15.11.2013 Views

The Messinian problem in the Pannonian Basin ... - geo.edu.ro

The Messinian problem in the Pannonian Basin ... - geo.edu.ro

The Messinian problem in the Pannonian Basin ... - geo.edu.ro

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Sedimentary Geology 201 (2007) 111 – 140<br />

www.elsevier.com/locate/sed<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>p<strong>ro</strong>blem</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>,<br />

Eastern Hungary — Insights f<strong>ro</strong>m<br />

stratigraphic simulations<br />

Istvan Csato a, ⁎ , Christopher G. St C. Kendall b , Phil D. Moore c<br />

a Department of Geology, Coll<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> College, 2800 Spr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g Creek Pkwy, Plano TX 75074, United States<br />

b Department of Geology, University of South Ca<strong>ro</strong>l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>a, Columbia, SC 29208, United States<br />

c Research Comput<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g Center, College of Arts and Sciences, University of South Ca<strong>ro</strong>l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>a, Columbia, SC 29208, United States<br />

Received 27 July 2006; received <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> revised form 23 April 2007; accepted 2 May 2007<br />

Abstract<br />

Earlier studies revealed a p<strong>ro</strong>m<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ent unconformity <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> stratigraphic record of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lacustr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, but it<br />

was unclear what factors were responsible for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> formation of this unconformity, and thus its orig<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> rema<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed cont<strong>ro</strong>versial. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>p<strong>ro</strong>blem</st<strong>ro</strong>ng> was fur<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r complicated by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> fact that stratal patterns <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> varied significantly along <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> paleo-marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s of<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake. Our study <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>t<strong>ro</strong>duces quantitative stratigraphic simulations to analyze <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <strong>ro</strong>le of subsidence, sediment supply, and lakelevel<br />

changes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> formation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> unconformity and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> various architectural patterns that evolved <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> response to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

events. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> results suggest that a relative lake-level fall occurred <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>, accompanied and followed by tectonic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> several parts of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. S<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ce <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> rate of tectonic subsidence and/or uplift varied <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> space and time, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> size of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> relative lakelevel<br />

fall varied significantly ac<strong>ro</strong>ss <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, while various stratal architectural patterns formed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> same time <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terval. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> age<br />

of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> unconformity was estimated, based on seismic correlations with paleomagnetic ch<strong>ro</strong>nozones, to be between 5–6 Ma, which<br />

was ref<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed by stratigraphic simulations. Galeacysta etrusca cysts were found <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> unconformity, which confirmed its late<br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> age. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> surface is called <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Intra-<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> Unconformity (IMU) <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this paper. Seismic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpretations and simulations<br />

of stratal architecture led to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> formulation of a bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> fill model and identification of four stratigraphic architectural patterns related<br />

to <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> events <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>clud<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g a major lake-level fall and coeval and subsequent uplift events <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> certa<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> parts of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>.<br />

© 2007 Elsevier B.V. All rights reserved.<br />

Keywords: <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>; <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>; Stratigraphic model<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g; Sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis; Galeacysta etrusca<br />

1. Int<strong>ro</strong>duction: significance of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> “<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>p<strong>ro</strong>blem</st<strong>ro</strong>ng>” <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> desiccation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Mediterranean Sea and its stratigraphic, tectonic and<br />

⁎ Correspond<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g author. Tel.: +1 972 881 5712.<br />

E-mail address: icsato@ccccd.<st<strong>ro</strong>ng>edu</st<strong>ro</strong>ng> (I. Csato).<br />

climatic implications have attracted great <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terest and<br />

extensive research. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> events <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> adjacent nonmar<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e<br />

bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s, such as <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Hungary are<br />

still not very well understood. Endemic fauna and scarcity<br />

of accurate age data make stratigraphic correlations <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

late Miocene–Pliocene strata a great challenge. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> goal of<br />

this paper is to generate an <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>sight <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> complex<br />

stratigraphic events that occurred <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> time: called <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>p<strong>ro</strong>blem</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this paper.<br />

0037-0738/$ - see f<strong>ro</strong>nt matter © 2007 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.sed<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>.2007.05.005


112 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

Csato (1989, 1993) recognized a p<strong>ro</strong>m<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ent unconformity<br />

formed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> time with<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng><br />

Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, and p<strong>ro</strong>posed a division of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> postrift strata by this<br />

unconformity <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>to two major units. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> event<br />

that formed <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> unconformity and b<strong>ro</strong>ught about <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> related<br />

paleo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphic changes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> was <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpreted to<br />

be coeval with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean.<br />

S<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ce <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lacustr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> was assumed to be<br />

separated f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean at this time, it rema<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed<br />

unclear whe<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> formation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> unconformity<br />

could be expla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed by a paleo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphic connection<br />

to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean. Thus <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> “<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>p<strong>ro</strong>blem</st<strong>ro</strong>ng>” <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> has a regional significance as to whe<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> major lake-level fall was l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ked to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> desiccation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Mediterranean. If it was, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> question arises as to whe<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r<br />

direct mar<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e connections existed temporarily or o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r<br />

factors, such as changes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> fluvial dra<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>age were<br />

responsible. It is also unclear what <strong>ro</strong>le tectonic reorganizations<br />

played <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> formation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> lake-level<br />

fall <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> time.<br />

In addition to formulation of regional tectono-sedimentary<br />

models, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>p<strong>ro</strong>blem</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng><br />

Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> has economic significance as well. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> major lakelevel<br />

fall generated substantial resedimentation and deposition<br />

of fall<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g stage and lowstand systems tract sediments.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>se facies have potential for form<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g regional stratigraphic<br />

traps for hyd<strong>ro</strong>carbons, p<strong>ro</strong>vided o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r conditions,<br />

such as source <strong>ro</strong>ck and seal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g are favorable. This stratigraphic<br />

play must have developed not only <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Hungary but<br />

also <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> neighbor<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g countries where <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> is<br />

preserved, as <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake-level fall was a bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>-wide event and<br />

affected <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> paleo-marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>al areas all a<strong>ro</strong>und <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>.<br />

This paper focuses on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> formation of stratigraphic<br />

architectural patterns and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> unconformity.<br />

Subsurface data, <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>clud<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g seismic and well log sections<br />

were <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> primary source of our analysis; sequence<br />

stratigraphic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpretations followed by computer simulation<br />

of stratigraphic architectural patterns were used to<br />

model possible scenarios of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> evolution of stratigraphy.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> simulations tested whe<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> unconformity<br />

was p<strong>ro</strong>duced by a “eustatic” lake-level change and/<br />

or by o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r factors. It analyzed how subsidence and<br />

sediment supply may have contributed to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> formation of<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> various stratal patterns.<br />

2. Geological overview<br />

2.1. Tectonic sett<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> is a Neogene extensional bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

that lies between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Carpathian, Alp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e and D<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>aride<br />

thrust belts (Fig. 1) with<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> mega-suture zone of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Fig. 1. Location of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and Lake Pannon at <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> time. Map of Lake Pannon is modified f<strong>ro</strong>m Magyar et al. (1999).


I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

113<br />

African and Eu<strong>ro</strong>pean plates. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> basement of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> consists of Paleogene and Paleozoic to<br />

Cretaceous crustal fragments that became imbricate<br />

nappes dur<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Cretaceous Alp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e collision (Csontos<br />

et al., 1992; Tari et al., 1992). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> large-scale<br />

allochthony of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Transdanubian Range was suggested<br />

by Horváth (1993). Tari (1996) and Mattick et al. (1996)<br />

believed that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nappe pile of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Eastern Alps<br />

cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ued beneath <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Danube Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> towards <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Transdanubian Range and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Western Carpathians.<br />

Nappes of Late Cretaceous <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> age have also been p<strong>ro</strong>ven<br />

below <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Great Hungarian Pla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (G<strong>ro</strong>w et al., 1994).<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> basement is composed of two ma<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

tectonic terra<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s or mic<strong>ro</strong>-plates: <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn Alp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e–<br />

Carpathian–<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> (ALCAPA) unit and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sou<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn<br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> or Tisza–Dacia unit or Tisza Mega-unit (Haas<br />

and Péró, 2004) juxtaposed along <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mid-Hungarian<br />

shear zone (Fig. 2). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn unit orig<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ated by a large<br />

lateral displacement caused by tectonic escape f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

compressional zone of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Sou<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn Alps <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Paleogene–early Miocene (Ratschbacher et al., 1991).<br />

At <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> same time, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> south <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> terra<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> experienced<br />

a different k<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ematic history, <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>clud<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g a nearly 90°<br />

clockwise <strong>ro</strong>tation (Patrascu et al., 1994). It is subdivided<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>to NE–SW trend<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g units based on dist<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ct Mesozoic<br />

facies differences. At present, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se units are organized <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

a north-vergent folded belt, c<strong>ro</strong>pp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g out <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Apuseni<br />

Mounta<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Romania and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mecsek and Villány<br />

Mounta<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Hungary. Csontos and Nagyma<strong>ro</strong>sy (1998)<br />

p<strong>ro</strong>posed a counterclockwise <strong>ro</strong>tation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> ALCAPA<br />

and a clockwise motion of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tisza–Dacia unit <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> late<br />

Oligocene–Miocene time. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>y believed that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

ALCAPA unit was thrust over <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tisza–Dacia unit<br />

along <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mid-Hungarian l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> pre-Tertiary structural<br />

units were studied <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> great detail by Haas et al. (2000).<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> formation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Neogene <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> was<br />

studied by Royden et al. (1983a,b) and Royden and Báldi<br />

(1988) us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rmo-tectonic models. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>ir results<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>dicate that <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>itial crustal th<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>n<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g or rift<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g occurred <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Middle Miocene and subsequent <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rmal subsidence<br />

or <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> post-rift phase extended up to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> present. Tari et al.<br />

(1992) and Horváth (1993) po<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ted out that s<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ce<br />

Neogene extension was superimposed on an earlier<br />

Alp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e compressional realm, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> basement structures<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>fluenced <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> magnitude and <st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>metry of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> subsequent<br />

cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ental extension by reactivation of regional decollement<br />

levels. Apply<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g Buck (1991)'s cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ental extensional<br />

k<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ematic model, it was p<strong>ro</strong>posed that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> extension<br />

locally un<strong>ro</strong>ofed deep-ly<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <strong>ro</strong>ck masses, and eventually<br />

exposed metamorphic core complexes (Tari and Horváth,<br />

1995) <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Middle Miocene. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> core complex<br />

extension was followed by wide-rift extension and f<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ally<br />

Fig. 2. Structural units of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pre-Neogene basement <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> eastern Hungary (after Haas and Péró, 2004). Seismic Sections A, B, C and D are presented <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

Figs. 5−8.


114 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

by nar<strong>ro</strong>w-rift style extension <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> certa<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> deep sub-bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s.<br />

Huismans et al. (2001) also <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpreted two ma<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> rift<br />

stages, one at 17.5–14 Ma and ano<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r 11.5–8(?) Ma,<br />

separated by a compressional event that affected most of<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> observed unconformity at<br />

14 Ma (Horváth, 1995; Huismans et al., 2001)thatmarks<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> end of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> first rift<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g phase (mid-Badenian stage <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

Central Paratethys nomenclature) corresponds clearly<br />

with Hámor (1985)'s division between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Styre and<br />

Lei<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> o<strong>ro</strong>genic cycles. It is believed that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> earlier<br />

extension was driven by subduction <strong>ro</strong>ll-back along <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Carpathian f<strong>ro</strong>nt <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> a back-arc sett<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g (Horváth and<br />

Berckhemer, 1982; Royden, 1988) and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> second, Upper<br />

Miocene (Sarmatian) extension was associated with<br />

as<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>nospheric upwell<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g and rift push forces (Huismans<br />

et al., 2001).<br />

Initially, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Upper Miocene–Quaternary period of<br />

bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> evolution was thought to be tectonically quiet<br />

(Sclater et al., 1980). Vakarcs et al. (1994) observed<br />

signs of uplift based on seismic data at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s<br />

attributable to late stage compression of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>.<br />

Horváth (1995) published results f<strong>ro</strong>m seismic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpretations<br />

and paleo- and recent stress determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ations<br />

that suggest at least two compressional events occurred<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this time period. Accord<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g to<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se f<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>d<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> earlier event took place at about 10–<br />

11 Ma, and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> later event was thought to have happened<br />

a<strong>ro</strong>und 3 Ma. Csato (1995) us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g stratigraphic simulations<br />

suggested a <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>–Pliocene <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version. Horváth<br />

and Cloet<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gh (1996) expla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Quaternary<br />

differential movements (subsidence <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ternal parts<br />

of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and coeval uplift at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s) as caused<br />

by an <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>crease <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> magnitude of horizontal compressional<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>traplate stresses.<br />

2.2. Sedimentary fill<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> was filled by large deltaic<br />

systems that orig<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ated f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> ris<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g Carpathians, Alps<br />

and D<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>arides. An understand<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late Miocene–<br />

Pliocene sedimentary history of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lacustr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> fill<br />

developed f<strong>ro</strong>m three major sources. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> first was a<br />

seismic stratigraphic model <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>t<strong>ro</strong>duced by Mattick et al.<br />

(1988) and Pogácsás et al. (1988). This app<strong>ro</strong>ach, toge<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r<br />

Fig. 3. Location of data set. Coreholes with paleomagnetic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>formation: T (Tiszapalkonya-I), D (Dévaványa-1), V (Vésztő-1); <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>es are <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

locations of seismic sections used <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this study, seismic Sections A, B, C, D are presented <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Figs. 5–8; Well logs are presented <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 16: W-1 (Well-<br />

1), W-3 (Well-3); Basement features: J (Jászság Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>), A (Algyő High), M (Makó T<strong>ro</strong>ugh), B (Battonya High), BB (Békés Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>), De (Derecske<br />

T<strong>ro</strong>ugh); contour l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>es represent <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> depths of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pre-Neogene basement <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> meters after Juhász (1998).


I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

115<br />

with sedimentological analysis of deltaic and turbiditic<br />

systems (Bérczi and Philips, 1985; Bérczi, 1988),<br />

generated a new understand<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> depositional<br />

mechanisms and facies systems of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> fill. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>itial seismic stratigraphic concept was ref<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed and<br />

developed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>to a more sophisticated sequence stratigraphic<br />

model by Pogácsás et al. (1992, 1993), Újszászi and<br />

Vakarcs (1993), Vakarcs et al. (1994) and Vakarcs (1997).<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> second source was well log correlations ac<strong>ro</strong>ss <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

entire <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> conducted by Gajdos (1989) tied<br />

to modern delta depositional models. He recognized that<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> eastern <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> was filled f<strong>ro</strong>m two ma<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

sedimentary sources, one <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast, and a younger<br />

one advanc<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> northwest. He also identified<br />

o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r large delta systems to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> south. F<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ally, Pogácsás et<br />

al. (1992, 1993, 1994) correlated radiometric and<br />

paleomagnetic ages ac<strong>ro</strong>ss <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> establish<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g a new<br />

ch<strong>ro</strong>nostratigraphy and advanc<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g understand<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

non-mar<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> fill history.<br />

Most of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> papers <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late 1980s and early 1990s<br />

correlated third-order lake-level changes to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Haq et al.<br />

(1987) eustatic curve, argu<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake-level changes<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> dur<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Late Miocene and<br />

Pliocene were <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> phase with global sea-level. Mattick<br />

et al. (1994) p<strong>ro</strong>posed that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sequences <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>y identified<br />

were p<strong>ro</strong>duced by delta lobe switch<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> a bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> that<br />

Fig. 4. Correlation of paleomagnetic ch<strong>ro</strong>nozones f<strong>ro</strong>m Tiszapalkonya-I, Dévaványa-1 and Vésztő-1 coreholes (after Elston et al., 1994) to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> global<br />

scale (Berggren et al., 1995). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Intra-<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> Unconformity (IMU) formed app<strong>ro</strong>ximately <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> C3r–C3An zones.


Fig. 5. Seismic Section A (see Fig. 3 for location). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> IMU clearly divides <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sedimentary fill <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>to two major units. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> edges underwent tectonic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version and uplift f<strong>ro</strong>m late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

onward. Mi: Middle Miocene synrift unit. Kiskunság- and Hajdúság-type Architecture: categories of stratal patterns of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> coasts; see Section 4.5 and Fig. 9 for details.<br />

116 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140


I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

Fig. 6. Seismic Section B (see Fig. 3 for location). A late (p<strong>ro</strong>bably Quaternary) uplift occurred at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Algyő High. A: Algyő High, M: Makó T<strong>ro</strong>ugh, B: Battonya High, BB: Békés Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, De: Derecske<br />

T<strong>ro</strong>ugh. Hajdúság-type Architecture: a category of stratal pattern of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> coasts; see Section 4.5 and Fig. 9 for details.<br />

117


Fig. 7. Seismic Section C (see Fig. 3 for location). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> northwestern edge of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> underwent uplift f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Quaternary. J: Jászság Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, BB: Békés Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, B: Battonya High;<br />

Mi: Middle Miocene synrift unit. Battonya-type Architecture: a category of stratal pattern of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> coasts; see Section 4.5 and Fig. 9 for details.<br />

118 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140


I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

119<br />

Fig. 8. Seismic Section D (see Fig. 3 for location). This section connects <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Jászság- and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hajdúság-type architectural patterns (see Section 4.5 and<br />

Fig. 9 for details): <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> IMU is a type I unconformity <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hajdúság-type architecture where a large lowstand systems tract formed above it; and it is a<br />

type II unconformity with a shelf marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>-type systems tract <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Jászság-type architecture. Mi: Middle Miocene synrift unit. bs: bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> floor fan-slope<br />

fan; pw: lowstand p<strong>ro</strong>grad<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g wedge; LST: Lowstand Systems Tract; TST: Transgressive Systems Tract; HST: Highstand Systems Tract; SMST:<br />

Shelf Marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Systems Tract.<br />

p<strong>ro</strong>gressively became shallower with time. Juhász et al.<br />

(1997, 1999) carried out a detailed cycle analysis us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

well data and concluded that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> sequences<br />

were not cont<strong>ro</strong>lled by eustatic changes. Instead, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>y<br />

suggested that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> rhythm of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> water level changes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Lake was opposite to that of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> eustatic<br />

changes of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> world oceans. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>y believed that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> highfrequency<br />

cyclicity <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> was driven by<br />

climatic changes coupled with changes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> sediment<br />

supply. Cloet<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gh (1988) p<strong>ro</strong>posed that changes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>traplate stresses could also expla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> relative sea-level<br />

changes. Sacchi et al. (1999) based on detailed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>tegrated<br />

stratigraphic studies <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> western <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> saw<br />

no evidence that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> unconformities <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> fill were<br />

l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ked to eustatic changes.<br />

A significant unconformity formed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>,<br />

termed Intra-<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> Unconformity (IMU) <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this<br />

paper. Paleo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphical isolation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean<br />

took place <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

became desiccated. This event, known as <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean<br />

sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis (Hsü et al., 1977; Cita, 1982; Cita,<br />

1991), co<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>cided with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> formation of widespread<br />

e<strong>ro</strong>sional surfaces a<strong>ro</strong>und <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean<br />

(Cita and Ryan, 1978). Us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g ast<strong>ro</strong>nomically<br />

calibrated stratigraphic data Krijgsman et al. (1999)<br />

dated <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> onset of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis to 5.96±<br />

0.02 Ma. Separated by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> ris<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g Carpathian–D<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>aride<br />

mounta<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> belt, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> was already a lake<br />

at this time. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> question arises as to whe<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU,<br />

formed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> close to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Miocene–


120 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

Pliocene boundary, was caused by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis or<br />

whe<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> tim<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g was a co<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>cidence and o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r factors<br />

were responsible for this feature.<br />

3. Data and methods: seismic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpretations and<br />

stratigraphic simulations<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> stratigraphic architecture of a bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> evolves as a<br />

dynamic response to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> comb<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed effect of subsidence/<br />

uplift, sea/lake-level changes and sediment supply (e.g.<br />

Helland-Hansen and Gjelberg, 1994). In many cases, it<br />

is difficult to decipher <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> relative <strong>ro</strong>les of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se three<br />

ma<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> factors f<strong>ro</strong>m observations of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> stratigraphic<br />

record. Passive cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ental marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s, where <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> concept<br />

of seismic stratigraphy was orig<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ally formulated (Vail<br />

et al., 1977), have relatively slow and steady subsidence<br />

rates and sediment supply, thus <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> stratigraphic<br />

sequences may be <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> p<strong>ro</strong>ducts of eustatic sea-level<br />

variations. However, rapidly subsid<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g sub-bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s,<br />

ris<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s and differential subsidence patterns are<br />

common to various tectonic zones of active extensional<br />

sett<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> sediment supply can vary greatly, both <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

time and space, respond<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g to local uplift<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g zones that<br />

may act as po<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>t sources of sediments (e.g. Gawthorpe et<br />

al., 1994; Thamó-Bozsó et al., 2002). Thus <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> evolv<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

sequences and stratigraphic patterns may reflect lake/<br />

sea-level changes, changes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> sediment supply, tectonic<br />

signals or some comb<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ation of all. An unconformity<br />

might become a conformable surface along a bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> where local subsidence/uplift rates are app<strong>ro</strong>priate,<br />

i.e. different systems tracts may be synch<strong>ro</strong>nous.<br />

Similarly, stratigraphic patterns identical to those<br />

expected of transgressive and subsequent highstand<br />

systems tracts may be p<strong>ro</strong>duced by changes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> sediment<br />

supply rates without relative sea/lake changes (e.g.<br />

Csato and Kendall, 2002). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>refore, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> understand<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> stratigraphy of active bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s requires both<br />

observations and quantitative analysis. This paper<br />

records <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> use of computer simulations of depositional<br />

sequences and architectural patterns observed on<br />

seismic data to model <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <strong>ro</strong>le of subsidence, sediment<br />

supply and lake-level changes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>.<br />

Computer models of sediment accumulation <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s<br />

have been classified <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>to <st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>metrical and p<strong>ro</strong>cess-based<br />

models (Den Bezemer et al., 2000). Geometrical models<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>volve matches between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> observed stratigraphy and<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> computer output by vary<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>put parameters that<br />

cont<strong>ro</strong>l tectonics and deposition. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> SEDPAK stratigraphic<br />

simulation p<strong>ro</strong>gram (Kendall et al., 1991, 1993;<br />

Whittle, 1993; Moore, 1997; Lev<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, 1999) p<strong>ro</strong>vides<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>metrical models used for our quantitative analysis.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> p<strong>ro</strong>gram creates accommodation by vary<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g subsidence<br />

and sea-level. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> total subsidence has two<br />

components: tectonic subsidence def<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> user;<br />

and flexural isostatic compensation due to sediment load.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> sediments are compacted accord<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g to compaction<br />

data of Baldw<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and Butler (1985). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> p<strong>ro</strong>gram<br />

simulates both clastic and carbonate sediment accumulation.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> clastic sediments are modeled by deposition of<br />

mud and sand prisms <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> accommodation space at rates<br />

def<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> user. Two-dimensional sections may be<br />

modeled with sediment supply at both ends of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

modeled section, thus SEDPAK has <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> capability to<br />

simulate stratigraphic architectures formed f<strong>ro</strong>m multiple<br />

sediment sources. When <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> simulation output establishes<br />

a satisfactory match to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> observed section, it is assumed<br />

that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>put parameters, <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>clud<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g subsidence, sea/lakelevel<br />

changes and sediment supply are correct. This way,<br />

a reconstruction of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> stratigraphic history may be obta<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed<br />

and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> observed stratigraphic patterns may be<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpreted.<br />

Our study focused on eastern Hungary where <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> fill reaches its greatest depths (3–6km).<br />

Regional seismic sections constructed f<strong>ro</strong>m hyd<strong>ro</strong>carbon<br />

exploration p<strong>ro</strong>files constituted <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> basic data set for<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpretations (Fig. 3). Geological time calibration was<br />

based on paleomagnetic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>formation obta<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed f<strong>ro</strong>m three<br />

core holes, namely <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tiszapalkonya-I, Dévaványa-1 and<br />

Vésztő-1 (Figs. 3 and 4). Magnetic polarity zones<br />

correlated to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> global polarity scale gave numerical<br />

ages of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sediments (Lantos et al., 1992; Elston et al.,<br />

1994). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> depths of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> polarity zones were converted to<br />

two-way travel time and annotated onto seismic sections<br />

located close to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> cored holes. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>n <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> ages were<br />

correlated along seismic sections ac<strong>ro</strong>ss <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. This<br />

method of establish<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g a ch<strong>ro</strong>nostratigraphic framework<br />

of sediments <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> was first used by<br />

Pogácsás et al. (1992, 1993, 1994). A fourth cored hole,<br />

Kaskanthyú-2 lay outside our study area, but its<br />

mic<strong>ro</strong>plankton zones were correlated to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> magnetic<br />

polarity zones (Sütő-Szentai, 2000) and so could be used<br />

to calibrate <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> time framework of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> simulation.<br />

4. Seismic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpretations<br />

Three regional seismic sections that c<strong>ro</strong>ss <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng><br />

Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> eastern Hungary are shown <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Figs. 5−7.<br />

Our study focused primarily on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> scale stratigraphic<br />

evolution seen on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>es with particular<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terest <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> events. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> pre-Neogene basement,<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> synrift–postrift boundary and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Intra-<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

Unconformity (IMU) are marked on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sections. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> age<br />

of IMU was clearly correlated between ch<strong>ro</strong>nozones C3n<br />

and C3Ar, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>refore its age is between 4.18 and 6.98 Ma,


I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

121<br />

very likely between 5.23 and 6.56 Ma (Fig. 4). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

exist<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g paleomagnetic data do not allow more accurate<br />

age determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ation, but based on our simulation results<br />

(see Section 5.1) and especially d<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>oflagellate <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>formation,<br />

we suggest a possible age range between 5 and 6 Ma<br />

(5.5±0.5 Ma), likely to be close to 5.3–5.5 Ma (see<br />

discussion <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Section 7).<br />

4.1. Section A<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> IMU <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> eastern Hungary is clearly identified on<br />

seismic p<strong>ro</strong>files. Section A is an example (Fig. 5), oriented<br />

NE–SW mostly along <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Szolnok Unit of Haas and Péró<br />

(2004) (Fig. 2). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern part of this unit is<br />

represented by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Cretaceous–Paleogene “flysch” successions<br />

and its southwestern part is composed of<br />

Jurassic–Lower Cretaceous sedimentary and volcanic<br />

<strong>ro</strong>cks. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> flysch unit is divided <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>to two segments <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

Section A by a deep half-graben. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> synrift succession<br />

accumulated mostly <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Langhian–Serravallian (middle<br />

Miocene) time <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terval (Karpatian–Badenian regional<br />

stages, Hámor, 1997). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> two major pre-Neogene units<br />

have an abrupt tectonic contact and each of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>m<br />

underwent rift<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g by form<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g half-graben and occasionally<br />

full-graben structures. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> synrift phase ended <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

late Serravallian (Sarmatian regional stage) when, as<br />

Horváth (1995) po<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ted out, a compressional tectonic<br />

event coupled with a eustatic sea-level fall p<strong>ro</strong>duced a<br />

marked unconformity surface th<strong>ro</strong>ughout <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng><br />

Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> identification of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pre-Neogene basement<br />

and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> top synrift surface on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> seismic section was<br />

based on reflection characteristics and well <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>formation<br />

available on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e of section.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> postrift sedimentary fill is composed of two<br />

sequences separated by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU. This two-fold division is<br />

evident everywhere <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> eastern Hungary. S<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ce <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> age of<br />

IMU is estimated ∼ 5.5 Ma <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> our detailed correlation, we<br />

named <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> two sequences Tortonian–Lower <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

and Late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>–Pliocene systems, respectively.<br />

Marked deltaic p<strong>ro</strong>gradation and aggradation filled a<br />

large part of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian–Lower <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

time. This unit represents a second-order (Vail et al., 1991)<br />

highstand systems tract. Third-order sequences (Pa1–Pa4<br />

sequences) were identified and correlated with<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pre-<br />

IMU second-order sequence by Vakarcs (1997).<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>se<br />

higher-order sequences were <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpreted to be driven by<br />

eustatic changes (Vakarcs et al., 1994), or eustatic and<br />

tectonic changes (Vakarcs, 1997) or <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>y may have<br />

evolved as sedimentary responses solely to tectonic<br />

activity (Juhász et al., 2006) or climatic variations (Juhász<br />

et al., 1997). Sacchi et al. (1999) also identified four thirdorder<br />

sequences (Pan-1–Pan-4) <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this time <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terval.<br />

Section A shows that a major relative lake-level fall<br />

occurred <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> time and p<strong>ro</strong>duced <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU. This<br />

relative lake-level fall apparently affected <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> entire<br />

bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and a major reorganization of sedimentation<br />

followed. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> highly p<strong>ro</strong>gradational–aggradational<br />

deltaic advancement stopped and thick fall<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g stage<br />

and lowstand systems tracts (Catuneanu, 2002, 2006)<br />

formed at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> paleo-marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s (see paleo-marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s marked<br />

Kiskunság-type and Hajdúság-type Architecture <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

Fig. 5, and for more detailed explanation see Section<br />

4.5 and Fig. 9). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> entire Late-<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>–Pliocene<br />

bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> fill is a major ret<strong>ro</strong>gradational system. Vakarcs<br />

(1997) identified three more third-order sequences and<br />

Sacchi et al. (1999) one more sequence above <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> seismic section shows that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s are<br />

tilted today <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> response to tectonic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version may have begun <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> time when<br />

subsidence rates slowed and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n evolved to uplift <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Pliocene. This <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version corresponds to Horváth<br />

(1995)'s late stage compressional event. Some compressional<br />

tectonic features appear above <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> flysch<br />

ridge <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> middle of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> section suggest<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g that this<br />

part of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> was also impacted by compression that<br />

occurred mostly <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> post-<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> time.<br />

4.2. Section B<br />

Section B (Fig. 6) is almost parallel to Section A, but<br />

it c<strong>ro</strong>sses more basement features. F<strong>ro</strong>m SW to NE, it<br />

beg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Algyő High and passes ac<strong>ro</strong>ss <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Makó<br />

T<strong>ro</strong>ugh, Battonya High and Békés Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. To <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NE, it<br />

reaches <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Derecske T<strong>ro</strong>ugh and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> basement<br />

rises fur<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> basement <strong>ro</strong>cks<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>clude crystall<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e metamorphic <strong>ro</strong>cks of Paleozoic/<br />

Precambrian age, Mesozoic sedimentary <strong>ro</strong>cks of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Villány Unit and metamorphic and Triassic sedimentary<br />

<strong>ro</strong>cks of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Békés Unit (Haas and Péró, 2004). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

IMU clearly represents a bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>-wide e<strong>ro</strong>sional event that<br />

stopped <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> advancement of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian–Lower<br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> delta system f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast, which had<br />

built a 2000–3000 m thick second-order highstand<br />

systems tract (see paleo-marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> marked Hajdúság-type<br />

Architecture <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 6, and for more detailed explanation<br />

see Section 4.5 and Fig. 9). This section shows that a<br />

sou<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn delta system may be located fur<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r south of<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> section although <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> rates of sediment supply to this<br />

system were not as great as f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn source.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>–Pliocene–Quaternary bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> fill is a<br />

second-order ret<strong>ro</strong>gradational cycle that <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>cludes thick<br />

lowstand sediments <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> center and sharp onlap<br />

configurations onto <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU surface. This section also<br />

p<strong>ro</strong>vides evidence of tectonic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version, primarily at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>


122 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

Fig. 9. A. Map of Lake Pannon at <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> time. Four types of architectural patterns have been def<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this study for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> stratigraphy of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> coasts that are named by us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphical names. B. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> four coastal architectural patterns at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> lake. Hajdúság-type: large<br />

aggradational-p<strong>ro</strong>gradational delta <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian–Lower <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>; a shallow p<strong>ro</strong>gradational unit below IMU; IMU is a type I unconformity with a<br />

large lowstand systems tract (LST). Jászság-type: large p<strong>ro</strong>gradational delta <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian–Lower <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>; IMU is a type II unconformity with a<br />

shelf marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> systems tract (SMST). Kiskunság-type: large aggradational–p<strong>ro</strong>gradational delta <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian–Lower <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>; IMU is a type I<br />

unconformity with a large lowstand systems tract.<br />

nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and most likely also at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Algyő<br />

High. Apparent syn-depositional compressional features<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Derecske T<strong>ro</strong>ugh show evidence of local activity<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Tortonian time.<br />

4.3. Section C<br />

Section C (Fig. 7) is perpendicular to Sections A and<br />

B. It reaches <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Bükk Unit and c<strong>ro</strong>sses <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mid-<br />

Hungarian L<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e, <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>tersects <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Szolnok and Villány units<br />

and c<strong>ro</strong>sses <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Békés Unit to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> SE. A large delta<br />

system that p<strong>ro</strong>graded f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> northwest is represented<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian–Lower <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> section, while at that<br />

time, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>re was m<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>imal sediment supply f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

sou<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> IMU onlaps <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pre-Neogene basement<br />

of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Battonya High, which means that this basement<br />

structure was emergent <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

and <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lower part of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Pliocene (see paleo-marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s<br />

marked Kiskunság-type and Battonya-type Architecture<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 7, and for more detailed explanation see Section<br />

4.5 and Fig. 9). Most of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> post-IMU lowstand deposits<br />

were derived f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> northwest and formed large<br />

lowstand p<strong>ro</strong>gradational wedges. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Battonya High<br />

became submergent later <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Pliocene and shallow<br />

water deltas started to advance bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ward on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> top of<br />

this high. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> st<strong>ro</strong>ng tilt<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g and tectonic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>


I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

123<br />

Fig. 10. A. A sea/lake-level chart applied <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> our simulations. B. Input subsidence histories at locations A and B, Section A (Fig. 11). C. Input shale<br />

supply histories at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> two ends of Section A (Fig. 11).<br />

northwest <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Section C may have started <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Late<br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> and apparently cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ued to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Quaternary.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> considerable uplift and tilt<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> northwest was<br />

p<strong>ro</strong>bably responsible for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> predom<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>antly northwestern<br />

orig<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> post-IMU deposits <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this section.<br />

4.4. Section D<br />

A detailed sequence stratigraphic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpretation was<br />

made on a shorter composite seismic p<strong>ro</strong>file (Section D<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 8). This l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e has a key position <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> that it p<strong>ro</strong>vides<br />

<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>metrical, facies and time relationships at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn<br />

end of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> lake where it connects different<br />

stratal architectures on both sides of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Neogene bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> is underla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> by Upper Cretaceous–Paleogene<br />

flysch and Lower Cretaceous formations<br />

(Fülöp et al., 1987) and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> synrift mar<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e<br />

sediments are Middle Miocene <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> age (Hámor, 1983,<br />

1985). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> dom<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ant nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern and northwestern<br />

delta systems of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian–Lower <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>


124 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

Fig. 11. Simulation outputs of Section A at 12 Ma (end of synrift phase), 5.5 Ma (prior to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU lake-level fall) and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> present.<br />

accumulated a great thickness of sediment (2–2.5 km)<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>dicat<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g an abundant sediment supply f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

uplift<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g Carpathian mounta<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> cha<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and also rapid<br />

subsidence that created accommodation for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> deltaic<br />

sediments to accumulate. Simple distance and time<br />

calculations give a relatively fast rate of advancement of<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> deltas (50–70 km/Ma), which is <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> agreement with<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir st<strong>ro</strong>ngly p<strong>ro</strong>gradational character (Tortonian–<br />

Lower <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> delta advanc<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NW of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

section of Fig. 8).<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> IMU is a p<strong>ro</strong>m<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ent surface, especially at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake where large fall<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g stage<br />

and lowstand systems tracts (Catuneanu, 2002, 2006)<br />

formed and onlapped <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> slope of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU, thus<br />

suggest<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g a considerable relative fall of lake-level (see<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sharp surface of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Intra-<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> Unconformity<br />

at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NE side of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> section of Fig. 8) <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>se fall<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

stage/lowstand systems tracts may constitute a major<br />

potential hyd<strong>ro</strong>carbon exploration play that <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>cludes<br />

bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> floor fans, slope fans and lowstand p<strong>ro</strong>grad<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

wedge sediments (bs, pw symbols <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 8). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

northwestern delta system was more p<strong>ro</strong>gradational and<br />

less aggradational before <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> event (see <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

mostly p<strong>ro</strong>gradational character of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian–Lower<br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> delta at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NW). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> relative<br />

lake-level fall did not give rise to significant accumulation<br />

of lowstand sediments, <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>stead mostly shelf<br />

marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> systems tract formed (SMST <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 8) on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>


I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

125<br />

Fig. 12. A. Input subsidence histories at locations A, B, C, and D of Section D (Fig. 13). B. Input shale supply histories at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> two ends of Section D<br />

(Fig. 13).<br />

northwest marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake, which suggests that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

relative lake-level fall was not as severe <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> northwest<br />

as <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast.<br />

On <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast side, a shallow p<strong>ro</strong>gradational unit<br />

formed directly below <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> unconformity. This<br />

unit <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>dicates a highstand systems tract that built on a<br />

surface marked by a downlapp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g configuration. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

downlap surface may be a correlative surface of an<br />

unconformity formed by a lake-level fall or it may<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>dicate a transgressive episode as well. This <st<strong>ro</strong>ng>p<strong>ro</strong>blem</st<strong>ro</strong>ng> is<br />

addressed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> next section of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> paper.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> pre-<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> deltaic advancement was <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terrupted<br />

by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> event on both sides of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake,<br />

but <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> result<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g architectural patterns are different. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> unconformity <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> northwest resembles a<br />

type II unconformity (Posamentier and Vail, 1988; Vail et<br />

al., 1991) with little resedimentation (shelf marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

systems tract, SMST <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 8), while <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> same <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

event p<strong>ro</strong>duced widespread fall<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g stage/lowstand deposits<br />

(type I unconformity sensu Posamentier and Vail,<br />

1988; Vail et al., 1991) on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern side (bs, pw<br />

symbols <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 8). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> post-<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> architecture is also<br />

different on opposite sides of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake. Little sediment<br />

accumulation occurred <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast follow<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> event, evidenced by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> fact that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

unconformity lies at shallow depth <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> that area (∼ 0.2 s<br />

TWT), whereas it is at ∼ 1.2–1.5 s TWT depth on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

northwestern side. Most of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>–Pliocene<br />

section onlaps aga<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>st <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> unconformity on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern side of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake form<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g a major secondorder<br />

lowstand systems tract (bs, pw symbols <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 8).<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> same Late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>–Pliocene unit partly onlaps <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> unconformity <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> northwest, but most of it is<br />

deposited on top of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> surface. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>refore, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>–Pliocene forms a complete sequence (<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> a<br />

shallow water sett<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g) represented by a lowstand systems<br />

tract to a highstand systems tract (SMST, LST, TST, HST<br />

symbols at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NW side of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> section <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 8) on<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

northwestern side of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lacustr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. In contrast, it<br />

rema<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s a lowstand and partially transgressive systems<br />

tract to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast (bs, pw, TST symbols at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NE side<br />

of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> section <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 8).<br />

In Fig. 8, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> top of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lowstand p<strong>ro</strong>grad<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g wedge,<br />

i.e. top of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lowstand systems tracts and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> top of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

transgressive systems tracts are <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>dicated by dashed<br />

l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>es at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NW and NE sides of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> seismic


126 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

section clearly shows that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> top surfaces of ei<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r of<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se systems tracts lie at different stratigraphic<br />

horizons, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>y cannot be connected f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NW to<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NE marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. In o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r words, apparently,<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lowstand systems tract at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NE marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (bs, pw<br />

symbols <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 8) is correlative to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> shelf marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

systems tract at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NW marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (SMST <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 8); <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

transgressive systems tract <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NW (see <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> dashed<br />

l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> top of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> transgressive systems tract and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

TST symbol <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 8) is correlative partly with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

lowstand systems tract <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NE; and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> transgressive<br />

systems tract <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NE (TST) is partly correlative to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

highstand systems tract at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> NW marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (HST symbol<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 8). Section D p<strong>ro</strong>vides an example of how<br />

different systems tracts (such as lowstand vs. highstand<br />

or shelf marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> systems tract and transgressive vs.<br />

highstand systems tract) have been formed coevally and<br />

are correlative along <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> paleo-marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> of Lake Pannon<br />

due to spatially variable subsidence/uplift rates. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

two different types of paleo-marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s are marked<br />

Jászság-type and Hajdúság-type Architecture <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 8<br />

(see next section and Fig. 9 for summary of architecture<br />

types).<br />

4.5. Identification of stratal architectural patterns<br />

Four stratal architectural patterns formed on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> paleo-<br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> lake marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s have been identified <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this study<br />

and named us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g local <st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphical names (see Fig. 3 for<br />

<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphical regions). (1) Hajdúság-type architecture,<br />

identified at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern end of Section A (Fig. 5)and<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern end of Section D (Fig. 7), is a highly<br />

p<strong>ro</strong>gradational–aggradational delta system <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian–Lower<br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>. Prior to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU, a shallow p<strong>ro</strong>gradational<br />

unit developed on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> topset of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian<br />

delta. A large, thick lowstand systems tract formed over<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU surface. (2) Jászság-type architecture, identified<br />

at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> northwestern end of Section D (Fig. 7), <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>cludes a<br />

primarily p<strong>ro</strong>gradational delta system before <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU and<br />

a shelf marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>-type systems tract follow<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU. (3)<br />

Kiskunság-type pattern, identified at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> southwestern end<br />

of Section A (Fig. 5), is similar to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hajdúság<br />

architecture except that no shallow p<strong>ro</strong>gradational unit<br />

formed prior to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU. (4) Battonya-type pattern,<br />

identified at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sou<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern end of Section C (Fig. 6), has<br />

a p<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>chout configuration <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>dicat<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g that no delta system<br />

developed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sou<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern corner of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> study area <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

Tortonian–<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> times. A summary of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se stratal<br />

stack<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g patterns is shown <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 9. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> simulation<br />

experiment <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> next section quantitatively analyzes <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

relative <strong>ro</strong>le of subsidence/uplift, lake-level changes and<br />

sediment supply <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> formation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se four types of<br />

architectural patterns associated with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

events.<br />

5. Sequence stratigraphic simulations<br />

5.1. Simulation parameters<br />

5.1.1. Paleobathymetry<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> simulation started between 20 and 17 Ma with<br />

rift<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g, formation of half-grabens and grabens. This time<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terval corresponds to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> onset of rift<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> most subbas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> system (Horváth, 1995;<br />

Hámor, 1997). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> paleobathymetry prior to 12 Ma was<br />

compared to and calibrated with Báldi et al. (2002)'s data.<br />

Although <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir study area was <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> southwest Hungary, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

paleo-water depth <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>formation for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> mid-Miocene<br />

section could be extrapolated to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> study area. Tectonic<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version was applied <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> p<strong>ro</strong>gram at 12 Ma <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

accordance with Horváth (1995)'s Sarmatian <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version<br />

that affected most of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and toge<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r with a sea-level<br />

fall b<strong>ro</strong>ught about shallow water conditions and sub-aerial<br />

emergence of former structural highs. Rapid subsidence<br />

started after 12 Ma and deep (a<strong>ro</strong>und 1000 m) conditions<br />

developed shortly after this event. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> gradually<br />

became shallower after 5.5 Ma until it filled completely.<br />

5.1.2. Subsidence<br />

Four stages to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> subsidence history can be<br />

dist<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>guished. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> first stage (up to 12 Ma), <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

subsidence was spatially variable and relatively fast<br />

locally, p<strong>ro</strong>duc<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> rifts. Subsidence was <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terrupted<br />

by a short uplift event at 12 Ma, which ended <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> rift<br />

phase. After this event, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> subsidence pattern became<br />

spatially more uniform and very fast (0.54–0.39 m/Ka)<br />

ac<strong>ro</strong>ss <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. This fast subsidence was term<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ated by<br />

tectonic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version start<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g at 5.5 Ma. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version was<br />

not uniform; it was p<strong>ro</strong>m<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ent <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Kiskunság area<br />

(southwest end of Section A) and <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hajdúság area<br />

(nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern end of Sections A and D), but no uplift<br />

occurred <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Jászság Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (northwestern side of<br />

Section D). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> subsidence pattern after this <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version<br />

was not uniform but varied greatly. Renewed subsidence<br />

was applied <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hajdúság area <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Section D f<strong>ro</strong>m<br />

3.2 Ma, no subsidence occurred <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Kiskunság area<br />

and cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>uous subsidence was used <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> simulation <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> central bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Jászság.<br />

5.1.3. Sea-level<br />

No sea/lake-level curve has been constructed specifically<br />

for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late Miocene–Pliocene <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>.<br />

Global charts, such as <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Haq et al. (1987) curve and<br />

stable isotope curves measured at ocean drill<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g


I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

127<br />

Fig. 13. Simulation outputs of Section D at 12 Ma (end of synrift phase), 5.8 Ma (prior to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU lake-level fall), 4 Ma and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> present. SMST: shelf<br />

marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> systems tract; LST: lowstand systems tract.


128 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

Fig. 14. A. Model of sedimentary fill for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian–Lower <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>, eastern Hungary. Two ma<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> sediment supply systems developed that are named <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

this study by us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphical names: Hajdúság system (H) transported sediments f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast and Jászság–Kiskunság system (Já, K) f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

northwest–west. A third system may have existed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> south. B. Model of sedimentary fill <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>–Pliocene. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> sizes of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> ar<strong>ro</strong>ws <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>dicate<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> relative abundance of sediment supply f<strong>ro</strong>m different directions: <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> largest <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>flux was <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Jászság system and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> least amount of sediment was<br />

transported by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hajdúság system after <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU event. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> edges of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast, northwest and west, except for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Jászság Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, were<br />

uplifted by tectonic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version. J: Jászság Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, BB: Békés Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, B: Battonya High, M: Makó T<strong>ro</strong>ugh.


I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

129<br />

p<strong>ro</strong>gram sites were utilized to f<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>d a match with<br />

observed unconformities (Vakarcs et al., 1994; Vakarcs,<br />

1997). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> sea-level curve used <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> our simulations was<br />

constructed to <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>clude published sea/lake-level changes,<br />

and modified where app<strong>ro</strong>priate to f<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>d a match with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

observed stratigraphy. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> sizes of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sea/lake-level<br />

falls and rises were calibrated f<strong>ro</strong>m clear matches<br />

between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> simulated stratigraphy and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sections.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> sea-level history prior to 12 Ma <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> our model<br />

followed <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> stable oxygen isotope curve of Vakarcs et<br />

al. (1998) that had an overall lower<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g trend with falls at<br />

a<strong>ro</strong>und 17, 15, 14 and 13 Ma. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> was<br />

connected to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sea dur<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g this period, thus <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> eustatic<br />

variations must have impacted its base-level and it is<br />

considered reasonable to use a global curve. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> became a shallow water sett<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g at<br />

12 Ma due to uplift and fur<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r sea-level lower<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g.<br />

Climatic cool<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g was detected by Jiménez-Moreno et al.<br />

(2005) f<strong>ro</strong>m palynological analysis <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Hungary for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

late Badenian–Sarmatian period (f<strong>ro</strong>m 14 Ma), which is<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> agreement with a eustatic sea-level fall evidenced by<br />

worldwide <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>crease <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> δ 18 O values. Follow<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g this<br />

event, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> was isolated f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> world oceans, thus<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake-level history did not necessarily follow global<br />

charts. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> ages of Vakarcs (1997)'s unconformities<br />

were applied <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> our simulation, <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>clud<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g 10.8 and<br />

9.15 Ma lake-level falls. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> next lake-level fall, which<br />

occurred <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> our model at 5.5 Ma p<strong>ro</strong>duced <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> great<br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> unconformity. After <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU event, Vakarcs<br />

(1997)'s ages were used aga<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, specifically lake-level<br />

falls at 4.4, 4.0 and 3.2 Ma.<br />

5.1.4. Sediment supply<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> simulation p<strong>ro</strong>gram <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> general deposits alternat<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

mud and sand layers, and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> depositional angles<br />

and depositional distance can be def<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> user.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> amount of sediment is represented <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> p<strong>ro</strong>gram<br />

by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> area of sediments deposited <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> section. In this<br />

study, a relatively low rate of sediment supply<br />

characterized <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> rift phase of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>,<br />

but <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n supply <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>creased substantially to form <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

p<strong>ro</strong>grad<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g–aggrad<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g deltas after 12 Ma that gradually<br />

filled <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> deltaic deposition <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>to a deep bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

ceased a<strong>ro</strong>und 5.5 Ma and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sediment supply was cut.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> sea-level fall triggered e<strong>ro</strong>sion and<br />

resedimentation that fur<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>creased <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sediment<br />

supply, eventually fill<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> shallow bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>.<br />

5.2. Simulation on Section A<br />

Section A is located <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tisza Unit (Figs. 2 and 3)of<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pre-Neogene basement. Flysch forms a ridge <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

center of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> section that is bounded by deep half-grabens.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> basement rises both to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast and southwest,<br />

thus <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> section transects three ma<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> structural doma<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s<br />

with<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tisza Unit. Fig. 10 summarizes <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> simulation<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>put parameters, <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>clud<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sea-level curve, subsidence<br />

rates at selected locations and sediment supply rates<br />

f<strong>ro</strong>m both sides of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> section. Fig. 11 shows <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

simulation output at 12 Ma (end of syn-rift phase),<br />

5.5 Ma (prior to IMU) and at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> present.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> subsidence curves reveal that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> three structural<br />

doma<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s had different subsidence histories. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> central<br />

flysch ridge experienced relatively cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>uous and slow<br />

subsidence th<strong>ro</strong>ughout its history, while <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Kiskunság and<br />

Hajdúság doma<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s were st<strong>ro</strong>ngly <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>verted after 5.5 and<br />

particularly 3.2 Ma (see Locations A and B <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 10B).<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> rates of sediment supply <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>creased enormously<br />

between 12 and 5.5 Ma, while deposition was able to<br />

keep pace with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> rapid subsidence rates and p<strong>ro</strong>duce<br />

p<strong>ro</strong>gradational delta systems <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> a deep bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> sett<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g. Both<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> rates of sedimentation and subsidence were lowered<br />

and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake-level d<strong>ro</strong>pped at 5.5 Ma when <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU<br />

formed. Note that a shallow p<strong>ro</strong>gradational unit formed on<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> topset of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian delta before <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU event. Our<br />

simulation solution was that follow<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g a short lake-level<br />

fall that p<strong>ro</strong>duced a modest lowstand systems tract, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

lake-level was stabilized at highstand, but <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sediment<br />

supply was cut and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>n gradually <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>creased aga<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> while<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake-level was stable. This change <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> sediment supply<br />

caused a retreat of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> delta and p<strong>ro</strong>duced subsequently a<br />

p<strong>ro</strong>gradational unit on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> topset of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> former delta.<br />

5.3. Simulation on Section D<br />

Section D l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ks <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Jászság Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hajdúság<br />

area, which are separated by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> same flysch ridge unit<br />

shown <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Section A. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>put values are summarized <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

Fig. 12 and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> simulation output is presented <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 13<br />

for 12, 5.8, 4 Ma and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> present.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> northwest sub-bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (Jászság Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>) subsided<br />

cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>uously until late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> time when <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

subsidence slowed and rema<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed constant (Location A<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 12A). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> subsidence accelerated f<strong>ro</strong>m about<br />

10 Ma and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> basement reached a depth of 3000 m by<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> present. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> central flysch ridge <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> section shows<br />

a similar pattern with slower subsidence rates at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

beg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>n<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g (Location B <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 12A). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> t<strong>ro</strong>ugh east of<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> central ridge (Location C <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 12A) underwent<br />

faster subsidence dur<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> synrift stage than <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r<br />

parts of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> section and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> subsidence rate became even<br />

faster <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> postrift time until <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> event.<br />

However, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> subsidence slowed down considerably <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> resumed subsidence after 5.5 Ma


130 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

Fig. 15. A. Correlation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> third-order sequences of Vakarcs (1997), Sacchi and Müller (2004) and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> two-fold division about <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU of this<br />

study. B. Representative sections <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> southwestern Hungary (Sacchi et al., 1999; Sacchi and Müller, 2004) and eastern Hungary (this study) show<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> significance of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU surface <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late Miocene–Pliocene sedimentary fill of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpreted sections are presented at<br />

different scales).<br />

never reached <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> former level characteristic of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

prior to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>. At <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern end of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

section (Hajdúság realm), subsidence stopped completely,<br />

uplift took place and subsidence did not resume<br />

until about 2.6 Ma (Location D <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 12A). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version affected all sub-bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s along <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> section<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>dicated by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> slow<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g down of subsidence rates<br />

everywhere, though only <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern part of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

section shows evidence of uplift <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> our simulation.<br />

5.4. Simulation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> event<br />

To p<strong>ro</strong>duce <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> observed <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> unconformity <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> simulations, a specific lake-level fall was applied.


I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

131<br />

However, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake-level fall alone was <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>sufficient to<br />

p<strong>ro</strong>duce <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> architectural patterns observed on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

seismic section. Add<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g differential subsidence between<br />

segments of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> simulated sections enabled <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> achievement<br />

of a match between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> observations and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

simulation output. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> case of Section D, without<br />

differential subsidence and <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hajdúság<br />

segment, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> simulation was not able to p<strong>ro</strong>duce <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

shelf marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> systems tract <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> northwest (Jászság) or<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> coeval, large lowstand systems tract <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast<br />

(Hajdúság). On <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r hand, differential subsidence<br />

alone, without lake-level fall, could not p<strong>ro</strong>duce <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>-wide unconformity representative of this time. As<br />

a result, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> stratigraphic simulation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

unconformity and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> related stratal architecture <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> were found to be <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> comb<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed<br />

p<strong>ro</strong>duct of a lake-level fall and tectonic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version.<br />

Accord<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g to our simulation, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> relative lake-level fall<br />

was a<strong>ro</strong>und 200 m <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hajdúság and Kiskunság<br />

systems and less than 100 m <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Jászság. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> virtually<br />

cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>uous subsidence <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Jászság did not allow <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

formation of a significantly large lowstand systems<br />

tract. S<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ce <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hajdúság system lasted<br />

about 3 million years and more <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Kiskunság, it<br />

facilitated <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> deposition of a considerable amount of<br />

resedimented material onto <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> slopes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> form<br />

of large lowstand systems tracts <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> those areas.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> simulation of a tectonic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version between about<br />

5.5–2.6 Ma or longer seems to be <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> agreement with<br />

Horváth and Cloet<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gh (1996) who p<strong>ro</strong>posed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>traplate<br />

stress changes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Sacchi et al. (1999)<br />

also correlated a relative lake-level fall at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Miocene–<br />

Pliocene boundary <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> western Hungary, and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir<br />

explanation was that a regional tilt<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> western<br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> fill occurred at that time, mark<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g a<br />

regional tectonic change. Fodor et al. (1999) reconstructed<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Cenozoic stress field evolution <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

system and p<strong>ro</strong>posed that a compressional stress field had<br />

p<strong>ro</strong>pagated th<strong>ro</strong>ugh <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> latest<br />

Miocene onwards, which also seems to be <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> agreement<br />

with our simulation results. Bada et al. (2001)'s f<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ite<br />

element models analyzed <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> possible causes of compression<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> extensional bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s and po<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ted out that topography-<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>duced<br />

gravitational forces f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sur<strong>ro</strong>und<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

mounta<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> belt may have contributed to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> development of<br />

compressional deformation <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>.<br />

Tomljenović and Csontos (2001) expla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>versions<br />

by a northward and counterclockwise motion of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Adriatic plate that <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>duced transpressive deformation <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terior of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> event <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> shows<br />

that variations <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> tectonic subsidence/uplift along a<br />

bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>'s marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> may overpr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>t <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> effect of water-level<br />

changes and can lead to simultaneous formation of<br />

various architectural patterns. O<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r authors also<br />

reported similar observations <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s, for<br />

example, Gawthorpe et al. (1994) observed coeval<br />

type I and type II unconformities <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> half-grabens.<br />

6. Results of seismic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpretations and<br />

stratigraphic simulations: stratigraphic model<br />

6.1. Model of bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> fill<br />

Lake Pannon had formed a large bay <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> territory<br />

of Hungary by <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> time (Fig. 14) as it gradually<br />

filled with sediment. Two large deltaic systems formed<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian, one advanc<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast and<br />

ano<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> northwest and west. We use <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> same<br />

<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphical names <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this study to designate <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se<br />

sediment sources as have been used to name architectural<br />

patterns. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern system is called<br />

Hajdúság and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> architectural pattern formed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this<br />

system is <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hajdúság-type architecture. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> northwest-western<br />

delta system is called Jászság–Kiskunság<br />

system <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this paper. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> event generated a<br />

major reorganization of sediment supply patterns: <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Hajdúság source became significantly r<st<strong>ro</strong>ng>edu</st<strong>ro</strong>ng>ced and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

bulk of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sediments were transported by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Jászság<br />

and partly Kiskunság sources (Fig. 14B) to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

Jászság and Kiskunság supply systems appear dist<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ct<br />

follow<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> event.<br />

F<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> onward, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s<br />

were exposed to tectonic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hajdúság area,<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> north of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Jászság and <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Kiskunság. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> uplift<br />

most likely cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ued to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Quaternary north of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Jászság and at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Kiskunság area. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Jászság Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

and o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r deep portions of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake subsided cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>uously,<br />

thus a ra<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r vary<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g subsidence/uplift pattern<br />

developed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> follow<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>. Not only <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> pre-Neogene basement units<br />

but also portions of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se units experienced substantially<br />

different subsidence histories. Some grabens, such as<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Makó T<strong>ro</strong>ugh, Békés Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> or Jászság Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

subsided to depths of several km, while ridges between<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se grabens subsided relatively slowly follow<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Sarmatian compression of Horváth (1995). More data<br />

cover<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> region sur<strong>ro</strong>und<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

would be necessary to identify <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphical areas of<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version more accurately.<br />

Fig. 9 summarizes <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> vary<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g architectural patterns<br />

along <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> lake. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Hajdúságtype<br />

architecture was p<strong>ro</strong>duced by rapid subsidence<br />

dur<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian–Lower <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>, a large lake-


Fig. 16. Seismic section and well logs (see Fig. 3 for location) show <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> locations of samples where Galeacysta etrusca was discovered (Sütő-Szentai, 2006) at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU surface. Ge: Galeacysta etrusca<br />

occurrences with depth <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> m. Mi: Middle Miocene synrift unit.<br />

132 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140


I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

133<br />

Fig. 17. Correlation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> with occurrences of Galeacysta etrusca <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Apenn<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e, Umb<strong>ro</strong>-Marche (Bert<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>i, 2006) and<br />

Dacic Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s (Clauzon et al., 2005). S<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ce Galeacysta etrusca was found <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU and not above <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this study (Fig. 16) (Sütő-Szentai,<br />

2006), its age is likely late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>, however ages of stratigraphic horizons are uncerta<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> because of lack of accurate age<br />

data.<br />

level fall <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> and coeval cessation of bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

subsidence and subsequent renewed but slow subsidence<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late Pliocene. Prior to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU event, a<br />

shallow p<strong>ro</strong>gradational unit formed on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> topset of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Tortonian delta system, which was p<strong>ro</strong>duced by a<br />

sudden decrease and subsequent <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>crease <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> sediment<br />

supply accord<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g to our model<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g results. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

lake-level fall coupled with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> tectonic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version<br />

made <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU a type I unconformity <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this architecture<br />

where a considerable mass of lowstand systems tract<br />

sediment was accumulated.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Jászság-type architecture has two ma<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> components,<br />

a predom<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>antly p<strong>ro</strong>gradational delta system <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian–Lower <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> and a shelf marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

systems tract complex above <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU, thus <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU is a<br />

type II unconformity <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this architecture. A high rate of<br />

sediment supply was responsible for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> primarily<br />

p<strong>ro</strong>gradational character of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian pattern.<br />

Cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>uous subsidence without a major <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terruption <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> caused accumulation of shelf marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

systems tracts <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>stead of a lowstand systems tract<br />

follow<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> lake-level fall.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> IMU has <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> character of a type I unconformity<br />

aga<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Kiskunság-type architecture because of<br />

large-scale uplift <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this region that accentuated <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

impact of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> lake-level fall. Large lowstand<br />

systems tract deposits accumulated on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU surface,<br />

onlapp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g its slope. No shallow p<strong>ro</strong>gradational unit<br />

formed below <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this pattern, which is unique<br />

to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hajdúság-type architecture.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Battonya-type architecture lacks any major delta<br />

system <st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>metry as this island must have been far f<strong>ro</strong>m<br />

sediment sources and it was not large enough to become<br />

a major sediment source. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> IMU p<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ches out onto <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

basement high. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> island subsided <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late Pliocene<br />

and may have been uplifted <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Quaternary.<br />

6.2. Stratigraphic stages<br />

Two detailed regional correlations of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Late<br />

Miocene–Pliocene strata have been constructed f<strong>ro</strong>m<br />

seismic data, one by Vakarcs (1997) <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> eastern,<br />

northwestern and southwestern Hungary and ano<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r<br />

by Sacchi et al. (1999) and Sacchi and Müller (2004) <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

western and southwestern Hungary. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> two sets of<br />

sequences identified by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se authors are presented and<br />

matched to each o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 15. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> IMU surface was<br />

clearly recognized by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se authors and was named Pa-4<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Vakarcs (1997) and Pan-4 <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Sacchi and Müller<br />

(2004); however <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> estimated age of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> same physical<br />

surface shows a discrepancy between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se studies. This<br />

difference <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> age estimation, although it appears<br />

substantial, is understandable consider<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>accuracy<br />

of seismic correlation of paleomagnetic ages (Juhász<br />

et al., 2006). Both studies identified four sequences<br />

with<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> our Tortonian–Lower <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> unit. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> age<br />

differences may arise, <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> addition to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>accuracy of<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> possible age determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ation method, f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> fact<br />

that a third- or higher order maximum flood<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g surface<br />

or unconformity <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> western Hungary may become a<br />

conformable surface <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> eastern Hungary and vice versa<br />

because of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> different subsidence and sediment supply<br />

histories (Csato and Kendall, 2002), thus correlation of<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se surfaces ac<strong>ro</strong>ss <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> country may be difficult to<br />

carry out.<br />

Our p<strong>ro</strong>posal <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this study is to use <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU surface<br />

as a basis for a bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>-wide subdivision of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> succession<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> rationale beh<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>d this


134 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

p<strong>ro</strong>posal is that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU is recognizable and correlatable<br />

everywhere where it formed and it represents <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> s<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gle<br />

most dramatic event <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> that<br />

completely changed <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> character of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sedimentation.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> conditions changed abruptly f<strong>ro</strong>m a deep-water,<br />

rapidly subsid<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> with <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>tense deltaic deposition<br />

to a shallow<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g, ret<strong>ro</strong>gradational system with extensive<br />

resedimentation follow<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g IMU e<strong>ro</strong>sion. For nam<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

two stages separated by IMU, we prefer to us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

global stage names (Tortonian–Lower <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> and<br />

Late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>–Pliocene) because <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se names allow<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se events to be placed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> a regional context more<br />

easily. However it is understood that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> available dat<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

methods cannot p<strong>ro</strong>vide an accurate age determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ation<br />

for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU, thus us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g local stage names is reasonable.<br />

In this case, our preference is to use Lőren<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>y's twofold<br />

stage names, <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> and Levantian. This<br />

possibility was considered by Sacchi et al. (1997) and<br />

it was <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir possible solution #4 to reconcile <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>p<strong>ro</strong>blem</st<strong>ro</strong>ng>s of local stage names <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> three-stage nomenclature p<strong>ro</strong>posed by Sacchi et al.<br />

(1997, 1999) and Sacchi and Müller (2004) <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>clud<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng>, Transdanubian and Pontian stages for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

pre-IMU strata is reasonable, but <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>-wide<br />

correlation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bound<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g surfaces of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se stages<br />

has not yet been achieved.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> IMU event has significant exploration implications.<br />

Van Balen et al. (1999) modeled bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> scale fluid<br />

flow <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and found that overpressure<br />

built up between 6.3 and 5.5 Ma, a period match<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> event. This result may be expla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> rapid<br />

and large sediment <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>flux and resedimentation enter<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> northwest and west (Late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>–<br />

Pliocene sequence of this study) follow<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU event<br />

(Fig. 14). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> rapid accumulation of a large mass of<br />

sediments generated overpressure. Most of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> hyd<strong>ro</strong>carbon<br />

accumulations <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> central parts of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

accumulated <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> turbiditic sandstones that were deposited<br />

above <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> unconformity (Csato, 1989, 1992).<br />

7. Galeacysta etrusca and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> dilemma of<br />

paleo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphic connections<br />

Sütő-Szentai (1994, 2000, 2002), Magyar et al.<br />

(1999) and Geary et al. (2000) published d<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>oflagellate<br />

zonations of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late Miocene–Pliocene <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng><br />

Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> fill. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> ages of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se zones were determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed<br />

f<strong>ro</strong>m available paleomagnetic data, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>refore <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir<br />

accuracy is uncerta<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (see Section 6.2). Never<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>less,<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>y can be used for age considerations along with<br />

ostracod zones <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> non-mar<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (e.g.<br />

Magyar et al., 2001; Szu<strong>ro</strong>mi-Korecz et al., 2004). One<br />

of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> authors of this study collected core samples f<strong>ro</strong>m<br />

exploratory wells <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> eastern <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and<br />

d<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>oflagellate assemblages were identified by Sütő-<br />

Szentai (2006) <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> those samples. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> result was <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

discovery of G. etrusca <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> cores taken f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU<br />

zone as demonstrated <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 16. It is important to note<br />

Fig. 18. A tentative correlation for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean, Eastern Paratethys and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. TG5-21 are <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terglacial<br />

events (with high sea-level) of Shackleton et al. (1995) f<strong>ro</strong>m oxygen isotopes.


I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

135<br />

that s<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ce only a few core samples, each a few m long,<br />

were drilled <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se hyd<strong>ro</strong>carbon exploration wells, no<br />

cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>uous sampl<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g was possible. Thus, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> depths of<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> top and bottom of biostratigraphic zones (def<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed by<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> appearance and disappearance of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> G. etrusca)<br />

could not always be determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed accurately. However, it<br />

is certa<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> core samples <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Well-1 and-3 of<br />

Fig. 16 were taken f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU unconformity (<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> case<br />

of Well-3, a core was obta<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed f<strong>ro</strong>m immediately below<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU and ano<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r precisely at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU), <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>refore <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

IMU is <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> etrusca zone (no core samples were drilled<br />

a<strong>ro</strong>und <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU zone <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r wells shown <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

Fig. 16). G. etrusca existed before <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU as <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lower<br />

core sample of Well-3 and palynologic data <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> o<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r<br />

wells (Sütő-Szentai, 2006) p<strong>ro</strong>ve. However, no G.<br />

etrusca has been reported f<strong>ro</strong>m cores taken above <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

IMU <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> area where <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU can be identified (Sütő-<br />

Szentai, 2006), which suggests that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> G. etrusca<br />

disappeared after <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU events, by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> early Pliocene.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>refore, it appears that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU unconformity<br />

matches <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> top of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> etrusca zone.<br />

G. etrusca has been found <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean<br />

(Bert<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>i et al., 1995; Bert<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>i, 2006)<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>strata5.33–5.35 Ma<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> age, as well as <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Dacic Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (Clauzon et al., 2005),<br />

where its appearance was dated at 5.33 to 5.52 Ma, all <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> (Fig. 17). If <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> disappearance of G.<br />

etrusca may be correlated ac<strong>ro</strong>ss <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Paratethys and<br />

Mediterranean, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> age of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

may also correlate with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> 5.33–5.52 Ma ages, but <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> 5–<br />

6 Ma age range used <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this study is most likely correct.<br />

Por and Dimentman (1985) believed f<strong>ro</strong>m mollusk<br />

records that a Paratethyan fresh water <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>fluence reached<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Central Mediterranean <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> latest <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

presence of G. etrusca <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and<br />

sur<strong>ro</strong>und<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g areas may also suggest a paleo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphic<br />

connection between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean, Central and<br />

Eastern Paratethys <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> time (Sp<strong>ro</strong>vieri<br />

et al., 2003; Clauzon et al., 2005; Bert<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>i, 2006).<br />

However, it is not necessarily a p<strong>ro</strong>of for direct mar<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e<br />

connections (Benson and Rakic-El Bied, 1991; Rouchy<br />

et al., 2001); it may ra<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>dicate freshen<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g of water <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Ostracod faunas also show a<br />

st<strong>ro</strong>ng Paratethyan <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>fluence <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Italy <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> latest<br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> (Gliozzi, 1999); <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> discovery of Cyprideis<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean suggested a Paratethyan water<br />

connection (Benson, 1973; Ryan, 1973). Paratethyan<br />

leptocy<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rids, such as Cyprideis pannonica (Méhes)<br />

and Loxoconcha kochi (Méhes) were found <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

formations <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Spa<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and Italy (Gliozzi et al., 2005),<br />

and <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (Szu<strong>ro</strong>mi-Korecz, 1992).<br />

In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Eastern Paratethys, Clauzon et al. (1996)<br />

p<strong>ro</strong>vided evidence for water exchanges between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Dacic Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> mar<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e connection was facilitated by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> open<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g of<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Marmara Sea <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> west Anatolia (Çağatay et al., 2006;<br />

Flecker and Ellam, 2006). This region moved westward<br />

and its western part underwent extension due to <strong>ro</strong>llback<br />

effects of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hellenic convergent zone (Mart et al.,<br />

2004). However, Vasiliev et al. (2004) did not f<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>d a<br />

good correlation <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> paleo-envi<strong>ro</strong>nments between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

South Carpathian foredeep and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean. A<br />

tentative <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> correlation between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng><br />

Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Dacic Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean is<br />

p<strong>ro</strong>posed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Fig. 18.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Intra-<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> Unconformity <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng><br />

Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> may have formed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> association with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> tectonic<br />

reorganization that p<strong>ro</strong>duced extensive e<strong>ro</strong>sional surfaces<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> time (e.g. Lofi<br />

et al., 2005) and led to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis itself. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis most likely did not form as a consequence<br />

of a eustatic sea-level fall but as a result of paleo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphic<br />

isolation f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Atlantic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> response to plate<br />

tectonic motions (Vidal et al., 2002; Roveri et al., 2001;<br />

Warny and Wrenn, 2002; Roveri et al., 2003; Warny<br />

et al., 2003; Krijgsman et al., 2004; Clauzon et al., 2005;<br />

Jolivet et al., 2006). In fact, eustatic rises occurred<br />

several times dur<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> and nei<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> onset<br />

nor <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> end of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis corresponds <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> time with<br />

global sea-level changes (Vidal et al., 2002). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>refore,<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, if l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ked to tectonism<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean, was not a eustatically cont<strong>ro</strong>lled<br />

event ei<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> drastic lower<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g of sea-level <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Mediterranean most likely d<strong>ro</strong>ve down <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng><br />

lake-level th<strong>ro</strong>ugh hyd<strong>ro</strong>logical connections. A similar<br />

stratigraphic horizon to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> IMU was also<br />

discovered <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Black Sea. Gillet et al. (2003) p<strong>ro</strong>ved<br />

that this horizon was connected to e<strong>ro</strong>sional surfaces<br />

toward <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>al slopes of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Black Sea, formed<br />

dur<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis. It is plausible that desiccation<br />

of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>duced sea/lake-level falls <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

sur<strong>ro</strong>und<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s such as <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, Dacic<br />

Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and Black Sea and, on some occasions, sea-level<br />

rises also led to some water exchanges between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se<br />

areas (Clauzon et al., 2005). Although <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late<br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> lake-level drawdown fundamentally shaped<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sedimentary history of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> size<br />

of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> lake-level fall and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> scale of e<strong>ro</strong>sion was much<br />

less than <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean (Cita and Ryan, 1978).<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> did not desiccate and no evaporites<br />

precipitated. Jolivet et al. (2006)'s reconstructions<br />

show that renewed north–south compression started <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>, eventually lead<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> closure of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Straight of Gibraltar. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>versions of this time (discussed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this paper) may


136 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

have been part of this major tectonic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>teraction between<br />

Africa and Eu<strong>ro</strong>pe.<br />

8. Summary and conclusions<br />

This paper demonstrates that quantitative simulations<br />

of stratigraphic architectural patterns based on<br />

sequence stratigraphic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpretations are a powerful<br />

tool for determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g changes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> base-level, sediment<br />

supply and subsidence/uplift rates, and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir relative<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>fluences on stratal architecture. Model<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g is especially<br />

useful <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> active extensional sett<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs where <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>se<br />

parameters vary not only <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> time but also <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> space for<br />

specific periods.<br />

A p<strong>ro</strong>m<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ent unconformity was recognized on<br />

seismic sections, which is a regional, st<strong>ro</strong>ngly developed<br />

e<strong>ro</strong>sional surface. It formed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>, and <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this<br />

study is called <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Intra-<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> Unconformity<br />

(IMU). <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> events that p<strong>ro</strong>duced IMU caused <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> s<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gle<br />

most p<strong>ro</strong>found change <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Late Miocene–Quaternary<br />

history of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Rapid subsidence and<br />

thick deltaic depositions changed abruptly to ret<strong>ro</strong>gradational<br />

sediment accumulation. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>refore, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU<br />

is p<strong>ro</strong>posed to def<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e stratigraphic stages of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Tortonian–Lower <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> or <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng><br />

and Late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>–Pliocene or Levantian units<br />

or stages are used <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this work.<br />

Our experience has shown that <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> ages of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Late<br />

Miocene–Pliocene stratigraphic surfaces <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> eastern<br />

Hungary cannot be determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed with an accuracy of<br />

0.01 or even 0.1 Ma <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> spite of earlier efforts (Juhász<br />

et al., 2006); <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> resolution is much lower because of a<br />

lack of sufficient age data. Our estimation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> age of<br />

IMU is that it falls a<strong>ro</strong>und a range of 5–6 Ma based on<br />

our seismic correlations with paleomagnetic polarity<br />

zones f<strong>ro</strong>m core holes. This estimation was tuned by<br />

stratigraphic simulations and also seems to be supported<br />

by a match with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> top part of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> G. etrusca zone. A<br />

more accurate age determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ation will require a new deep<br />

core hole penetrat<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU and an ast<strong>ro</strong>nomically<br />

calibrated ch<strong>ro</strong>nological analysis. Never<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>less, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

IMU is <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> age and most likely formed <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

association with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> tectonic and paleo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphic<br />

events that took place <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis.<br />

Lake Pannon formed a northward nar<strong>ro</strong>w<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g bay <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> territory of eastern Hungary <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian–Lower<br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> and was filled by two major delta systems:<br />

one sourced f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast (called Hajdúság system<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this paper) and ano<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> northwest–west<br />

(called Jászság–Kiskunság sources). A major lake-level<br />

fall occurred <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> that p<strong>ro</strong>duced <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

IMU surface, and tectonic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version started at about <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

same time. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>se two ma<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> factors toge<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r p<strong>ro</strong>foundly<br />

altered <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> fill p<strong>ro</strong>cesses. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Hajdúság delta<br />

system became less significant and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> major sediment<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>flux shifted fur<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r northwestward to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> areas of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Jászság and Kiskunság.<br />

Four types of stratal architecture of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> lake<br />

marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> were identified on seismic data and were modeled<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> stratigraphic simulations. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Hajdúság architecture<br />

was generated by rapid subsidence <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian,<br />

dim<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ish<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g subsidence and uplift <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

and Pliocene and renewed, slow subsidence <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late<br />

Pliocene. An abrupt decrease and subsequent <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>crease <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

sediment supply was also determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed by <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> simulations<br />

prior to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU event. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> IMU is a type I unconformity<br />

and is associated with large quantities of lowstand<br />

systems tract sediments <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> this architecture. Rapid<br />

Tortonian and slightly slower late Miocene–Pliocene<br />

subsidence, and a large sediment supply, formed <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Jászság architecture. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> IMU is a type II unconformity<br />

with shelf marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> systems tracts <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Jászság. In <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Kiskunság architecture, tectonic uplift played a major <strong>ro</strong>le<br />

and magnified <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> impact of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> lake-level fall.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> IMU is a type I unconformity. No delta systems<br />

developed at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Battonya area <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> time,<br />

ra<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>r, <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Battonya High was an island and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> IMU<br />

surface onlapped onto <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> flank of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> high.<br />

Acknowledgements<br />

Keyu Liu gene<strong>ro</strong>usly helped with <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Sedpak<br />

outputs. We are grateful for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> contributions of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

reviewers and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> tho<strong>ro</strong>ugh and very helpful edit<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g of<br />

Christopher Field<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g.<br />

References<br />

Bada, G., Horváth, F., Cloet<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gh, S., Coblentz, D.D., 2001. Role of<br />

topography-<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>duced gravitational stresses <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>version: <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

case study of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Tectonics 20, 343–363.<br />

Báldi, K., Benkovics, L., Sztanó, O., 2002. Badenian (Middle<br />

Miocene) bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> development <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> SW Hungary: subsidence history<br />

based on quantitative paleobathymetry of foram<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ifera. International<br />

Journal of Earth Sciences 91, 491–504.<br />

Baldw<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, B., Butler, C.O., 1985. Compaction curves. American<br />

Association of Pet<strong>ro</strong>leum Geologists Bullet<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> 69, 622–626.<br />

Benson, R.H., 1973. Psych<strong>ro</strong>spheric and cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ental Ostracoda f<strong>ro</strong>m<br />

ancient sediments <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> floor of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean. Initial Reports<br />

of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Deep Sea Drill<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g P<strong>ro</strong>ject 13, Part 2. Texas A&M University,<br />

Ocean Drill<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g P<strong>ro</strong>gram, College Station, TX, pp. 2002–2008.<br />

Benson, R.H., Rakic-El Bied, K., 1991. Biodynamics, sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e giants and<br />

late Miocene catast<strong>ro</strong>phism. Carbonates and Evaporites 6, 127–168.<br />

Bérczi, I., 1988. Prelim<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ary sedimentological <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>vestigations of a<br />

Neogene depression. In: Royden, L.H., Horváth, F. (Eds.), <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>: A Study <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Evolution. American<br />

Association of Pet<strong>ro</strong>leum Geologists Memoir, vol. 45. American


I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

137<br />

Association of Pet<strong>ro</strong>leum Geologists, Tulsa, Oklahoma, USA,<br />

pp. 107–116.<br />

Bérczi, I., Philips, R.L., 1985. P<strong>ro</strong>cesses and depositional envi<strong>ro</strong>nments<br />

with<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Neogene deltaic-lacustr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e sediments, <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>,<br />

sou<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ast Hungary. Eötvös L. Geophysical Institute, Geophysical<br />

Transactions Special Edition, vol. 31. Eötvös Lóránd Geophysical<br />

Institute, Budapest, Hungary, pp. 55–74.<br />

Berggren, W.A., Kent, D.V., Swisher III, C.C., Aubry, M.-P., 1995. A<br />

revised Cenozoic <st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>ch<strong>ro</strong>nology and ch<strong>ro</strong>nostratigraphy. In:<br />

Berggren, W.A., Kent, D.V., Audry, M.-P., Hardenbol, J. (Eds.),<br />

Geoch<strong>ro</strong>nology, Time Scales and Global Stratigraphic Correlation.<br />

SEPM (Society for Sedimentary Geology) Special Publication,<br />

vol. 54. Society for Sedimentary Geology, Tulsa, Oklahoma, USA,<br />

pp. 129–212.<br />

Bert<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>i, A., 2006. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn Apenn<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>es palynological record as a<br />

contribute for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> reconstruction of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> palaeoenvi<strong>ro</strong>nments.<br />

Sedimentary Geology 188–189, 235–258.<br />

Bert<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>i, A., Corrad<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>i, D., Suc, J.-P., 1995. On Galeacysta etrusca and<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> connections between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Paratethys.<br />

Abstracts, Xth R.C.M.N.S. Congress, Bucharest, Romania, p. 141.<br />

Buck, W.R., 1991. Modes of cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ental lithospheric extension.<br />

Journal of Geophysical Research 96, 163–168.<br />

Çağatay, M.N., Görür, N., Flecker, R., Sakınç, M., Tünoğlu, C., Ellam,<br />

R., Krijgsman, W., V<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>cent, S., Dikbaş, A., 2006. Paratethyan–<br />

Mediterranean connectivity <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Sea of Marmara region (NW<br />

Turkey) dur<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>. Sedimentary Geology 188–189,<br />

171–187.<br />

Catuneanu, O., 2002. Sequence stratigraphy of clastic systems: concepts,<br />

merits, and pitfalls. Journal of African Earth Sciences 35, 1–43.<br />

Catuneanu, O., 2006. Pr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ciples of Sequence Stratigraphy. Elsevier,<br />

Amsterdam.<br />

Cita, M.B., 1982. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean: a<br />

review. In: Berckhemer, H., Hsü, K.J. (Eds.), Alp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e-Mediterranean<br />

Geodynamics. Geodynamic Series, vol. 7. American Geophisical<br />

Union, Wash<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gton, DC, pp. 113–140.<br />

Cita, M.B., 1991. Development of a scientific cont<strong>ro</strong>versy. In: Mueller,<br />

D.V., McKenzie, J.A., Weissert, H. (Eds.), Cont<strong>ro</strong>versies <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Modern<br />

Geology; Evolution of Geological <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>ories <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Sedimentology, Earth<br />

History and Tectonics. Academic Press, London, UK, pp. 13–23.<br />

Cita, M.B., Ryan, W.B.F., 1978. <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> e<strong>ro</strong>sional surfaces <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Mediterranean. Mar<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e Geology 27, 3–4.<br />

Clauzon, G., Suc-J.-P., Gautier, F., Berger, F., Loutre, A., 1996.<br />

Alternate <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpretation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis: cont<strong>ro</strong>versy<br />

resolved? Geology 24, 363–366.<br />

Clauzon,G.,Suc,J.-P.,Popescu,S.-M.,Marunteanu,M.,Rub<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>o,J.-L.,<br />

Mar<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>escu, F., Mel<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>tes, M.C., 2005. Influence of Mediterranean sealevel<br />

changes on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Dacic Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (Eastern Paratethys) dur<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> late<br />

Neogene: <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean Lago Mare facies deciphered. Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

Research 17, 437–462.<br />

Cloet<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gh, S., 1988. Intraplate stresses: a new element <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

analysis. In: Kle<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>spehn, K.L., Paola, C. (Eds.), New Perspectives<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Analysis. Spr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ger, New York, NY, pp. 205–230.<br />

Csato, I., 1989. <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> sedimentological facies relations of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

hyd<strong>ro</strong>carbon accumulations with<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> central part of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng><br />

bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Abstracts, 10th IAS Regional Meet<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g on Sedimentology.<br />

Hungarian Geological Society, Budapest, Hungary, pp. 60–62.<br />

Csato, I., 1992. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> water-level change and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> connected<br />

stratigraphic traps <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, Hungary. Technical<br />

P<strong>ro</strong>gramme and Abstracts of Papers, Eu<strong>ro</strong>pean Association of<br />

Pet<strong>ro</strong>leum Geoscientists and Eng<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>eers, 4th Conference and Technical<br />

Exhibition. Eu<strong>ro</strong>pean Association of Pet<strong>ro</strong>leum Geoscientists and<br />

Eng<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>eers, Houten, Ne<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rlands, p. 110.<br />

Csato, I., 1993. Neogene sequences <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, Hungary.<br />

Tectonophysics 226, 377–400.<br />

Csato, I., 1995. Sequence stratigraphic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpretations and model<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

lacustr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e rift bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s: <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Sou<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn Dead Sea bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, Israel and<br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, Hungary. PhD Dissertation, Columbia, SC.<br />

Csato, I., Kendall, C.G.StC., 2002. Model<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g of stratigraphic<br />

architectural patterns <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> extensional sett<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs — towards a<br />

conceptual model. Computers & Geosciences 28, 351–356.<br />

Csontos, L., Nagyma<strong>ro</strong>sy, A., 1998. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Mid-Hungarian l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e: a zone<br />

of repeated tectonic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>versions. Tectonophysics 297, 51–71.<br />

Csontos, L., Nagyma<strong>ro</strong>sy, A., Horváth, F., Kovác, M., 1992. Tertiary<br />

evolution of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Intra-Carpathian area: a model. Tectonophysics<br />

208, 221–241.<br />

Den Bezemer, T., Kooi, H., Kranenborg, J., Cloet<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gh, S., 2000.<br />

Model<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g gra<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>-size distributions. A comparison of two models<br />

and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir numerical solution. Tectonophysics 320, 347–373.<br />

Elston, D.P., Lantos, M., Hámor, T., 1994. High resolution polarity<br />

records and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> stratigraphic and magnetostratigraphic correlation<br />

of Late Miocene and Pliocene (<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> s. l.) deposits of<br />

Hungary. In: Teleki, P.G., Mattick, R.E., Kókay, J. (Eds.), Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

Analysis <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Pet<strong>ro</strong>leum Exploration. A Case Study f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Békés<br />

Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, Hungary. Kluwer Academic Publisher, Dordrecht, Ne<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rlands,<br />

pp. 111–142.<br />

Flecker, R., Ellam, R.M., 2006. Identify<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g Late Miocene episodes of<br />

connection and isolation <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean–Paratethyan realm<br />

us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g Sr isotopes. Sedimentary Geology 188–189, 189–203.<br />

Fodor, L., Csontos, L., Bada, G., Györfi, I., Benkovics, L., 1999.<br />

Tertiary tectonic evolution of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> system and<br />

neighbour<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g o<strong>ro</strong>gens: a new syn<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>sis of paleostress data. In:<br />

Durand, B., Jolivet, L., Horváth, F., Séranne, M. (Eds.), <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

Mediterranean Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s: Tertiary Extension with<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Alp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e<br />

O<strong>ro</strong>gen. Geol. Soc. Spec. Pub., vol. 156. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Geological Society,<br />

London, United K<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gdom, pp. 295–334.<br />

Fülöp, J., Berzsányszky, K., Haas, J., 1987. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> new map of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

basement of Hungary. Acta Geologica Hungarica 30, 3–20.<br />

Gajdos, I., 1989. Adatok az alföldi pannoniai s.l. fejlődéstörténetéhez<br />

es ennek gyakorlati vonatkozásai a szénhid<strong>ro</strong>gén-kutatásban.<br />

Földtani Kutatás 32, 8–21 (<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Hungarian with English summary).<br />

Gawthorpe, R.L., Fraser, A.J., Collier, A.J., 1994. Sequence stratigraphy<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> active extensional bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s: implications for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>terpretation of<br />

ancient bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>-fills. Mar<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e and Pet<strong>ro</strong>leum Geology 11, 642–658.<br />

Geary, D.H., Magyar, I., Müller, P., 2000. Ancient Lake Pannon and its<br />

endemic molluscan fauna (Central Eu<strong>ro</strong>pe; Mio-Pliocene). In:<br />

Rossiter, A., Kawanabe, H. (Eds.), Advances <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Ecological<br />

Research, vol. 31. Academic Press, London, UK, pp. 463–482.<br />

Gillet, H., Lericolais, G., Rehault, J.P., D<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>u, C., 2003. La stratigraphie<br />

oligo-miocène et la surface d'é<strong>ro</strong>sion mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ienne en mer Noire,<br />

stratigraphie sismique haute resolution. Comptes Rendus Geoscience<br />

335, 907–916 (<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> French with English abstract and abridged<br />

English version).<br />

Gliozzi, E., 1999. A late <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> brackish water ostracod fauna of<br />

Paratethyan aspect f<strong>ro</strong>m Le Vicenne Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (Abruzzi, central<br />

Apenn<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>es, Italy). Palaeo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphy, Palaeoclimatology, Palaeoecology<br />

151, 191–208.<br />

Gliozzi, E., Rodriguez-Laza<strong>ro</strong>, J., Nachite, D., Mart<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>-Rubio, M.,<br />

Bekkali, R., 2005. An overview of Neogene brackish leptocy<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rids<br />

f<strong>ro</strong>m Italy and Spa<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>: bioch<strong>ro</strong>nological and palaeo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphical<br />

implications. Palaeo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphy, Palaeoclimatology, Palaeoecology<br />

225, 283–301.<br />

G<strong>ro</strong>w, J.A., Mattick, R.E., Bérczi-Makk, A., Péró, C.S., Hajdú, D.,<br />

Pogácsás, G.Y., Várnai, P., Varga, E., 1994. Structure of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Békés<br />

bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ferred f<strong>ro</strong>m seismic reflection, well and gravity data. In:


138 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

Teleki, P.G., Mattick, R.E., Kókai, J. (Eds.), Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Analysis <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

Pet<strong>ro</strong>leum Exploration. Kluwer Academic Publishers, Dordrecht,<br />

Ne<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rlands, pp. 1–38.<br />

Haas, J., Péró, C.S., 2004. Mesozoic evolution of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tisza Mega-unit.<br />

International Journal of Earth Sciences 93, 297–313.<br />

Haas, J., Mioè, P., Pamiè, J., Tomljenović, B., Árkai, P., Bérczi-Makk, A.,<br />

Ko<strong>ro</strong>knai, B., Kovács, S., Felgenhauer, E.R., 2000. Complex<br />

structural pattern of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Alp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e–D<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>aridic–<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> triple junction.<br />

International Journal of Earth Sciences 89, 377–389.<br />

Hámor, G., 1983. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Quantitative Methods of Paleo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphic<br />

Reconstructions. Hungarian Geological Institute Special Paper.<br />

Hungarian Geological Institute, Budapest, Hungary.<br />

Hámor, G., 1985. Geology of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Nógrád–Cserhát area. Geologica<br />

Hungarica, vol. 22. Akadémiai Kiadó, Budapest, Hungary.<br />

Hámor, G., 1997. A magya<strong>ro</strong>rszági miocén fejlődéstörténete és<br />

ősföldrajza. Fülöp József Emlékkönyv. Akadémiai Kiadó, Budapest,<br />

pp. 231–250 (<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Hungarian).<br />

Haq, B.U., Hardendol, J., Vail, P.R., 1987. Ch<strong>ro</strong>nology of fluctuat<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

sea levels s<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ce <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Triassic (250 Myr ago to present). Science 235,<br />

1156–1167.<br />

Helland-Hansen, W., Gjelberg, J.G., 1994. Conceptual basis and<br />

variability <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> sequence stratigraphy: a different perspective.<br />

Sedimentary Geology 92, 31–52.<br />

Horváth, F., 1993. Towards a mechanical model for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> formation of<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Tectonophysics 226, 333–357.<br />

Horváth, F., 1995. Phases of compression dur<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> evolution of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> and its bear<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g on hyd<strong>ro</strong>carbon exploration.<br />

Mar<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e and Pet<strong>ro</strong>leum Geology 12, 837–844.<br />

Horváth, F., Berckhemer, H., 1982. Mediterranean backarc bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s. In:<br />

Berckhemer, H., Hsü, K.J. (Eds.), Alp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e-Mediterranean Geodynamics.<br />

. Geodynamic Series, vol. 7. American Geophisical Union,<br />

Wash<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gton, DC, pp. 141–173.<br />

Horváth, F., Cloet<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gh, S., 1996. Stress-<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>duced late-stage subsidence<br />

anomalies <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Tectonophysics 266, 287–300.<br />

Huismans, R.S., Podladchikov, Y.Y., Cloet<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gh, S., 2001. Dynamic<br />

model<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> transition f<strong>ro</strong>m passive to active rift<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g,<br />

application to <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Tectonics 20, 1021–1039.<br />

Hsü, K.J., Montadert, L., Bernoulli, D., Cita, M.B., Erickson, A.,<br />

Garrison, R.E., Kidd, R.B., Melieres, F., Müller, C., Wright, R.,<br />

1977. History of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis. Nature 267,<br />

399–403.<br />

Jiménez-Moreno, G., Rodríguez-Tovar, F.J., Pardo-Igúzquiza, E.,<br />

Fauquette, S., Suc, J.-P., Müller, P., 2005. High-resolution<br />

palynological analysis <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> late early-middle Miocene core f<strong>ro</strong>m<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, Hungary: climatic changes, ast<strong>ro</strong>nomical<br />

forc<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g and eustatic fluctuations <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Central Paratethys.<br />

Palaeo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphy, Palaeoclimatology, Palaeoecology 216, 73–97.<br />

Jolivet, L., Augier, R., Rob<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, C., Suc, J.-P., Rouchy, J.M., 2006.<br />

Lithospheric-scale <st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>dynamic context of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity<br />

crisis. Sedimentary Geology 188–189, 9–33.<br />

Juhász, G., 1998. A magya<strong>ro</strong>rszági neogén mélymedencék<br />

pannónia képződménye<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ek litosztratigráfiája. In: Bérczi, I.,<br />

Jámbor, Á. (Eds.), Occasional Papers of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Geological Institute<br />

of Hungary, vol. 194. Hungarian Geological Institute, Budapest,<br />

Hungary, pp. 469–483.<br />

Juhász, E., Kovács, L.Ó., Müller, P., Tóth-Makk, Á., Philips, L.,<br />

Lantos, M., 1997. Climatically driven sedimentary cycles <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

late Miocene sediments of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, Hungary.<br />

Tectonophysics 282, 257–276.<br />

Juhász, E., Philips, L., Müller, P., Ricketts, B., Tóth-Makk, Á., Lantos,<br />

M., Lovács, L.Ó., 1999. Late Neogene sedimentary facies and<br />

sequences <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, Hungary. In: Durand, B., Jolivet, L.,<br />

Horváth, F., Séranne, M. (Eds.), <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Mediterranean Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s: Tertiary<br />

Extension with<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Alp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e O<strong>ro</strong>gen. . Geol. Soc. Spec. Pub., vol. 156.<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Geological Society, London, United K<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gdom, pp. 335–356.<br />

Juhász, G., Pogácsás, G., Magyar, I., Vakarcs, G., 2006. Integráltsztratigráfiai<br />

és fejlődéstörténeti vizsgálatok az Alföld pannóniai s.l.<br />

rétegsorában. Földtani Közlöny 136, 51–86 (<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Hungarian with<br />

English Abstract).<br />

Kendall, C.G.StC., St<strong>ro</strong>bel, J., Cannon, R.L., Bezdek, J., Biswas, G.,<br />

1991. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> simulation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sedimentary fill of bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s. Journal of<br />

Geophysical Research 96, 6911–6929.<br />

Kendall, C.G.StC., Whittle, G.L., Ehrlich, R., Moore, P.D., Cannon, R.L.,<br />

Hellmann, D.R., 1993. Computer sedimentary simulation models<br />

sequence stratigraphy. Oil & Gas Journal 91, 46–51.<br />

Krijgsman, W., Hilgen, F.J., Raffi, I., Sier<strong>ro</strong>m, F.J., Wilson, D.S., 1999.<br />

Ch<strong>ro</strong>nology, causes and p<strong>ro</strong>gression of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity<br />

crisis. Nature 400, 652–655.<br />

Krijgsman, W., Gaboardi, S., Hilgen, F.J., Iaccar<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>o, S., de Kaenel, E.,<br />

van der Laan, E., 2004. Revised ast<strong>ro</strong>ch<strong>ro</strong>nology for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> A<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> el<br />

Beida section (Atlantic Mo<strong>ro</strong>cco); no glacio-eustatic cont<strong>ro</strong>l for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

onset of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis. Stratigraphy 1, 87–101.<br />

Lantos, M., Hámor, T., Pogácsás, G., 1992. Magneto- and seismostratigraphic<br />

correlations of <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> s.l. (late Miocene and<br />

Pliocene) deposits <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Hungary. Paleontologia y Evolucion 24–25,<br />

35–46.<br />

Lev<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, P.A., 1999. Sequence stratigraphic simulation; a tool for<br />

model<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> stratal architecture with<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> sedimentary depositional<br />

systems. PhD Dissertation, University of South Ca<strong>ro</strong>l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>a, Columbia,<br />

SC.<br />

Lofi, J., Gor<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>i, C., Berné, S., Clauzon, G., Tadeu Dos Reis, A.,<br />

Ryan, W.B.F., Steckler, M.S., 2005. E<strong>ro</strong>sional p<strong>ro</strong>cesses and paleoenvi<strong>ro</strong>nmental<br />

changes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Western Gulf of Lions (SW France)<br />

dur<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis. Mar<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e Geology 217, 1–30.<br />

Magyar, I., Geary, D.H., Müller, P., 1999. Paleo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphic evolution<br />

of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Late Miocene Lake Pannon <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> central Eu<strong>ro</strong>pe. Palaeo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphy,<br />

Palaeoclimatology, Palaeoecology 147, 151–167.<br />

Magyar, I., Juhász, G., Szu<strong>ro</strong>mi-Korecz, A., Sütő-Szentai, M., 2001. A<br />

pannóniai Tótkomlósi Mészmárga Tagozat kifejlődése és kora a<br />

Battonya-pusztaföldvári-hátság környezetében. Földtani Közlöny<br />

133, 521–540 (<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Hungarian with English abstract).<br />

Mart, Y., Ryan, W.B.F., Lun<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>a, O.V., 2004. Review of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> tectonics of<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Levant Rift system: <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> structural significance of oblique<br />

cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ental breakup. Tectonophysics 395, 209–232.<br />

Mattick, R.E., Philips, R.L., Rumpler, J., 1988. Seismic stratigraphy and<br />

depositional framework of sedimentary <strong>ro</strong>cks <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> sou<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern Hungary. In: Royden, L.H., Horváth, F. (Eds.), <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, a Study <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Evolution. American Association<br />

of Pet<strong>ro</strong>leum Geologists, Memoir, vol. 45. American Association of<br />

Pet<strong>ro</strong>leum Geologists, Tulsa, Oklahoma, USA, pp. 117–145.<br />

Mattick, R.E., Rumpler, J., Újfalusy, A., Szanyi, B., Nagy, I., 1994.<br />

Sequence stratigraphy of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Békés bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. In: Teleki, P.G., Mattick,<br />

R.E., Kókai, J. (Eds.), Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Analysis <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Pet<strong>ro</strong>leum Exploration.<br />

Kluwer Academic Publishers, Dordrecht, Ne<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rlands, pp. 39–65.<br />

Mattick, R.E., Teleki, P.G., Philips, L., Clayton, J.L., David, G.,<br />

Pogácsás, G., Bardócz, B., Simon, E., 1996. Structure, stratigraphy,<br />

and pet<strong>ro</strong>leum <st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>logy of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Little Hungarian Pla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>,<br />

Northwestern Hungary. American Association of Pet<strong>ro</strong>leum<br />

Geologists Bullet<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> 80, 1780–1800.<br />

Moore, P.D., 1997. Sedimentary simulations; design and application of<br />

SEDPAK. PhD Dissertation, University of South Ca<strong>ro</strong>l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>a,<br />

Columbia, SC.<br />

Patrascu, St., Panaiotu, C., Seclaman, M., Panaiotu, C.E., 1994.<br />

Tim<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g of <strong>ro</strong>tational motion of Apuseni Mts. (Romania):


I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

139<br />

paleomagnetic data f<strong>ro</strong>m Tertiary magmatic <strong>ro</strong>cks. Tectonophysics<br />

233, 163–176.<br />

Pogácsás, G., Lakatos, L., Újszászi, K., Vakarcs, G., Várkonyi, L.,<br />

Várnai, P., Révész, I., 1988. Seismic facies, elect<strong>ro</strong> facies and<br />

Neogene sequence ch<strong>ro</strong>nology of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Acta<br />

Geologica Hungarica 31, 175–207.<br />

Pogácsás, G., Szabó, A., Szalay, J., 1992. Ch<strong>ro</strong>nostratigraphic<br />

relations of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> p<strong>ro</strong>gradational delta sequence of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Great<br />

Hungarian Pla<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Acta Geologica Hungarica 35, 311–327.<br />

Pogácsás, G., Müller, P., Magyar, I., 1993. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <strong>ro</strong>le of seismic<br />

stratigraphy <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> understand<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g biological evolution <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng><br />

Lake. Geologia C<strong>ro</strong>atica 46, 63–69.<br />

Pogácsás, G., Mattick, R.E., Elston, D.P., Hámor, T., Jámbor, Á.,<br />

Lakatos, L., Lantos, M., Simon, E., Vakarcs, G., Várkonyi, L.,<br />

Várnai, P., 1994. Correlation of seismo- and magnetostratigraphy<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> sou<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>astern Hungary. In: Teleki, P.G., Mattick, R.E., Kókai, J.<br />

(Eds.), Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Analysis <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Pet<strong>ro</strong>leum Exploration. Kluwer Academic<br />

Publishers, Dordrecht, Ne<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rlands, pp. 143–160.<br />

Por, F.D., Dimentman, C., 1985. Cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>uity of <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> biota <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Mediterranean bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. In: Stanley, D.J., Wezel, F.-C. (Eds.),<br />

Geological Evolution of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Spr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ger–<br />

Verlag, New York, pp. 545–557.<br />

Posamentier, H.W., Vail, P.R., 1988. Eustatic cont<strong>ro</strong>ls on clastic<br />

deposition II — sequence and systems tract models. In: Wilgus,<br />

C.K., Hast<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs, B.S., Kendall, C.G.St.C., Posamentier, H.W.,<br />

Ross, C.A., Van Wagoner, J.C. (Eds.), Sea Level Changes — An<br />

Integrated App<strong>ro</strong>ach. SEPM (Society for Sedimentary Geology)<br />

Special Publication, vol. 42. Society for Sedimentary Geology, Tulsa,<br />

Oklahoma, USA, pp. 125–154.<br />

Ratschbacher, L., Frisch, W., L<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>zer, H.G., Merle, D., 1991. Lateral<br />

extension <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Eastern Alps, part 2; structural analysis. Tectonics<br />

10, 257–271.<br />

Rouchy, J.M., Orszag-Sperber, F., Blanc-Valle<strong>ro</strong>n, M.-M., Pierre, C.,<br />

Riviere, M., Combourieu-Nebout, N., Panayides, I., 2001. Paleoenvi<strong>ro</strong>nmental<br />

changes at <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng>–Pliocene boundary <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

eastern Mediterranean (sou<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn Cyprus bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s): significance of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> Lago-Mare. Sedimentary Geology 145, 93–117.<br />

Roveri, M., Bassetti, M.A., Ricci Lucchi, F., 2001. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Mediterranean<br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis: an Apenn<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e foredeep perspective.<br />

Sedimentary Geology 140, 201–214.<br />

Roveri, M., Manzi, V., Ricci Lucchi, F., Rogledi, S., 2003. Sedimentary<br />

evolution of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Vena del Gesso bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (Nor<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn Apenn<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>es, Italy):<br />

implications for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> onset of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis.<br />

Geological Society of America Bullet<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> 115, 387–405.<br />

Royden, L.H., 1988. Late Cenozoic tectonics of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

system. In: Royden, L.H., Horváth, F. (Eds.), <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng><br />

Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, a Study <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Evolution. American Association of<br />

Pet<strong>ro</strong>leum Geologists, Memoir, vol. 45. American Association of<br />

Pet<strong>ro</strong>leum Geologists, Tulsa, Oklahoma, USA, pp. 27–48.<br />

Royden, L.H., Báldi, T., 1988. Late Cenozoic tectonics of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> system. In: Royden, L.H., Horváth, F. (Eds.),<br />

<st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, a Study <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Evolution. American<br />

Association of Pet<strong>ro</strong>leum Geologists, Memoir, vol. 45. American<br />

Association of Pet<strong>ro</strong>leum Geologists, Tulsa, Oklahoma,<br />

USA, pp. 1–16.<br />

Royden, L.H., Horváth, F., Rumpler, J., 1983a. Evolution of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> system, 1. Tectonics 2, 63–90.<br />

Royden, L.H., Horváth, F., Nagyma<strong>ro</strong>sy, A., Stegena, L., 1983b.<br />

Evolution of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> system, 2. Subsidence and<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rmal history. Tectonics 2, 91–137.<br />

Ryan, W.B.F., 1973. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Pliocene record <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> deep-sea Mediterranean<br />

sediments. Initial Reports of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Deep Sea Drill<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g P<strong>ro</strong>ject 13, Part<br />

2. Texas A&M University, Ocean Drill<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g P<strong>ro</strong>gram, College<br />

Station, TX, pp. 1341–1343.<br />

Sacchi, M., Müller, P., 2004. Orbital cyclicity and ast<strong>ro</strong>nomical<br />

calibration of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> upper Miocene cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ental succession cored at<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Iha<strong>ro</strong>sberény-I well site, Western <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, Hungary.<br />

In: D'Argenio, B., Fischer, A.G., Premoli Silva, I., Weissert, H.,<br />

Ferreri, V. (Eds.), Cyclostratigraphy: App<strong>ro</strong>aches and Case<br />

Histories. SEPM (Society of Sedimentary Geology) Special<br />

Publication, vol. 81. Society for Sedimentary Geology, Tulsa,<br />

Oklahoma, USA, pp. 275–294.<br />

Sacchi, M., Horváth, F., Magyar, I., Müller, P., 1997. P<strong>ro</strong>blems and<br />

p<strong>ro</strong>gress <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> establish<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g a Late Neogene ch<strong>ro</strong>nostratigraphy for <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Central Paratethys. Neogene Newsletter 37–46.<br />

Sacchi, M., Horváth, F., Magyari, O., 1999. Role of unconformitybounded<br />

units <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> stratigraphy of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> cont<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ental record: a case<br />

study f<strong>ro</strong>m <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Late Miocene of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> western <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>,<br />

Hungary. In: Durand, B., Jolivet, L., Horváth, F., Séranne, M.<br />

(Eds.), <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Mediterranean Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s: Tertiary Extension with<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Alp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e O<strong>ro</strong>gen. Geol. Soc. Spec. Pub., vol. 156. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Geological<br />

Society, London, United K<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gdom, pp. 357–390.<br />

Sclater, J.G., Royden, L.H., Horváth, F., Burchfiel, B.C., Sempken, S.,<br />

Stegena, L., 1980. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> formation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>tra-Carpathian bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s as<br />

determ<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ed f<strong>ro</strong>m subsidence data. Earth and Planetary Science<br />

Letters 51, 139–162.<br />

Shackleton, N.J., Hall, M.A., Pate, D., 1995. Pliocene stable isotope<br />

stratigraphy of Site 846. In: Pisias, N.G., Mayer, L.A., Janecek, T.R.,<br />

Palmer-Julson, A., van Andel, T.H. (Eds.), P<strong>ro</strong>ceed<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

Ocean Drill<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g P<strong>ro</strong>gram, Scientific Results, vol. 138. Texas<br />

A&M University, Ocean Drill<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g P<strong>ro</strong>gram, College Station, TX,<br />

pp. 337–355.<br />

Sp<strong>ro</strong>vieri, M., Sacchi, M., Rohl<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g, E.J., 2003. Climatically <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>fluenced<br />

<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>teractions between <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Mediterranean and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Paratethys dur<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g<br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Tortonian. Paleoceanography 18, 1034–1044.<br />

Sütő-Szentai, M., 1994. Mic<strong>ro</strong>plankton associations of organic<br />

skeleton <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sur<strong>ro</strong>und<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g of Villány Mts. Földtani Közlöny<br />

124, 451–479 (<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Hungarian with English abstract).<br />

Sütő-Szentai, M., 2000. Organic walled mic<strong>ro</strong>plankton zonation of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> s.l. <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sur<strong>ro</strong>und<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gs of Kaskantyú, Paks and<br />

Tengelic (Hungary). Annual Report of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Geological Institute of<br />

Hungary 1994–1995/II. Hungarian Geological Institute, Budapest,<br />

Hungary, pp. 153–175.<br />

Sütő-Szentai, M., 2002. Analysis of mic<strong>ro</strong>planktons of organic<br />

skeleton f<strong>ro</strong>m borehole Nagykozár-2 (S-Hungary). Folia Comloensis<br />

11, 93–110.<br />

Sütő-Szentai, M., 2006. Jelentés a Középalföld tervezési terület<br />

őslénytani (D<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>oflagellata, Ostracoda) vizsgálatáról. Unpublished<br />

report, Új őslénytani adatok: A középalföldi fúrások szervesvázú<br />

mik<strong>ro</strong>plankton vizsgálatának értékelése, Sütő Zoltánné, 7300<br />

Komló, Május 1 u 7 (<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Hungarian).<br />

Szu<strong>ro</strong>mi-Korecz, A., 1992. A Délkelet-Dunántúl pannónian s.l.<br />

képződménye<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ek rétegtani értékelése ostracoda faunájuk alapján.<br />

Őslénytani Viták Discussiones Palaeontologicae 38, 5–20 (<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

Hungarian with English abstract).<br />

Szu<strong>ro</strong>mi-Korecz, A., Sütő-Szentai, M., Magyar, I., 2004. Biostratigraphic<br />

revision of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Hód-I well: Hungary's deepest borehole<br />

failed to reach <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> base of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> upper Miocene <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> stage.<br />

Geologica Carpathica 55, 475–485.<br />

Tari, G., 1996. Neoalp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e tectonics of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Danube bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> (NW<br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, Hungary). In: Ziegler, P.A., Horváth, F. (Eds.),<br />

Structure and P<strong>ro</strong>spects of Alp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s and Forelands. Peri-<br />

Tethys Memoir, vol. 2. Editions du Muséum National d'Histoire<br />

Naturelle, Paris, France, pp. 439–454.


140 I. Csato et al. / Sedimentary Geology 201 (2007) 111–140<br />

Tari, G., Horváth, F., 1995. Middle Miocene extensional collapse <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Alp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e-<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> transition zone. In: Horváth, F., Tari, G.,<br />

Bokor, C.S. (Eds.), Extensional Collapse of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Alp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e O<strong>ro</strong>gene<br />

and Hyd<strong>ro</strong>carbon P<strong>ro</strong>spects <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Basement and Basement Fill<br />

of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Western <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. AAPG International Conference<br />

and Exhibition, Nice, France, Guidebook to Fieldtrip,<br />

vol. 6. American Association of Pet<strong>ro</strong>leum Geologists, Tulsa,<br />

Oklahoma, USA, pp. 75–106.<br />

Tari, G., Horváth, F., Rumpler, J., 1992. Styles of extension <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Tectonophysics 208, 203–219.<br />

Thamó-Bozsó, E., Kercsmár, Z.S., Nádor, A., 2002. Tectonic cont<strong>ro</strong>l<br />

on changes <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> sediment supply: Quaternary alluvial systems, Körös<br />

sub-bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, SE Hungary. In: Jones, S.J., F<strong>ro</strong>stick, L.E. (Eds.),<br />

Sediment Flux to Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s: Causes, Cont<strong>ro</strong>ls and Consequences.<br />

Geol. Soc. Spec. Pub., vol. 191, pp. 37–53.<br />

Tomljenović, B., Csontos, L., 2001. Neogene–Quaternary structures <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> border zone between Alps, D<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>arides and <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng><br />

(Hrvatsko zagorje and Karlovac Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s, C<strong>ro</strong>atia). International<br />

Journal of Earth Sciences 90, 560–578.<br />

Újszászi, K., Vakarcs, G., 1993. Sequence stratigraphic analysis <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

South Transdanubian region, Hungary. Geophysical Transactions<br />

38, 69–87.<br />

Vail, P.R., Mitchum, R.M., Thomson III, S., 1977. Seismic<br />

stratigraphy and global changes of sea level. In: Payton, C.W.<br />

(Ed.), Seismic Stratigraphy Applications to Hyd<strong>ro</strong>carbon Exploration.<br />

American Association of Pet<strong>ro</strong>leum Geologists Memoir,<br />

vol. 26. American Association of Pet<strong>ro</strong>leum Geologists, Tulsa,<br />

Oklahoma, USA, pp. 63–97.<br />

Vail, P.R., Audemard, F., Boweman, S.A., Eisner, P.N., Perez-Criz, C.,<br />

1991. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> stratigraphic signatures of tectonics, eustacy and<br />

sedimentology — an overview. In: E<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>sele, G., Ricken, W.,<br />

Seilachter, T. (Eds.), Cycles and Events <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> Stratigraphy. Spr<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ger–<br />

Verlag, Berl<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, Germany, pp. 617–659.<br />

Vakarcs, G., 1997. Sequence stratigraphy of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Cenozoic <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng><br />

Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, Hungary. PhD. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng>sis, Rice University, Houston, TX.<br />

Vakarcs, G., Vail, P.R., Tari, G., Pogácsás, G., Mattick, R.E., Szabó, A.,<br />

1994. Third-order Miocene–Pliocene depositional sequences <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

p<strong>ro</strong>grad<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g delta complex of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. Tectonophysics<br />

240, 81–106.<br />

Vakarcs, G., Hardenbol, J., Abreu, V.S., Vail, P.R., Várnai, P., Tari, G.,<br />

1998. Oligocene–middle Miocene depositional sequences of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

central paratethys and <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>ir correlation with regional stages. In: de<br />

Graciansky, P.-C., Hardenbol, J., Jacqu<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>, T., Vail, P.R. (Eds.),<br />

Mesozoic and Cenozoic Sequence Stratigraphy of Eu<strong>ro</strong>pean<br />

Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s. SEPM (Society for Sedimentary Geology) Special<br />

Publication, vol. 60. Society for Sedimentary Geology, Tulsa,<br />

Oklahoma, USA, pp. 209–231.<br />

Van Balen, R.T., Lenkey, L., Horváth, F., Cloet<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gh, S.A.P.L., 1999.<br />

Two-dimensional model<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g of stratigraphy and compaction-driven<br />

fluid flow <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Pannonian</st<strong>ro</strong>ng> Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>. In: Durand, B., Jolivet, L.,<br />

Horváth, F., Séranne, M. (Eds.), <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Mediterranean Bas<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>s:<br />

Tertiary Extension with<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Alp<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e O<strong>ro</strong>gen. Geol. Soc. Spec.<br />

Pub., vol. 156. <st<strong>ro</strong>ng>The</st<strong>ro</strong>ng> Geological Society, London, United K<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>gdom,<br />

pp. 391–414.<br />

Vasiliev, I., Krijgsman, W., Stoica, M., Langereis, C.G., 2004. Mio-<br />

Pliocene magnetostratigraphy <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> sou<st<strong>ro</strong>ng>the</st<strong>ro</strong>ng>rn Carpathian foredeep<br />

and Mediterranean–Paratethys correlations. Terra Nova 17, 376–384.<br />

Vidal, L., Bickert, T., Wefer, G., Röhl, U., 2002. Late Miocene stable<br />

isotope stratigraphy of SE Atlantic ODP Site 1085: relation to<br />

<st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng> events. Mar<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>e Geology 180, 71–85.<br />

Warny, S.A., Wrenn, J.H., 2002. Upper Neogene d<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>oflagellate cyst<br />

ecostratigraphy of <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> Atlantic coast of Mo<strong>ro</strong>cco. Mic<strong>ro</strong>paleontology<br />

48, 257–272.<br />

Warny, S.A., Bart, P.J., Suc, J.-P., 2003. Tim<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g and p<strong>ro</strong>gression of<br />

climatic, tectonic and glacioeustatic <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>fluences on <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng> <st<strong>ro</strong>ng>Mess<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ian</st<strong>ro</strong>ng><br />

sal<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>ity crisis. Palaeo<st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>graphy, Palaeoclimatology, Palaeoecology<br />

202, 59–66.<br />

Whittle, G.L., 1993. Us<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g computer model<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>g to <st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>vestigate <st<strong>ro</strong>ng>the</st<strong>ro</strong>ng><br />

cont<strong>ro</strong>ls on platform and marg<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng> sedimentary <st<strong>ro</strong>ng>geo</st<strong>ro</strong>ng>metries. PhD<br />

Dissertation, University of South Ca<strong>ro</strong>l<st<strong>ro</strong>ng>in</st<strong>ro</strong>ng>a, Columbia, SC.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!