18.12.2013 Views

Mars Organic Molecule Analyzer (MOMA) - Harsh-Environment ...

Mars Organic Molecule Analyzer (MOMA) - Harsh-Environment ...

Mars Organic Molecule Analyzer (MOMA) - Harsh-Environment ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>MOMA</strong>: <strong>Mars</strong> <strong>Organic</strong> <strong>Molecule</strong> <strong>Analyzer</strong><br />

Luann Becker<br />

Johns Hopkins Physics and Astronomy<br />

<strong>Harsh</strong> <strong>Environment</strong> Mass Spectrometry Workshop<br />

September 23rd 2009


Strategy for Future Missions to <strong>Mars</strong><br />

- Lessons learned from ‘Past’<br />

Rover/Lander Missions: Emphasis<br />

on Life Detection<br />

- ‘Present’ Missions: Looking Ahead to<br />

the Next Decade<br />

- New Instrument Concepts in Search<br />

for Life: <strong>MOMA</strong><br />

2


Mission Timeline<br />

MSL<br />

Lander<br />

Discovery<br />

Mid Rover<br />

Mission<br />

NASA<br />

Joint Missions<br />

NASA/ESA<br />

Exo<strong>Mars</strong><br />

3


Earth and <strong>Mars</strong> Today<br />

4


Map of <strong>Mars</strong> showing H 2 O and Landing Sites<br />

P<br />

5


Previous Mass Spectrometry Concepts<br />

• High mass range à complex organic analysis<br />

• Drill to 2m; depth profiling<br />

• Multiple sampling modes<br />

6


Viking Missions: What Happened?<br />

Viking (1976)<br />

– GCMS: Surface soil<br />

– No organics found by<br />

GCMS<br />

– Nutrient Experiment<br />

Inconclusive<br />

Conclusions:<br />

Highly oxidizing soil, low pH<br />

(acidic), ionizing radiation<br />

produce non-volatile organic<br />

salts resulting in more<br />

refractory ‘labile’ organic<br />

material<br />

1 Benner et al., (2000) The Missing <strong>Organic</strong> <strong>Molecule</strong>s on <strong>Mars</strong>? PNAS 2425-2430.<br />

2 Kminek G and Bada JL (2006). The effect of ionizing radiation on the preservation of amino acids on <strong>Mars</strong>. Earth Planet. Sci. Lett., 245, 1−5.<br />

1<br />

2<br />

7


<strong>Organic</strong>s in Murchison Meteorite<br />

Murchison Meteorite LDMS-TOF<br />

242 252 278<br />

228<br />

300<br />

178 202<br />

314<br />

328<br />

342<br />

Murchison ‘Kerogen’<br />

Pendleton & Allamandola,<br />

Ap. J. Sup. Ser. 138, 75 (2002)<br />

8


Is there, or was there, life on <strong>Mars</strong>?<br />

• ALH84001<br />

– Martian meteorite<br />

– Antarctica<br />

– 1996: nanobacteria<br />

fossils; amino acids,<br />

PAHs found<br />

1 Becker, L., Popp, B., Rust, T., Bada, EPSL., 167, 71-79 (1999); Becker, L. NRC Signs of Life Workshop, 161-173 (2000) .<br />

2 Becker, L., Popp, B., Rust, T., Bada, J. Adv. Space Res., 24, 4, 477 (1999).<br />

9


What is <strong>MOMA</strong>?<br />

• AP MALDI = Atmospheric Pressure Matrix Assisted Laser<br />

Desorption/Ionization (ASTEP)<br />

– a pulsed laser is focused onto a solid sample in ambient environment<br />

(<strong>Mars</strong> P = 5-10 Torr CO 2<br />

; IR or UV laser Nd:YAG 266 nm)<br />

– neutral and ionized molecules are produced<br />

– molecules are drawn into a mass spectrometer for analysis<br />

• ITMS = Ion Trap Mass Spectrometer<br />

– ions are stored in stable orbits by a 3D quadrupolar RF electric field in<br />

the presence of a rarified background gas (1-10 mTorr CO 2<br />

works fine)<br />

– ions are scanned out and detected by ramping the RF amplitude<br />

– can be used to isolate individual ions for fragment analysis (MS/MS)<br />

* The AP-MALDI was merged with a GCMS proposed by a German and<br />

French team for the Exo<strong>Mars</strong> mission; It is part of the <strong>MOMA</strong> suite<br />

which also includes Pyr-GC-EI-MS<br />

10


<strong>MOMA</strong> Science Requirements<br />

What are our requirements?<br />

1. the mass analyzer will need to be compatible with both<br />

laser desorption and GCMS<br />

2. laser desorption will be carried out in situ, on solid<br />

samples presented at <strong>Mars</strong> atmospheric pressure<br />

3. the mass range should encompass that expected for<br />

establishing the existence of organic or potentially<br />

biological relevant molecules (e.g. small peptides), ca<br />

2,000 Da<br />

4. the instrument will need to accommodate two ionization<br />

sources (LD and electron ionization)<br />

11


Why use an ion trap?<br />

ION Trap Selection<br />

1. most compatible with external (atmospheric) ionization<br />

using laser desorption<br />

a. TOFs (and others) require very high vacuum and a<br />

means for sample introduction<br />

b. orthogonal TOFs can be used with external ionization<br />

but require very high pumping speed to achieve high<br />

vacuum<br />

2. has the possibility for doing MS/MS for structural<br />

analysis<br />

3. low power ion traps have been used successfully in<br />

GCMS configurations<br />

12


<strong>MOMA</strong> Instrument Concept Design<br />

What are the specific challenges?<br />

1. combining low voltage/low power with a<br />

sufficiently high mass range<br />

2. transferring ions formed in the <strong>Mars</strong><br />

environment into the vacuum chamber and<br />

the ion trap<br />

3. accommodating two sources of ions: those<br />

generated externally by LD and those<br />

generated by the GC either internally or<br />

externally using electron ionization<br />

13


<strong>MOMA</strong> LDMS Instrument Concept Design<br />

Atmospheric pressure<br />

laser desorption on<br />

Earth<br />

Pulsed UV laser<br />

P=760 torr<br />

Extended capillary<br />

Atmospheric pressure<br />

laser desorption on<br />

<strong>Mars</strong><br />

Quadrupole, hexapole or octopole<br />

ion guides<br />

P=5-10 torr<br />

Orifice<br />

14


<strong>MOMA</strong> Instrument Concept Design<br />

Accommodating low power/low voltage and high mass range<br />

TABLE I. Quadrupole and Cylindrical Ion Trap Parameters<br />

Param eter Finnigan Cooks Rosetta Cylindrical <strong>Mars</strong><br />

1<br />

Fundamental _ /2¹ (MHz) 1.1 1.1 0.6 1.1 1.0 0.8<br />

Maximum amplitude V max (0-p) 7.5 kV 7.5 300 V 7.5 kV 300 V 300 V<br />

kV<br />

Radius r 0 (cm) 1.0 0.5 0.8 1.0 0.5 0.5<br />

Axis 2z 0 (cm) 1.0 0.5 1.13 1.79 0.5 0.5<br />

Mass range (Da) in mass -selective instability 650 2,600 150 600 126 197<br />

mode q eject = 0.908<br />

Supplemental RF frequency (kHz) 69.9 NA NA 425 22.1 34.4<br />

qeject 0.182 NA NA NA 0.057 0.089<br />

Mass range (Da) in resonance ejection mode 3,250 NA NA NA 2,000 2,000<br />

<strong>Mars</strong><br />

2<br />

( m / z)<br />

max<br />

=<br />

q<br />

8V<br />

max<br />

2 2<br />

( r 2z<br />

)<br />

2<br />

eject<br />

Ω<br />

0<br />

+<br />

0<br />

a<br />

Kaiser RE, Jr., Cooks RG, Moss J, Hemberger<br />

PH, Mass Range Extension in a Quadrupole<br />

Ion-trap Mass Spectrometer, Rapid Commun.<br />

Mass Spectrom. 3, (1989) 50-53<br />

b<br />

March RE, Todd JF, Quadrupole Ion Trap Mass<br />

Spectrometry, John Wiley & Sons, Inc. Hoboken<br />

NJ, 2005<br />

15


Uniqueness of <strong>MOMA</strong> Design<br />

What are the specific innovations?<br />

1. combining low voltage/low power and a mass range up<br />

to 2,000 Da using lower trap frequency and a<br />

supplemental excitation with very low q eject value<br />

2. accommodating LD and EI using internal electron<br />

ionization with the electron source on the ring electrode<br />

3. supplemental voltage frequency scanning of the mass<br />

range<br />

4. use of CO 2 as a bath gas in the LD mode<br />

16


<strong>MOMA</strong> Prototype Design Concept<br />

Low voltage/low power and high mass range using lower trap<br />

frequency and supplemental excitation at very low q eject value<br />

<strong>MOMA</strong> Ion Trap Parameters:<br />

Fundamental _ /2¹<br />

Maximum amplitude V<br />

max<br />

(0-p)<br />

Radius r 0<br />

Axis 2z 0<br />

Mass range in mass-selective instability mode q eject<br />

= 0.908<br />

800 kHz<br />

300 V<br />

<strong>Mars</strong> 2<br />

0.5 cm<br />

0.5 cm<br />

197 Da<br />

Supplemental RF frequency<br />

34.4 kHz<br />

Supplemental RF voltage (axial modulation)<br />

5-10 V<br />

q eject<br />

0.089<br />

Mass range in resonance ejection mode<br />

2,000 Da<br />

Bath gas He or CO<br />

2<br />

Ionization:<br />

Ion introduction:<br />

laser desorption at <strong>Mars</strong> atmosphere (5 -10 Torr)<br />

RF quadrupole ion guide<br />

17


<strong>MOMA</strong> Instrument Concept<br />

A novel internal EI<br />

source with filament<br />

mounted on the ring<br />

electrode<br />

Ions from laser<br />

desorption/ionization<br />

at <strong>Mars</strong> atmosphere<br />

(5-10 Torr)<br />

Internal EI for GCMS<br />

+<br />

- -<br />

+<br />

Filament<br />

supply<br />

Electron<br />

energy<br />

Fundamental RF<br />

voltage generator<br />

800 kHz, 300-<br />

700V 0-p<br />

Supplemental<br />

RF generator<br />

18


<strong>MOMA</strong> <strong>Mars</strong> <strong>Organic</strong> <strong>Molecule</strong> <strong>Analyzer</strong><br />

Protoype built by SESI<br />

19


<strong>MOMA</strong> ITMS Operational Requirements<br />

<strong>MOMA</strong> ITMS must be capable of:<br />

1) Operating with CO 2<br />

as a bath gas<br />

2) Unit Mass Resolution<br />

3) MS/MS capability<br />

556.6<br />

Leucine Enkephalin<br />

MW 556.6<br />

MH<br />

YGGFL<br />

Y=Tyr, G=Gly<br />

F= Phe, L=Leu MS/MS<br />

a 4<br />

MH-H 2<br />

0<br />

530 540 550 560 570 580 590<br />

m/z<br />

CO 2 pressure<br />

Peak width<br />

1.2 x 10 -4 Torr 0.5 Da<br />

10 -3 Torr 1.5 Da<br />

100 200 300 400 500 600 700<br />

m/z<br />

V. Doroshenko, SESI<br />

20


Leu-enkephalin<br />

(YGGFL), m/z =<br />

556.6<br />

Bradykinin<br />

fragment1-7<br />

(RPPGFSP)<br />

m/z = 757.4<br />

Angiotensin II<br />

(human) (DRVYI),<br />

m/z = 1046.5<br />

P 14<br />

R<br />

(polyproline)<br />

(PPPPPPPPP<br />

PPPPPR) m/z<br />

= 1534<br />

<strong>MOMA</strong> Prototype-1<br />

4 peptide mixture; original<br />

or ‘raw’ data<br />

experimental conditions: V RF<br />

= 700 V 0‐p<br />

;<br />

P = 0.7 mTorr (CO 2<br />

) in the trap<br />

Leu-enkephalin<br />

(YGGFL), m/z =<br />

556.6<br />

Bradykinin<br />

fragment1-7<br />

(RPPGFSP)<br />

m/z = 757.4<br />

P 14<br />

R (polyproline)<br />

(PPPPPPPPPPPPPPR<br />

) m/z = 1534<br />

4 peptide mixture;<br />

300 points smoothing<br />

Angiotensin II<br />

(human)<br />

(DRVYI), m/z =<br />

1046.5<br />

experimental conditions: V RF<br />

= 700 V 0‐p<br />

;<br />

P = 0.7 mTorr (CO 2<br />

) in the trap<br />

600 800 1000 1200 1400 1600<br />

21


MS/MS <strong>MOMA</strong> Prototype‐1<br />

2.0<br />

1.5<br />

P 14 R (polyproline)<br />

Intensity<br />

1.0<br />

2P<br />

(PPPPPPPPPPPPPPR)<br />

m/z = 1534<br />

experimental conditions: trap<br />

RF 700 V 0‐p<br />

0.7 mTorr CO 2<br />

in<br />

the trap<br />

0.5<br />

2P<br />

2P<br />

P<br />

2P<br />

P<br />

2P<br />

P<br />

2P<br />

P<br />

0.0<br />

400 600 800 1000 1200 1400 1600 1800 2000<br />

m/z<br />

22


<strong>MOMA</strong> GCMS Interface<br />

Count<br />

3000<br />

2000<br />

1000<br />

0<br />

1500<br />

1000<br />

500<br />

0<br />

INTERNAL IONIZATION w/ CO 2<br />

237.5V, -60/+240V pulsing<br />

EXTERNAL IONIZATION w/ CO 2<br />

0 100 200 300 400 500 600 700 800<br />

Mass<br />

166.5V<br />

237.5V<br />

166.25V,<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-60/+160V pulsing<br />

JHU SOM<br />

CO 2 as the bath gas<br />

T. Evans-Nguyen<br />

23


Gold Standard LD Ion Trap Mass Spectrometer<br />

Thermo LD ITMS SESI Peru Desert<br />

JHU PHA Gold Standard<br />

336<br />

644<br />

834<br />

1080<br />

1250<br />

1476<br />

172<br />

1665<br />

1891<br />

Jarosite<br />

24


In Martian Analog Samples<br />

KT boundary extra by CH3OH in He266nm_40 #1-88 RT: 0.00-1.99 AV: 88 NL: 5.92E-1<br />

T: ITMS + p MALDI Full ms [100.00-1000.00]<br />

262.25<br />

100<br />

256<br />

266<br />

95<br />

246.17<br />

90<br />

256<br />

85<br />

80<br />

242<br />

75<br />

356.08<br />

70<br />

65<br />

276<br />

232.25<br />

60<br />

228<br />

302 270<br />

55<br />

288<br />

50<br />

274.25 370.17<br />

288.25<br />

45<br />

326.25<br />

224.17<br />

RelativeAbundance<br />

302.25<br />

40<br />

384.17<br />

KT boundary Magic Layer<br />

65 myr Extinction Event<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

398.33<br />

202<br />

412.25<br />

452.17<br />

428.17<br />

464.25<br />

178<br />

470.25<br />

210.08<br />

628.17<br />

504.25<br />

606.00<br />

588.33<br />

662.33 710.33<br />

518.25 730.42<br />

198.25 540.42<br />

776.50<br />

648.42 704.50<br />

899.08<br />

581.17 834.75 760.50 854.75<br />

782.33 813.42<br />

870.33 907.42<br />

911.50 949.58<br />

135.17 188.33<br />

993.67<br />

106.83 177.92<br />

396 452 500 600 700<br />

0<br />

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000<br />

scan T extr by tolu in He 266nm_090724135822 #1-45 RT: 0.00-2.68 AV: 45 NL: 3.03<br />

: ITMS + p MALDI Full ms [150.00-2000.00]<br />

276.17<br />

100<br />

278<br />

95<br />

90<br />

85<br />

RelativeAbundance<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

202<br />

202.17<br />

252<br />

228<br />

216.17<br />

230.17<br />

252.17<br />

266.17<br />

300<br />

290.17<br />

300.17<br />

318.25<br />

326.17<br />

350<br />

350.17<br />

374.17<br />

400<br />

m/z<br />

Escanaba Trough Hydrothermal Vent<br />

East Pacific Rise<br />

10<br />

340.17<br />

364.25<br />

5<br />

392.25 424.08<br />

723.50<br />

448.25 682.33<br />

668.08 699.42<br />

625.33<br />

487.00 639.33 766.08<br />

590.42<br />

470.17 741.50 777.50<br />

515.17 557.17<br />

192.17 575.25<br />

178.08<br />

0<br />

150 200 250 300 350 400 450 500 550 600 650 700 750 800<br />

m/z


PEG 600 with He and CO 2<br />

P E G 6 0 0 w i th H e tu rb o # 1-102 R T : 0.00-2.00 AV: 102 N L : 3.04<br />

T: ITM S + p M ALD I t Full m s [100.00-2000.00]<br />

100<br />

95<br />

789.33<br />

90<br />

701.33<br />

85<br />

80<br />

75<br />

657.33<br />

70<br />

65<br />

60<br />

613.33<br />

833.33<br />

Peg 600 He<br />

55<br />

50<br />

45<br />

877.33<br />

40<br />

569.00<br />

906.00<br />

35<br />

30<br />

921.33<br />

950.00<br />

550.67 994.00<br />

25<br />

379.00<br />

20<br />

1038.00<br />

1139.33<br />

1183.33<br />

15<br />

10<br />

5<br />

190.00<br />

503.00 1227.00<br />

278.00 481.00<br />

1248.67<br />

1365.33<br />

256.00 335.00<br />

459.00<br />

1408.67<br />

411.33 1466.33<br />

172.00<br />

1584.00<br />

234.00 1626.33<br />

133.00 1758.67<br />

1834.00 1947.67<br />

0<br />

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000<br />

m /z<br />

PEG 600 + C H C A w ith C 02 turbo_090625110557 # 1-45 R T : 0.00-0.87 AV: 45 N L : 3.28<br />

T: ITM S + p M ALD I t Full m s [150.00-2000.00]<br />

100<br />

95<br />

849.33<br />

937.00<br />

90<br />

808.00<br />

85<br />

80<br />

979.33<br />

75<br />

739.67<br />

70<br />

65<br />

651.67<br />

709.33<br />

1023.67<br />

Peg 600 CO 2<br />

60<br />

55<br />

1066.67<br />

50<br />

45<br />

40<br />

564.00<br />

622.67<br />

607.67<br />

1110.67<br />

1144.33<br />

1160.33<br />

35<br />

517.33<br />

1229.67<br />

1274.67<br />

30<br />

1297.00<br />

25<br />

20<br />

491.67<br />

1341.33<br />

1360.33<br />

1426.67<br />

1466.33<br />

15<br />

10<br />

212.33<br />

272.00<br />

361.67<br />

403.33<br />

449.33<br />

1557.33<br />

1603.33<br />

1654.67<br />

1722.00<br />

1770.67<br />

1805.33<br />

1930.33<br />

5<br />

0<br />

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000<br />

m /z<br />

26


Ultramark + CHCA_090619125632 # 1-45 RT: 0.00-1.30 AV: 45 NL: 7.38<br />

T: ITMS + p MALDI Full ms [100.00-2000.00]<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1319.5 1320.0 1320.5 1321.0 1321.5 1322.0 1322.5 1323.0 1323.5 1324.0 1324.5 1325.0 1325.5 1326.0 1326.5<br />

Ultramark+CHCA with CO2 turbo_090622163636 # 1-26 RT: 0.00-0.98 AV: 26 NL: 2.28<br />

T: ITMS + p MALDI E Full ms [100.00-2000.00]<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1395.12<br />

1398.72<br />

1400.64<br />

1322.00<br />

1414.12<br />

1413.44<br />

1413.04<br />

1411.32<br />

1410.16<br />

m/z<br />

1415.12<br />

1394 1396 1398 1400 1402 1404 1406 1408 1410 1412 1414 1416 1418 1420 1422 1424 1426 1428 1430 1432 1434 1436<br />

m/z<br />

1323.00<br />

1416.24<br />

1417.80<br />

1418.56<br />

1419.08<br />

1419.60<br />

1324.00<br />

1426.12<br />

1430.08 1436.<br />

1428.44<br />

Helium vs CO 2<br />

T : p m s [ 1 5 0 . 0 0 2 0 0 0 . 0 0 ]<br />

100<br />

90<br />

1522.1<br />

1622.1<br />

80<br />

70<br />

60<br />

m/z-1416<br />

Helium<br />

1322.1<br />

1422.1<br />

1721.9<br />

50<br />

40<br />

1222.1<br />

1821.9<br />

30<br />

20<br />

219.2<br />

1319.42 1319.58 1320.25 1324.67 1325.00<br />

1319.83 1320.67 1325.50<br />

1326.00<br />

1326.33<br />

1122.1<br />

1921.9<br />

10<br />

430.9<br />

1022.2<br />

365.1 446.7 669.4 806.4<br />

0<br />

500 1000 1500 2000<br />

T : + p m s [ 1 5 0 . 0 0 2 0 0 0 . 0 0 ]<br />

m /z<br />

1518.7<br />

100<br />

1618.0<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

211.1<br />

1401.60 1422.52 1431.36<br />

1404.28 1433.08<br />

1393.08 1396.28 1407.56 1424.40 1427.04<br />

1435.60<br />

1405.60<br />

1421.16<br />

1408.96<br />

424.7<br />

m/z-1416<br />

CO 2<br />

530.3 855.5 1074.8<br />

809.7<br />

1118.1<br />

1218.8<br />

1418.0<br />

1716.9<br />

1318.3 1817.0<br />

1917.3<br />

500 1000 1500 2000<br />

m /z<br />

27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!