on website<br />

• Implementation details and performances <strong>of</strong> participating codes will be<br />

documented and evaluated


Phase I launch<br />

• Mass e-mail on June 4, 2008 (text available at <strong>CIRC</strong> website)<br />

• 17 requests to register as participants (7 USA, 2 Brazil, 2<br />

France, 2 Russia, 1 Australia, 1 Canada, 1 UK, 1 Finland)<br />

• 8 submissions received so far (a few more in the pipeline)<br />

• Feedback:<br />

o At IRC business meeting: absorb ICRCCM<br />

o Should not have publicized the reference results<br />

o More synthetic cases, please<br />

o SW heating rates, please<br />

o Remove aerosols<br />

o Separate species<br />

• Still fine-tuning and clarifying things<br />

• Please advertise, and if you have a code, participate!


Phase I initial results, flux errors<br />

% difference from LBL calculations<br />

10<br />

5<br />

0<br />

-5<br />

obs<br />

GSFC<br />

FLCKKR<br />

COART<br />

ES<br />

FMI<br />

LW downwelling flux at surface<br />

Case1 Case2 Case3 Case4 Case5 Case6 Case7<br />

% difference from LBL calculations<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

LW upwelling flux at TOA<br />

Case1 Case2 Case3 Case4 Case5 Case6 Case7<br />

-10<br />

10<br />

10<br />

SW upwelling flux at TOA<br />

% difference from LBL calculations<br />

5<br />

0<br />

-5<br />

Case1 Case2 Case3 Case4 Case 5 Case6 Case7<br />

% difference from LBL calculations<br />

5<br />

0<br />

-5<br />

Case1 Case2 Case3 Case4 Case 5 Case6 Case7<br />

-10<br />

SW total downwelling flux at SFC<br />

31%<br />

-10<br />

FLCKKR (= Fu, Liou Charlock, Kato, Kratz, Rose), submitted by Rose and Charlock<br />

COART (= Coupled Ocean-Atmosphere Radiative Transfer), submitted by Jin and Charlock<br />

ES (= Edwards-Slingo), submitted by Manners<br />

FMI (=Finnish Meteorological Institute), submitted by Räisänen


CAM3 RT vs. RRTMG<br />

5<br />

4<br />

LW down SFC<br />

obs<br />

CAM<br />

RRTMG<br />

2<br />

1<br />

% deviation from LBLRTM<br />

3<br />

2<br />

1<br />

% deviation from LBLRTM<br />

0<br />

-1<br />

-2<br />

-3<br />

0<br />

-4<br />

-1<br />

Case1 Case2 Case3 Case4 Case5 Case6 Case7<br />

-5<br />

LW up TOA<br />

Case1 Case2 Case3 Case4 Case5 Case6 Case7<br />

8<br />

SW down SFC<br />

10<br />

% deviation from CHARTS<br />

6<br />

4<br />

2<br />

0<br />

% deviation from CHARTS<br />

5<br />

0<br />

-5<br />

-2<br />

Case1 Case2<br />

Case3 Case4 Case 5 Case6 Case7<br />

-10<br />

Case1 Case2<br />

SW up TOA<br />

Case3 Case4 Case 5 Case6 Case7


Phase I preliminary results, heating rates<br />

p(hPa)<br />

0.1<br />

1<br />

10<br />

100<br />

LW, case2, moist<br />

1000<br />

-15 -10 -5 0 5<br />

heating rate (K/day)<br />

0.1<br />

SW, case2<br />

p(hPa)<br />

1<br />

10<br />

100<br />

RRTM<br />

LBLf<br />

1000<br />

0 5 10 15 20<br />

heating rate (K/day)<br />

p(hPa)<br />

p(hPa)<br />

0<br />

200<br />

400<br />

600<br />

800<br />

RRTM<br />

LBLf<br />

LBLRTM<br />

LW, case6, thick cloud<br />

1000 -15 -10 -5 0 5<br />

0<br />

200<br />

400<br />

600<br />

800<br />

heating rate (K/day)<br />

SW, case6<br />

1000 0 5 10 15 20<br />

heating rate (K/day)<br />

Note: No reference SW HR available from CHARTS


Importance <strong>of</strong> spectral surface albedo<br />

CHARTS weighted-SSF weighted sfc. albedo<br />

CHARTS-R sfc<br />

NIR<br />

(3)=0.299<br />

SSF-R sfc<br />

NIR<br />

(3)=0.274<br />

CHARTS-R sfc<br />

NIR<br />

(4)=0.514<br />

SSF-R sfc<br />

NIR<br />

(4)=0.471<br />

flux difference (Wm -2 )<br />

15<br />

10<br />

5<br />

0<br />

TOA upwelling<br />

GSFC<br />

CAM<br />

ES<br />

}<br />

Resolve sfc<br />

albedo into<br />

2 bands<br />

Resolves<br />

sfc albedo<br />

into 6 bands<br />

-5<br />

Case1 Case2<br />

Case3 Case4 Case 5 Case6 Case7


Phase I initial results, CO 2 forcing <strong>of</strong> dry atmospheres<br />

SW or LW forcing (Wm -2 )<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

LBL<br />

SW<br />

LW<br />

GSFC<br />

CAM<br />

FLCKKR<br />

COART<br />

FMI<br />

ES<br />

SFC<br />

RRTMG<br />

CHARTS-R sfc<br />

NIR<br />

(4)=0.514<br />

CHARTS-R sfc<br />

NIR<br />

(5)=0.516<br />

FLCKKR and COART<br />

have fixed CO 2<br />

in SW<br />

SW or LW forcing (Wm -2 )<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

TOA<br />

-1<br />

Case4-Case5 (double CO2 experiment)


CO 2 forcing net flux pr<strong>of</strong>ile differences<br />

0<br />

SW<br />

0<br />

LW<br />

200<br />

200<br />

p(hPa)<br />

400<br />

600<br />

p(hPa)<br />

400<br />

600<br />

800<br />

1000<br />

800<br />

1000<br />

CAM<br />

GSFC<br />

ES<br />

RRTM<br />

-0.5 0 0.5 1 1.5 2 2.5<br />

flux difference (Wm -2 )<br />

0 1 2 3 4 5<br />

flux difference (Wm -2 )


CO 2 spectral forcing<br />

TOA or SFC forcing (Wm -2 /cm -1 )<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

Case4-Case5<br />

TOA up<br />

SFC down<br />

thermal<br />

-0.04<br />

2xCO<br />

2<br />

spectral forcing<br />

SFC forcing (Wm -2 /cm -1 )<br />

0.005<br />

0.004<br />

0.003<br />

0.002<br />

0.001<br />

600 800 1000 1200 1400<br />

wavenumber (cm -1 )<br />

Case4-Case5, down SFC<br />

solar<br />

0<br />

2000 4000 6000 8000 1 10 4<br />

wavenumber (cm -1 )


<strong>CIRC</strong> activities and future<br />

• Talks at IRS’08 and ARM’08 WG meetings<br />

• Extended abstract to appear in IRS’08 proceedings<br />

• Short (“Nowcast”) BAMS article submitted<br />

• ARM proposal seeking funding for Phase II (ice clouds, SW<br />

spectral closure) pending<br />

• “Pristine” and “cloudless” (Cases 6 & 7) versions will soon be<br />

released<br />

• Would like to see submission from RT codes used for global<br />

flux datasets<br />

• Workshop within 2009 (after GRC on <strong>Radiation</strong> & Climate?)<br />

• Standards, certification, funding?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!