21.12.2013 Views

Synthesis of Coupler Curves of Spherical Four-bar ... - IFToMM

Synthesis of Coupler Curves of Spherical Four-bar ... - IFToMM

Synthesis of Coupler Curves of Spherical Four-bar ... - IFToMM

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

12th <strong>IFToMM</strong> World Congress, Besançon (France), June18-21, 2007<br />

<strong>Synthesis</strong> <strong>of</strong> <strong>Coupler</strong> <strong>Curves</strong> <strong>of</strong> <strong>Spherical</strong> <strong>Four</strong>-<strong>bar</strong> Mechanism<br />

Through Fast <strong>Four</strong>ier Transform<br />

Jinkui Chu * Jianwei Sun †<br />

Key Laboratory for Precision and Non-traditional Machining Technology <strong>of</strong> Ministry <strong>of</strong> Education;<br />

Key Laboratory for Micro/Nano Technology and System <strong>of</strong> Liao-ning Province<br />

DaLian 116023, P. R. China<br />

DaLian 116023, P. R. China<br />

Abstract—In this paper , the mathematic representation <strong>of</strong><br />

coupler curve <strong>of</strong> the spherical four-<strong>bar</strong> mechanisms is proposed.<br />

Base on the expression, the relationship between coupler curve<br />

and the basic dimensional types is discovered, and the formulas<br />

which can compute the position for coupler point, true size and<br />

installing dimensions <strong>of</strong> the spherical four-<strong>bar</strong> mechanism is<br />

deduced. These formulas make the spherical four-<strong>bar</strong> mechanism<br />

path generation with prescribed timing be possible. Finally, an<br />

example is given to prove it<br />

.<br />

Keywords: <strong>Spherical</strong> four-<strong>bar</strong> mechanism, Path generator,<br />

Harmonic component, Dimension synthesis<br />

mechanism, and use these formulas to approach the<br />

problems <strong>of</strong> path generation with prescribed timing.<br />

II. Mathematical description <strong>of</strong> basic geometric<br />

constructions<br />

I. Introduction<br />

Path generation problems in planar has been extensively<br />

studied. It seems that investigations specifically dealing<br />

with path generating problems in spherical kinematics are<br />

relatively few. In recent years, there is a tendency to use<br />

spherical mechanism; more and more authors used<br />

different means to solve this problem. Tong [1] discussed<br />

the syntheses <strong>of</strong> planar and spherical four-<strong>bar</strong> path<br />

generators by using the pole method. Chiang [2] presented<br />

a discussion <strong>of</strong> the spherical four-<strong>bar</strong> path generator to<br />

generate a coupler curve passing through four given path<br />

points. Moreover, Bagci [3] proposed an approach to treat<br />

path generating by means <strong>of</strong> geometric methods. The<br />

Symmetrical coupler curve and singular point<br />

classification in planar and spherical swinging-block<br />

linkages have been discussed in Shirazi [4].Chu [5] study<br />

the coupler curve <strong>of</strong> planar four-<strong>bar</strong> linkages in the<br />

frequency field by using the complex vector and frequency<br />

method. And base on the theory, the synthesis <strong>of</strong> coupler<br />

curves <strong>of</strong> planar four-<strong>bar</strong> linkages through fast <strong>Four</strong>ier<br />

transforms was investigated<br />

[6-8] . In this paper, by<br />

discussing the relationship between coupler curve <strong>of</strong> the<br />

spherical four-<strong>bar</strong> mechanism and it’s harmonic<br />

composition, we determine the basic dimensional type <strong>of</strong><br />

spherical four-<strong>bar</strong> mechanism and deduce the formulas<br />

which may compute the position for coupler point, true<br />

size and installing dimensions <strong>of</strong> the spherical four-<strong>bar</strong><br />

*E-mail: chujk@dlut.edu.cn<br />

† E-mail: avensun@tom.com<br />

Fig. 1. Model <strong>of</strong> spherical four-<strong>bar</strong> mechanism<br />

As shown in fig.1, point O is the centre <strong>of</strong> a unit sphere.<br />

And Oxyz is a left-handed rectangular coordinate system<br />

with origin at O, the sphere <strong>of</strong> radius R which may be<br />

considered <strong>of</strong> dimensionless length, α = central angle <strong>of</strong><br />

the driving crank AB, β = central angle <strong>of</strong> the swing link<br />

CD, γ = central angle <strong>of</strong> the coupler link BC, ξ =<br />

central angle <strong>of</strong> the framework AD. P is the arbitrary point<br />

on coupler link BC, and the corner dimension is θ<br />

p<br />

, use<br />

θ ,θ 0 1<br />

to denote the central angle <strong>of</strong> the BP and rotation<br />

angle <strong>of</strong> driving lever AB respectively. Consider moving<br />

coordinate ( O, e1,<br />

e2<br />

, e ) , e ,e<br />

3 1 2<br />

coincide with OB and<br />

the tangent <strong>of</strong> AB respectively, e<br />

3<br />

= e1<br />

× e2<br />

. Coordinate<br />

system e1 , e2<br />

, e3<br />

is defined relative to the fixedcoordinate<br />

system Oxyz by<br />

e<br />

1<br />

= icosα<br />

+ sinα(<br />

jcosθ1<br />

+ ksinθ1)


12th <strong>IFToMM</strong> World Congress, Besançon (France), June18-21, 2007<br />

= i cosα<br />

+ jsinαcosθ1 + ksinαsinθ1<br />

(1)<br />

e<br />

2<br />

= jcos(<br />

θ<br />

1<br />

+ π / 2) + ksin(<br />

θ1<br />

+ π / 2)<br />

= − j sinθ1 + k cosθ1<br />

(2)<br />

e<br />

3<br />

= isinα<br />

− cosα<br />

( jcosθ1<br />

+ ksinθ1)<br />

= isinα<br />

− jcosαcosθ1 − kcosαsinθ1<br />

(3)<br />

Where: θ<br />

1<br />

= Q + ωt<br />

; Q is initial angle <strong>of</strong> the<br />

driving crank<br />

Positions <strong>of</strong> point P may be expressed in terms <strong>of</strong> the<br />

coordinate system Oe e as follows:<br />

1 2e3<br />

x<br />

pe<br />

= R cosθ 0<br />

(4)<br />

y<br />

pe<br />

= −R<br />

sinθ 0<br />

sin( θ<br />

2<br />

+ θ<br />

p<br />

) (5)<br />

z<br />

pe<br />

= R sin θ<br />

0<br />

cos( θ<br />

2<br />

+ θ<br />

p<br />

) (6)<br />

We obtain the positions <strong>of</strong> point P in terms <strong>of</strong> the<br />

fixed-coordinate system Oxyz as follows:<br />

r = x e + y e + z e<br />

Where ( e<br />

p pe 1 pe 2<br />

1<br />

, e2<br />

, e3<br />

, xpe<br />

, y<br />

pe<br />

, z<br />

pe<br />

pe<br />

3<br />

) was defined by<br />

Equation (1-6). Thus<br />

r = i cosθ cosα<br />

+ sinθ<br />

cos( θ + θ )sinα<br />

] R<br />

p<br />

[<br />

0<br />

0 2 p<br />

[ cosθ 0cosθ1sinα<br />

+ sinθ<br />

0sinθ1sin(<br />

θ<br />

2<br />

+ θ<br />

p<br />

− sinθ 0cos(<br />

θ<br />

2<br />

+ θ<br />

p<br />

)cosαcosθ1<br />

[ cosθ 0sinθ1sinα<br />

− sinθ<br />

0cosθ1sin(<br />

θ<br />

2<br />

+ θ<br />

p<br />

− sinθ 0cos(<br />

θ<br />

2<br />

+ θ<br />

p<br />

)cosαsinθ1<br />

+ j<br />

+ k<br />

The y axis and z axis are defined as the real axis and<br />

imaginary axis respectively. Above equation reduces to<br />

r = i cosθ cosα<br />

+ sinθ<br />

cos( θ + θ )sinα<br />

] R<br />

p<br />

[<br />

0<br />

0 2 p<br />

+ R [ cosθ<br />

0<br />

sinα<br />

− sinθ<br />

0<br />

(cos( θ<br />

2<br />

+ θ<br />

p<br />

)<br />

]R<br />

)<br />

]R<br />

) cosα<br />

+ k sin(<br />

θ + θ ))]e<br />

Where k = −1<br />

When the mechanism lies in standard installing position,<br />

and the angular velocity <strong>of</strong> input link AB is constant<br />

parameter ω (the input angle θ 1<br />

can be expressed as<br />

θ<br />

1<br />

= ωt ), the rpx<br />

which is the projection <strong>of</strong> rp<br />

on the x<br />

axis may be expressed as follow:<br />

r t)<br />

= Rcosθ cosα<br />

px<br />

(<br />

0<br />

t =<br />

2<br />

p<br />

kθ<br />

+ R sinθ<br />

cos( θ ( t)<br />

θ ) sinα<br />

(7)<br />

θ /<br />

1<br />

ω<br />

0 2<br />

+<br />

Where:<br />

The standard installing position means that the angle<br />

Q between AB and CD is 0°<br />

(defined the angle Q is<br />

initial angle <strong>of</strong> the driving crank); the frame AD lies on x-y<br />

plane; the centre <strong>of</strong> sphere is located at the origin <strong>of</strong><br />

coordinate.<br />

p<br />

1<br />

Similarly for the projection <strong>of</strong> on the y-z plane we<br />

have<br />

r t)<br />

= R[cosθ<br />

sinα<br />

− sinθ<br />

(cos( θ ( t)<br />

θ ) cosα<br />

pyz<br />

(<br />

0<br />

0 2<br />

+<br />

p<br />

kθ1<br />

+ k sin(<br />

θ<br />

2<br />

( t)<br />

+ θ<br />

p<br />

))]e (8)<br />

Figure.2 is a spherical four-<strong>bar</strong> mechanism (mechanism<br />

lies in general installing position), where O<br />

x<br />

, O<br />

y<br />

, Oz<br />

is<br />

the distance between O and O'<br />

, θ<br />

x<br />

is defined as the<br />

angle between the y' axis and the y axis measured in<br />

accord with the right-hand convention from y axis and the<br />

y ' axis about the x'<br />

axis.<br />

Fig. 2. General position <strong>of</strong> spherical four-<strong>bar</strong> mechanism<br />

In this case, base on the Equation (7),<br />

r p<br />

r p<br />

which is the<br />

projection <strong>of</strong> on the x axis, can be expressed as follow:<br />

rpx<br />

( t + t′<br />

) = Ox + Rcosθ 0cosα<br />

+ R sinθ<br />

0<br />

cos( θ<br />

2<br />

( t + t′<br />

) + θ<br />

p<br />

) sinα<br />

(9)<br />

Where: t ' = Q / ω<br />

Similarly, base on the Equation (8), for the projection <strong>of</strong><br />

r p<br />

on the y-z plane we have<br />

r<br />

r px<br />

kμ<br />

kθ<br />

x<br />

t + t′<br />

) = R' e + e R[cosθ<br />

sinα<br />

- sinθ<br />

0<br />

(cos( θ<br />

2<br />

( t + t′ ) + θ<br />

p<br />

) cosα<br />

kθ1<br />

+ k sin(<br />

θ ( t + t′<br />

) + θ ))]e<br />

pyz<br />

(<br />

0<br />

Where<br />

R'<br />

2<br />

y<br />

2<br />

z<br />

= O + O and<br />

2<br />

p<br />

μ = arctan<br />

O<br />

O<br />

z<br />

y<br />

(10)<br />

Equations (9), (10) will be used to discuss the<br />

relationship between coupler curve <strong>of</strong> the spherical<br />

four-<strong>bar</strong> mechanism and its harmonic composition


12th <strong>IFToMM</strong> World Congress, Besançon (France), June18-21, 2007<br />

III. Frequency analysis <strong>of</strong> the spherical four-<strong>bar</strong><br />

mechanism’s coupler curve.<br />

The θ<br />

2<br />

( t)<br />

+ θ<br />

p<br />

is a periodic function whose<br />

periodicity is 2 π , so Equation (9) is also a periodic<br />

function, and it’s periodicity was determined by the<br />

function <strong>of</strong> cos(<br />

θ<br />

2<br />

( t + t′ ) + θ<br />

p<br />

) .Defined the one<br />

dimensional <strong>Four</strong>ier expansion <strong>of</strong> cos(<br />

θ<br />

2<br />

( t ) + θ<br />

p<br />

) can<br />

be expressed as follow:<br />

∑ ∞ kϕ<br />

knω<br />

2<br />

( t)<br />

+ θ<br />

p<br />

) = c<br />

ne<br />

e<br />

n=<br />

−∞<br />

n t<br />

cos(<br />

θ (11)<br />

c<br />

Where<br />

n<br />

and ϕ<br />

n<br />

are the <strong>Four</strong>ier series’ amplitude<br />

and phase angle respectively.<br />

Substituting Equation (11) in Equation (9) yields<br />

r t + t′<br />

) = Ox + Rcosθ cosα<br />

px<br />

(<br />

0<br />

+ Rsin<br />

θ sinα<br />

0<br />

∑ ∞ n<br />

n=<br />

−∞<br />

c e<br />

k(<br />

ϕ + nQ)<br />

Merge the 0 item <strong>of</strong> the <strong>Four</strong>ier series, we can obtain<br />

r px<br />

( t + t′<br />

)<br />

kϕ0<br />

= ( O + Rcosθ<br />

cosα<br />

+ Rc<br />

sinθ<br />

sinαe<br />

)<br />

x<br />

0<br />

0<br />

∑<br />

0<br />

n<br />

e<br />

knωt<br />

k ( ϕ n + nQ) knωt<br />

+ sinθ0sinα<br />

cne<br />

e<br />

n ≠0<br />

kϕ −1<br />

c−<br />

1<br />

e , we have<br />

1 −kϕ<br />

∑ ∞ c<br />

− 1 n k ( ϕn<br />

−ϕ−<br />

) n t<br />

cos(<br />

2<br />

( ) +<br />

p<br />

)e = e<br />

1 k ω<br />

θ t θ<br />

e<br />

−1<br />

n=<br />

−∞ c<br />

−1<br />

Equation (11) dividing by<br />

c<br />

R (12)<br />

Equation (12) dividing by Rc<br />

−1sinθ<br />

0sinαe<br />

have<br />

r ( + ′<br />

px<br />

t t )<br />

k ( Q− −1<br />

)<br />

e<br />

ϕ =<br />

R c<br />

-1sinθ<br />

0sinα<br />

1<br />

(O<br />

x<br />

+ Rcosθ<br />

0cosα<br />

R c<br />

-1sinθ<br />

0sinα<br />

kϕ0 −k<br />

( ϕ −<br />

+ Rc<br />

sinθ<br />

sinαe<br />

) e<br />

0<br />

+<br />

0<br />

∑<br />

k ( ϕ − 1 −Q)<br />

1<br />

−Q)<br />

(13)<br />

, we<br />

c n k ( ϕ n −ϕ<br />

− 1 + (n + 1)Q) knωt<br />

(14)<br />

n ≠0<br />

c−<br />

1<br />

By comparing the equation (13) with the equation (14),<br />

we can find that they have the same amplitude (except the<br />

0 item) and the equation (13)’s phase angle subtracted<br />

from equation (14)’s phase angle gives ( n + 1)Q .<br />

Theθ 2<br />

( t)<br />

+ θ<br />

p<br />

is a periodic function whose periodicity<br />

is 2 π , so Equation (10) is also a periodic function, and the<br />

periodicity was determined by the function <strong>of</strong><br />

cos(<br />

θ ( t ) + θ )cosα<br />

+ ksin(<br />

θ ( t)<br />

+ ) .Defined<br />

2 p<br />

2<br />

θ<br />

p<br />

e<br />

e<br />

the two-dimensional <strong>Four</strong>ier expansion <strong>of</strong> the expression<br />

can be expressed as follow:<br />

cos(<br />

θ ( t ) + θ )cosα<br />

+ ksin(<br />

θ ( t)<br />

+ )<br />

=<br />

∑ ∞ n<br />

n = −∞<br />

c'<br />

2 p<br />

2<br />

θ<br />

p<br />

n ω<br />

c' e e<br />

k ϕ ' kn<br />

t<br />

(15)<br />

Where<br />

n<br />

and ϕ'<br />

n<br />

are the <strong>Four</strong>ier series’ amplitude and<br />

phase angle respectively.<br />

Substituting Equation (15) in Equation (10) yields<br />

r<br />

′<br />

kμ<br />

kθ<br />

x<br />

pyz<br />

( t + t ) = R' e + e<br />

0<br />

R[cosθ<br />

sinα<br />

− sinθ<br />

(<br />

0 ∑ ∞ c'<br />

n<br />

n = -∞<br />

e<br />

k ( ϕ ' n + nQ)<br />

e<br />

knωt<br />

Merge the 1 item <strong>of</strong> the <strong>Four</strong>ier series, we can obtain<br />

r<br />

( t + t′<br />

) = R' e<br />

kμ<br />

pyz<br />

kϕ<br />

' 0 k ( θx<br />

+ Q) kωt<br />

R( cosθ<br />

0sinα<br />

− c'<br />

0<br />

sinθ<br />

0e<br />

)e e<br />

+<br />

− R sinθ<br />

∑<br />

)] e<br />

k ( ϕ'<br />

n + (n+<br />

1)Q+<br />

θ x ) k (n+<br />

1) ωt<br />

0<br />

c'<br />

n<br />

e e<br />

n≠0<br />

Merge the 0 item <strong>of</strong> the <strong>Four</strong>ier series and defined<br />

n = n + 1, we have<br />

r<br />

pyz<br />

( t + t′<br />

) = (R' e<br />

+ R<br />

− Rc'<br />

sinθ<br />

e<br />

kμ<br />

k ( ϕ'<br />

-1 + θ x )<br />

−1<br />

0<br />

kϕ<br />

' 0 k ( θx<br />

+ Q) kωt<br />

( cosθ<br />

0sinα<br />

− c'<br />

0<br />

sinθ<br />

0e<br />

)e e<br />

∑<br />

k ( ϕ ' n -1 + nQ+<br />

θ x ) knωt<br />

0<br />

c'<br />

n-1<br />

e e<br />

n≠0,1<br />

kϕ − 2<br />

e<br />

′<br />

−<br />

, we have<br />

)<br />

kθ1<br />

− R sinθ<br />

(16)<br />

Equation (15) dividing by c'<br />

2<br />

1 -kϕ′<br />

e<br />

- 2<br />

(cos( θ<br />

2<br />

( t)<br />

+ θ<br />

p<br />

)cosα<br />

+ ksin(<br />

θ<br />

2<br />

( t)<br />

+<br />

p<br />

)) =<br />

c′<br />

θ<br />

-2<br />

∑ ∞ c' n k ( ϕ ' n −ϕ<br />

' − ) n t<br />

e<br />

2 k ω<br />

e<br />

(17)<br />

n=<br />

−∞ c'<br />

−2<br />

k ( ϕ′<br />

2 −2Q)<br />

Equation (16) dividing by Rc−2sinθ0e<br />

−<br />

, we can<br />

obtain<br />

r ( + ′<br />

pyz<br />

t t )<br />

k (2 Q − − ′ 2<br />

e<br />

ϕ ) 1<br />

kμ<br />

= - [(R' e<br />

R c′<br />

-2sinθ<br />

0<br />

Rc'<br />

-2<br />

sinθ<br />

0<br />

k ( ϕ '-1 + θx<br />

) -k<br />

( ϕ '-2<br />

-Q+<br />

θx<br />

)<br />

− R c' sinθ<br />

e )]e<br />

−<br />

c'<br />

−1<br />

0<br />

1 kϕ<br />

' 0 k (2Q-ϕ<br />

'-2<br />

) kωt<br />

[(cosθ<br />

0sinα<br />

− c'<br />

0<br />

sinθ<br />

0e<br />

)]e e<br />

−2<br />

sinθ<br />

0<br />

∑<br />

c' 2<br />

n −1<br />

k ( ϕ ' n −1<br />

−ϕ<br />

' − + (n + 1)Q) knωt<br />

+ e<br />

e (18)<br />

n ≠0,1<br />

c'<br />

−2<br />

By comparing the equation (17) with the equation (18),<br />

we can find that they have the same amplitude (except the<br />

0 item and the 1 item) and the equation (17)’s phase angle<br />

subtracted from equation (18)’s phase angle gives<br />

( n + 1) Q + ϕ'<br />

n − 1-ϕ<br />

'<br />

n<br />

.


12th <strong>IFToMM</strong> World Congress, Besançon (France), June18-21, 2007<br />

These findings indicate that the <strong>Four</strong>ier series <strong>of</strong> the<br />

general position <strong>of</strong> spherical four-<strong>bar</strong> mechanism’s coupler<br />

curve mostly depend on equation (13) and equation (17),<br />

and the equations were determined by mechanism’s basic<br />

dimensional types which includeα , γ , β , ξ and θ p<br />

. We<br />

can calculate coupler rotation-angle θ<br />

2<br />

<strong>of</strong> the mechanism<br />

basic dimensional type, and obtain corresponding<br />

harmonic component’s database by utilizing one<br />

dimension and two dimensions FFT. Finally, constitute a<br />

numerical atlas database by put the harmonic component’s<br />

database and mechanisms’ basic dimensional types<br />

together. By comparing the harmonic characteristic<br />

components <strong>of</strong> the given coupler curve with the harmonic<br />

characteristic component <strong>of</strong> every group in the numerical<br />

atlas and utilizing fuzzy identification in Ref.[10], the<br />

weighting hamming distance can be figured out.<br />

According to fuzzy theory, weighting hamming distance<br />

can measure the similarity degree <strong>of</strong> the referred model<br />

and identified object. The two parts will more approximate<br />

when the distance is smaller. If the distance is equal to<br />

zero, the two are the same. The basic dimensional types <strong>of</strong><br />

linkage are determined by this method.<br />

IV. Compute the position for coupler point, true size<br />

and installing dimensions <strong>of</strong> the spherical four-<strong>bar</strong><br />

mechanism<br />

Defined<br />

r<br />

px<br />

kζ knωt<br />

∑ ∞ n<br />

ne<br />

e<br />

n = −∞D<br />

= is the harmonic<br />

component <strong>of</strong> the given coupler curve<br />

and<br />

r<br />

pyz<br />

kζ ' knωt<br />

∑ ∞ n<br />

'<br />

n<br />

e e<br />

n=<br />

−∞D<br />

r p<br />

project on x axis,<br />

= is the harmonic<br />

component <strong>of</strong> the given coupler curve<br />

plane.<br />

(1)Central angle <strong>of</strong> the driving crank α<br />

From equations (12) (16), we know that<br />

D'<br />

r p<br />

project on y-z<br />

n<br />

R sinθ<br />

0<br />

= (n ≠ 0,1) (19)<br />

c'<br />

n−1<br />

D<br />

sin sin =<br />

n<br />

R θ<br />

0<br />

α (n ≠ 0,1) (20)<br />

c<br />

n<br />

Substituting Equation (19) into Equation (20) yields<br />

D<br />

nc'<br />

n<br />

= arcsin(<br />

D' c<br />

)<br />

−1<br />

α (n ≠ 0,1) (21)<br />

n n<br />

The other basic dimensional types can be obtained by<br />

the proportional relation.<br />

(2) Initial angle <strong>of</strong> the driving crank Q<br />

From equations (11) (12), we can obtain<br />

Q = ζ −<br />

(22)<br />

1<br />

ϕ 1<br />

(3) Turn angle θ<br />

x<br />

From equations (15) (16), we know that<br />

ζ ' = −Q + θ<br />

(23)<br />

- 1<br />

ϕ'<br />

-2<br />

From equation (23) we can obtain<br />

x<br />

-1<br />

x<br />

θ = ζ ' + Q − ϕ'<br />

(24)<br />

(4) The sphere <strong>of</strong> radius R<br />

From equation (16), we know that<br />

kζ<br />

' 1 kϕ'<br />

0 k(<br />

θx<br />

+ Q)<br />

D' 1<br />

e = R(cosθ 0<br />

sinα<br />

− sinθ0c'<br />

0<br />

e ) e (25)<br />

From equation (25) we can obtain<br />

2<br />

2 2<br />

R = A + ( D n<br />

/ c ) ) / sin α (26)<br />

Where<br />

D<br />

(<br />

n<br />

A = [ D'<br />

1<br />

cosζ<br />

'<br />

1−<br />

'<br />

n<br />

c'<br />

0<br />

cos( ϕ '<br />

0<br />

+ θ<br />

x<br />

+ Q)<br />

/ c'<br />

n−1<br />

]/ cos( θ<br />

x<br />

+ Q<br />

θ<br />

(5) Central angle<br />

0<br />

From equation (19), we can obtain<br />

-2<br />

D'<br />

= arcsin(<br />

Rc'<br />

n<br />

θ<br />

0<br />

(27)<br />

n−1<br />

(6) Translational component on x axis Ox<br />

From equation (12), we know that<br />

D0 cosζ<br />

0<br />

= O x<br />

+ cosθ<br />

0sinα<br />

+ c0sinθ0sinαcosϕ0<br />

(28)<br />

From equation (28), we can obtain<br />

O<br />

x<br />

= D0cosζ<br />

0<br />

− cosθ<br />

0sinα<br />

− c0sinθ0sinαcosϕ0<br />

(29)<br />

(7) Translational component on y axis and z axis O<br />

y<br />

, Oz<br />

From equation (16), we know that<br />

kζ<br />

' 0 kμ<br />

k ( ϕ '-1<br />

+ θ x )<br />

D'<br />

0<br />

e = R' e − c'<br />

−1<br />

sinθ<br />

0e<br />

(30)<br />

From equation (30), we can obtain<br />

O<br />

y<br />

= D'<br />

0<br />

cosζ '<br />

0<br />

+ c'<br />

−1<br />

sinθ<br />

0cos(<br />

ϕ'<br />

−1<br />

+ θ<br />

x<br />

) (31)<br />

O<br />

z<br />

= D'<br />

0<br />

sinζ '<br />

0<br />

+ c'<br />

−1<br />

sinθ<br />

0sin(<br />

ϕ'<br />

−1<br />

+ θ<br />

x<br />

) (32)<br />

Base on the equations (21)(22)(24)(26)(27)(29)(31)(32),<br />

we can compute the position for coupler point, true size<br />

and installing dimensions <strong>of</strong> the spherical four-<strong>bar</strong><br />

mechanism.<br />

V. Illustration<br />

Figure 3 shows the given coupler curve, (a) the given<br />

coupler curve; (b) the coupler curve project on x-y plane;<br />

(c) the coupler curve project on x-z plane; (d) the coupler<br />

curve project on y-z plane. Suppose a spherical four-<strong>bar</strong><br />

linkages is to be synthesized to generate the given coupler<br />

curve<br />

<strong>Spherical</strong> four-<strong>bar</strong> mechanism path generation will be<br />

done by using the follow steps. First, based on those<br />

sampling points (in this paper, we choose 64 points and<br />

the sampling points are denoted by “+”), the<br />

)<br />

)


12th <strong>IFToMM</strong> World Congress, Besançon (France), June18-21, 2007<br />

corresponding harmonic component <strong>of</strong> the given couple<br />

curve can be obtained by utilizing one dimension and two<br />

dimension FFT. Second, carry out identification between<br />

the harmonic characteristic component got from first step<br />

and the corresponding component in the numerical atlas.<br />

Decide the basic dimensional types <strong>of</strong> mechanism by using<br />

fuzzy identification method. Finally, the true size and<br />

installing dimensions <strong>of</strong> the spherical four-<strong>bar</strong> mechanism<br />

can be computed by the basic dimensional types and the<br />

equations (21) (22) (24) (26) (27) (29) (31) and (32).The<br />

results are:<br />

α = 23.0795° γ = 47.1624°<br />

β = 53.1831° ξ = 57.1969°<br />

θ = 68.0000° θ = 29.7188°<br />

p<br />

0<br />

θ = 15.5601° Q = 30.0578°<br />

x<br />

O = 9.9804mm O = -4.9766mm<br />

x<br />

y<br />

O = -5.9621mm R = 2.7231mm<br />

z<br />

Fig. 3. Given coupler curve <strong>of</strong> spherical four-<strong>bar</strong> mechanism<br />

Figure 4 shows the fitting comparison between the<br />

given coupler curve and the actual mechanisms’ coupler<br />

curve. The given coupler is denoted by “—” and the actual<br />

mechanisms’ coupler curve is denoted by “·”.<br />

VI. Conclusion<br />

The spherical four-<strong>bar</strong> mechanism is the most basic and<br />

useful spherical hinge which can be used to many<br />

machines. Because the spherical mechanism have more<br />

parameters, the path generation is harder than plane<br />

mechanism’s. The usual method used for path generation<br />

only solve the finitely separated path-points or a segment<br />

<strong>of</strong> coupler curve, the method we have proposed makes the<br />

closed coupler curve generation be possible.<br />

VII. Acknowledgements<br />

This project was supported by the National Natural<br />

Science Foundation <strong>of</strong> China (Grant No. 50475153) and<br />

the Foundation <strong>of</strong> Ministry <strong>of</strong> Education (NCET-04-0266)<br />

Reference<br />

[1] Shih-his Tong and C.H.Chiang. Syntheses <strong>of</strong> Planar and <strong>Spherical</strong><br />

<strong>Four</strong>-Bar Path Generators By the Pole Method. Mechanism and<br />

Machine Theory, 27(2):143–155, 1992.<br />

[2] Cemil Bagci. Geometric Methods for the <strong>Synthesis</strong> <strong>of</strong> <strong>Spherical</strong><br />

Mechanisms for the Generation <strong>of</strong> Functions, Paths and Rigid-Body<br />

Positions Using Conformal projections. Mechanism and Machine<br />

Theory, 19(2):113–127, 1984.<br />

[3] C.H.Chiang. Syntheses <strong>of</strong> <strong>Spherical</strong> <strong>Four</strong>-Bar Path Generators.<br />

Mechanism and Machine Theory, 21:135–143, 1986.<br />

[4] Shirazi and Kourosh h. Symmetrical <strong>Coupler</strong> Curve and Singular<br />

Point Classification in Planar and <strong>Spherical</strong> Swinging-Block<br />

Linkages. Journal <strong>of</strong> Mechanical Design Transactions <strong>of</strong> the ASME,<br />

128(2):436-443, March 2006.<br />

[5] Chu jinkui and others. Frequency Analysis <strong>of</strong> the planar Linkage's<br />

<strong>Coupler</strong> <strong>Curves</strong>. Jixie Kexue Yu Jishu/Mechanical Science and<br />

Technology, 41(1):1-5, January 1992.<br />

[6] Chu jinkui and Cao weiqing. <strong>Synthesis</strong> <strong>of</strong> <strong>Coupler</strong> <strong>Curves</strong> <strong>of</strong> Planar<br />

<strong>Four</strong>-Bar Linkages Through Fast <strong>Four</strong>ier Transform. Chinese journal<br />

<strong>of</strong> mechanism engineer, 29(5):117-122, October 1993.<br />

[7] Chu jinkui and others. Relationship between properties <strong>of</strong> coupler<br />

curve and link's dimensions in 4-<strong>bar</strong> mechanisms and its' application.<br />

Proceeding <strong>of</strong> the 2004 the Eleventh World Congress in Mechanism<br />

and Machine Science, Proceedings <strong>of</strong> the 2004 - the Eleventh World<br />

Congress in Mechanism and Machine Science, 1274-1279, 2004<br />

[8] Wu xin and others. Dimensional <strong>Synthesis</strong> for Planar 4-Bar Path<br />

Generator with Prescribed Timing. Jixie Kexue Yu Jishu/Mechanical<br />

Science and Technology, 17(6):885-888, November 1998.<br />

[9] John. R. McGarya. Rapid search and selection <strong>of</strong> path generating<br />

mechanisms from a library. Mechanism and Machine Theory,<br />

29(2):223–235, 1994<br />

[10] Huo jngping and Cao weiqing. Fuzzy mathematics method for locus<br />

synthesis <strong>of</strong> planer four-<strong>bar</strong> linkage. Chinese journal <strong>of</strong> mechanism<br />

engineer. 3 (1) : 23-28,1990<br />

[11] G N. Sandor. and A G.Erdman. Advanced Mechanism Design:<br />

Analysis and <strong>Synthesis</strong>, Vol.2, 1984,<br />

Fig. 4. Fitting comparison between the given coupler curve and theactual<br />

coupler curve <strong>of</strong> spherical four-<strong>bar</strong> mechanism

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!