22.12.2013 Views

slides, in English - Faculty of Physics

slides, in English - Faculty of Physics

slides, in English - Faculty of Physics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Aerosol process<strong>in</strong>g by drizzl<strong>in</strong>g stratocumulus:<br />

a modell<strong>in</strong>g study us<strong>in</strong>g a novel particle-based approach<br />

Sylwester Arabas<br />

Anna Jaruga<br />

Hanna Pawłowska<br />

University <strong>of</strong> Warsaw<br />

<strong>Faculty</strong> <strong>of</strong> <strong>Physics</strong><br />

Institute <strong>of</strong> Geophysics<br />

8 th International Conference on Cloud and Precipitation<br />

Leipzig, August 1 st 2012


aerosol process<strong>in</strong>g: concepts<br />

• <strong>in</strong>teractions: aerosol —⊲ cloud & precipitation —⊲ aerosol<br />

• processed CCN formed by evaporation <strong>of</strong><br />

• collisionally-grown drops<br />

• drops with<strong>in</strong> which irreversible oxidation occurred<br />

• CCN spectrum modification by wet deposition<br />

• adequate cloud µ-physics representations?


aerosol process<strong>in</strong>g: concepts<br />

• <strong>in</strong>teractions: aerosol —⊲ cloud & precipitation —⊲ aerosol<br />

• processed CCN formed by evaporation <strong>of</strong><br />

• collisionally-grown drops<br />

• drops with<strong>in</strong> which irreversible oxidation occurred<br />

• CCN spectrum modification by wet deposition<br />

• adequate cloud µ-physics representations?


aerosol process<strong>in</strong>g: concepts<br />

• <strong>in</strong>teractions: aerosol —⊲ cloud & precipitation —⊲ aerosol<br />

• processed CCN formed by evaporation <strong>of</strong><br />

• collisionally-grown drops<br />

• drops with<strong>in</strong> which irreversible oxidation occurred<br />

• CCN spectrum modification by wet deposition<br />

• adequate cloud µ-physics representations?


aerosol process<strong>in</strong>g: concepts<br />

• <strong>in</strong>teractions: aerosol —⊲ cloud & precipitation —⊲ aerosol<br />

• processed CCN formed by evaporation <strong>of</strong><br />

• collisionally-grown drops<br />

• drops with<strong>in</strong> which irreversible oxidation occurred<br />

• CCN spectrum modification by wet deposition<br />

• adequate cloud µ-physics representations?


aerosol process<strong>in</strong>g: concepts<br />

• <strong>in</strong>teractions: aerosol —⊲ cloud & precipitation —⊲ aerosol<br />

• processed CCN formed by evaporation <strong>of</strong><br />

• collisionally-grown drops<br />

• drops with<strong>in</strong> which irreversible oxidation occurred<br />

• CCN spectrum modification by wet deposition<br />

• adequate cloud µ-physics representations?


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

s<strong>in</strong>gle-moment bulk:<br />

no <strong>in</strong>fluence <strong>of</strong> aerosol on cloud<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

s<strong>in</strong>gle-moment bulk:<br />

no <strong>in</strong>fluence <strong>of</strong> aerosol on cloud<br />

multi-moment bulk,<br />

1D-b<strong>in</strong>:<br />

aerosol may <strong>in</strong>fluence cloud<br />

no "memory" <strong>of</strong> drop nuclei<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

"dry radius" (nucleus)<br />

"wet radius" (solution drop)<br />

s<strong>in</strong>gle-moment bulk:<br />

no <strong>in</strong>fluence <strong>of</strong> aerosol on cloud<br />

multi-moment bulk,<br />

1D-b<strong>in</strong>:<br />

aerosol may <strong>in</strong>fluence cloud<br />

no "memory" <strong>of</strong> drop nuclei<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

"dry radius" (nucleus)<br />

2D-b<strong>in</strong><br />

Eulerian<br />

"wet radius" (solution drop)<br />

s<strong>in</strong>gle-moment bulk:<br />

no <strong>in</strong>fluence <strong>of</strong> aerosol on cloud<br />

multi-moment bulk,<br />

1D-b<strong>in</strong>:<br />

aerosol may <strong>in</strong>fluence cloud<br />

no "memory" <strong>of</strong> drop nuclei<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

"dry radius" (nucleus)<br />

2D-b<strong>in</strong><br />

Eulerian<br />

Lagrangian<br />

"wet radius" (solution drop)<br />

s<strong>in</strong>gle-moment bulk:<br />

no <strong>in</strong>fluence <strong>of</strong> aerosol on cloud<br />

multi-moment bulk,<br />

1D-b<strong>in</strong>:<br />

aerosol may <strong>in</strong>fluence cloud<br />

no "memory" <strong>of</strong> drop nuclei<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

"dry radius" (nucleus)<br />

2D-b<strong>in</strong><br />

Eulerian<br />

Lagrangian<br />

"wet radius" (solution drop)<br />

s<strong>in</strong>gle-moment bulk:<br />

no <strong>in</strong>fluence <strong>of</strong> aerosol on cloud<br />

multi-moment bulk,<br />

1D-b<strong>in</strong>:<br />

aerosol may <strong>in</strong>fluence cloud<br />

no "memory" <strong>of</strong> drop nuclei<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


aerosol process<strong>in</strong>g: adequate µ-physics?<br />

"dry radius" (nucleus)<br />

2D-b<strong>in</strong><br />

Eulerian<br />

Lagrangian<br />

"wet radius" (solution drop)<br />

s<strong>in</strong>gle-moment bulk:<br />

no <strong>in</strong>fluence <strong>of</strong> aerosol on cloud<br />

multi-moment bulk,<br />

1D-b<strong>in</strong>:<br />

aerosol may <strong>in</strong>fluence cloud<br />

no "memory" <strong>of</strong> drop nuclei<br />

key features <strong>of</strong> the Lagrangian (<strong>in</strong> size) approach:<br />

• diffusive error-free particle growth schemes<br />

(aka ”mov<strong>in</strong>g sectional”)<br />

• scales better than ND-b<strong>in</strong><br />

with grow<strong>in</strong>g number <strong>of</strong> particle attributes<br />

• . . .<br />

coupled with Lagrangian-<strong>in</strong>-space super-droplet approach


Lagrangian µ-physics: key elements<br />

• each particle (aka super-droplet) many ”similar” real-world particles<br />

• attributes: multiplicity, dry radius, wet radius, nucleus type, . . .<br />

• aerosol, cloud, precip. particles not dist<strong>in</strong>guished, subject to same processes<br />

Eulerian / PDE<br />

advection <strong>of</strong> heat<br />

advection <strong>of</strong> moisture<br />

Lagrangian / ODE<br />

particle transport by the flow<br />

condensational growth<br />

collisional growth<br />

sedimentation<br />

∑<br />

∂ t (ρ d r) + ∇(⃗vρ d r) = ρ d ṙ ṙ =<br />

. . .<br />

particles ∈ ∆V<br />

∑<br />

∂ t (ρ d θ) + ∇(⃗vρ d θ) = ρ d ˙θ ˙θ = . . .<br />

particles ∈ ∆V<br />

advection <strong>of</strong> trace gases<br />

<strong>in</strong>-particle aqueous chemistry<br />

. . . . . .<br />

• recent examples <strong>in</strong> context <strong>of</strong> precipitat<strong>in</strong>g clouds:<br />

• Shima et al. 2009, QJ<br />

• Andrejczuk et al. 2010, JGR<br />

• Riechelmann et al. 2012, NJP


Lagrangian µ-physics: key elements<br />

• each particle (aka super-droplet) many ”similar” real-world particles<br />

• attributes: multiplicity, dry radius, wet radius, nucleus type, . . .<br />

• aerosol, cloud, precip. particles not dist<strong>in</strong>guished, subject to same processes<br />

Eulerian / PDE<br />

advection <strong>of</strong> heat<br />

advection <strong>of</strong> moisture<br />

Lagrangian / ODE<br />

particle transport by the flow<br />

condensational growth<br />

collisional growth<br />

sedimentation<br />

∑<br />

∂ t (ρ d r) + ∇(⃗vρ d r) = ρ d ṙ ṙ =<br />

. . .<br />

particles ∈ ∆V<br />

∑<br />

∂ t (ρ d θ) + ∇(⃗vρ d θ) = ρ d ˙θ ˙θ = . . .<br />

particles ∈ ∆V<br />

advection <strong>of</strong> trace gases<br />

<strong>in</strong>-particle aqueous chemistry<br />

. . . . . .<br />

• recent examples <strong>in</strong> context <strong>of</strong> precipitat<strong>in</strong>g clouds:<br />

• Shima et al. 2009, QJ<br />

• Andrejczuk et al. 2010, JGR<br />

• Riechelmann et al. 2012, NJP


Lagrangian µ-physics: key elements<br />

• each particle (aka super-droplet) many ”similar” real-world particles<br />

• attributes: multiplicity, dry radius, wet radius, nucleus type, . . .<br />

• aerosol, cloud, precip. particles not dist<strong>in</strong>guished, subject to same processes<br />

Eulerian / PDE<br />

advection <strong>of</strong> heat<br />

advection <strong>of</strong> moisture<br />

Lagrangian / ODE<br />

particle transport by the flow<br />

condensational growth<br />

collisional growth<br />

sedimentation<br />

∑<br />

∂ t (ρ d r) + ∇(⃗vρ d r) = ρ d ṙ ṙ =<br />

. . .<br />

particles ∈ ∆V<br />

∑<br />

∂ t (ρ d θ) + ∇(⃗vρ d θ) = ρ d ˙θ ˙θ = . . .<br />

particles ∈ ∆V<br />

advection <strong>of</strong> trace gases<br />

<strong>in</strong>-particle aqueous chemistry<br />

. . . . . .<br />

• recent examples <strong>in</strong> context <strong>of</strong> precipitat<strong>in</strong>g clouds:<br />

• Shima et al. 2009, QJ<br />

• Andrejczuk et al. 2010, JGR<br />

• Riechelmann et al. 2012, NJP


Lagrangian µ-physics: key elements<br />

• each particle (aka super-droplet) many ”similar” real-world particles<br />

• attributes: multiplicity, dry radius, wet radius, nucleus type, . . .<br />

• aerosol, cloud, precip. particles not dist<strong>in</strong>guished, subject to same processes<br />

Eulerian / PDE<br />

advection <strong>of</strong> heat<br />

advection <strong>of</strong> moisture<br />

Lagrangian / ODE<br />

particle transport by the flow<br />

condensational growth<br />

collisional growth<br />

sedimentation<br />

∑<br />

∂ t (ρ d r) + ∇(⃗vρ d r) = ρ d ṙ ṙ =<br />

. . .<br />

particles ∈ ∆V<br />

∑<br />

∂ t (ρ d θ) + ∇(⃗vρ d θ) = ρ d ˙θ ˙θ = . . .<br />

particles ∈ ∆V<br />

advection <strong>of</strong> trace gases<br />

<strong>in</strong>-particle aqueous chemistry<br />

. . . . . .<br />

• recent examples <strong>in</strong> context <strong>of</strong> precipitat<strong>in</strong>g clouds:<br />

• Shima et al. 2009, QJ<br />

• Andrejczuk et al. 2010, JGR<br />

• Riechelmann et al. 2012, NJP


Lagrangian µ-physics: key elements<br />

• each particle (aka super-droplet) many ”similar” real-world particles<br />

• attributes: multiplicity, dry radius, wet radius, nucleus type, . . .<br />

• aerosol, cloud, precip. particles not dist<strong>in</strong>guished, subject to same processes<br />

Eulerian / PDE<br />

advection <strong>of</strong> heat<br />

advection <strong>of</strong> moisture<br />

Lagrangian / ODE<br />

particle transport by the flow<br />

condensational growth<br />

collisional growth<br />

sedimentation<br />

∑<br />

∂ t (ρ d r) + ∇(⃗vρ d r) = ρ d ṙ ṙ =<br />

. . .<br />

particles ∈ ∆V<br />

∑<br />

∂ t (ρ d θ) + ∇(⃗vρ d θ) = ρ d ˙θ ˙θ = . . .<br />

particles ∈ ∆V<br />

advection <strong>of</strong> trace gases<br />

<strong>in</strong>-particle aqueous chemistry<br />

. . . . . .<br />

• recent examples <strong>in</strong> context <strong>of</strong> precipitat<strong>in</strong>g clouds:<br />

• Shima et al. 2009, QJ<br />

• Andrejczuk et al. 2010, JGR<br />

• Riechelmann et al. 2012, NJP


Lagrangian µ-physics: key elements<br />

• each particle (aka super-droplet) many ”similar” real-world particles<br />

• attributes: multiplicity, dry radius, wet radius, nucleus type, . . .<br />

• aerosol, cloud, precip. particles not dist<strong>in</strong>guished, subject to same processes<br />

Eulerian / PDE<br />

advection <strong>of</strong> heat<br />

advection <strong>of</strong> moisture<br />

Lagrangian / ODE<br />

particle transport by the flow<br />

condensational growth<br />

collisional growth<br />

sedimentation<br />

∑<br />

∂ t (ρ d r) + ∇(⃗vρ d r) = ρ d ṙ ṙ =<br />

. . .<br />

particles ∈ ∆V<br />

∑<br />

∂ t (ρ d θ) + ∇(⃗vρ d θ) = ρ d ˙θ ˙θ = . . .<br />

particles ∈ ∆V<br />

advection <strong>of</strong> trace gases<br />

<strong>in</strong>-particle aqueous chemistry<br />

. . . . . .<br />

• recent examples <strong>in</strong> context <strong>of</strong> precipitat<strong>in</strong>g clouds:<br />

• Shima et al. 2009, QJ<br />

• Andrejczuk et al. 2010, JGR<br />

• Riechelmann et al. 2012, NJP


Lagrangian µ-physics: key elements<br />

• each particle (aka super-droplet) many ”similar” real-world particles<br />

• attributes: multiplicity, dry radius, wet radius, nucleus type, . . .<br />

• aerosol, cloud, precip. particles not dist<strong>in</strong>guished, subject to same processes<br />

Eulerian / PDE<br />

advection <strong>of</strong> heat<br />

advection <strong>of</strong> moisture<br />

Lagrangian / ODE<br />

particle transport by the flow<br />

condensational growth<br />

collisional growth<br />

sedimentation<br />

∑<br />

∂ t (ρ d r) + ∇(⃗vρ d r) = ρ d ṙ ṙ =<br />

. . .<br />

particles ∈ ∆V<br />

∑<br />

∂ t (ρ d θ) + ∇(⃗vρ d θ) = ρ d ˙θ ˙θ = . . .<br />

particles ∈ ∆V<br />

advection <strong>of</strong> trace gases<br />

<strong>in</strong>-particle aqueous chemistry<br />

. . . . . .<br />

• recent examples <strong>in</strong> context <strong>of</strong> precipitat<strong>in</strong>g clouds:<br />

• Shima et al. 2009, QJ<br />

• Andrejczuk et al. 2010, JGR<br />

• Riechelmann et al. 2012, NJP


Int. Cloud Modell<strong>in</strong>g Workshop 2012 ”drizzl<strong>in</strong>g Sc case”<br />

(Wojciech Grabowski & Zach Lebo)<br />

• VOCALS-<strong>in</strong>spired<br />

• 2D prescribed-flow (s<strong>in</strong>gle eddy)<br />

• bi-modal <strong>in</strong>itial dry aerosol spectrum<br />

• details:<br />

http://rap.ucar.edu/˜ gthompsn/workshop2012/case1/


Int. Cloud Modell<strong>in</strong>g Workshop 2012 ”drizzl<strong>in</strong>g Sc case”<br />

(Wojciech Grabowski & Zach Lebo)<br />

• VOCALS-<strong>in</strong>spired<br />

• 2D prescribed-flow (s<strong>in</strong>gle eddy)<br />

• bi-modal <strong>in</strong>itial dry aerosol spectrum<br />

• details:<br />

http://rap.ucar.edu/˜ gthompsn/workshop2012/case1/


Int. Cloud Modell<strong>in</strong>g Workshop 2012 ”drizzl<strong>in</strong>g Sc case”<br />

(Wojciech Grabowski & Zach Lebo)<br />

• VOCALS-<strong>in</strong>spired<br />

• 2D prescribed-flow (s<strong>in</strong>gle eddy)<br />

• bi-modal <strong>in</strong>itial dry aerosol spectrum<br />

• details:<br />

http://rap.ucar.edu/˜ gthompsn/workshop2012/case1/<br />

super-droplet conc. [1/dx/dy/dz]<br />

cloud droplet conc. [1/cm 3 ]<br />

aerosol concentration [1/cm 3 ]<br />

1.4<br />

140<br />

1.4<br />

140<br />

1.4<br />

140<br />

1.2<br />

120<br />

1.2<br />

120<br />

1.2<br />

120<br />

1<br />

100<br />

1<br />

100<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

80<br />

60<br />

Y [km]<br />

0.8<br />

0.6<br />

80<br />

60<br />

Y [km]<br />

0.8<br />

0.6<br />

80<br />

60<br />

0.4<br />

40<br />

0.4<br />

40<br />

0.4<br />

40<br />

0.2<br />

20<br />

0.2<br />

20<br />

0.2<br />

20<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0


icicle<br />

http://icicle.igf.fuw.edu.pl/<br />

• icicle – a new open-source advection eq. systems solver<br />

• Eulerian advection: MPDATA (Smolarkiewicz 1983, . . . )<br />

• . . .<br />

• icicle’s Lagrangian µ-physics module:<br />

• coalescence: Super-Droplet Monte-Carlo Scheme (Shima et al. 2009)<br />

• aerosol hygroscopicity: κ-Köhler (Petters & Kreidenweis, 2007)<br />

• gravitational sedimentation: Khvorostyanov & Curry, 2002<br />

• . . .<br />

• implementation: C++ / Thrust (GPU-ready!)


icicle<br />

http://icicle.igf.fuw.edu.pl/<br />

• icicle – a new open-source advection eq. systems solver<br />

• Eulerian advection: MPDATA (Smolarkiewicz 1983, . . . )<br />

• . . .<br />

• icicle’s Lagrangian µ-physics module:<br />

• coalescence: Super-Droplet Monte-Carlo Scheme (Shima et al. 2009)<br />

• aerosol hygroscopicity: κ-Köhler (Petters & Kreidenweis, 2007)<br />

• gravitational sedimentation: Khvorostyanov & Curry, 2002<br />

• . . .<br />

• implementation: C++ / Thrust (GPU-ready!)


icicle<br />

http://icicle.igf.fuw.edu.pl/<br />

• icicle – a new open-source advection eq. systems solver<br />

• Eulerian advection: MPDATA (Smolarkiewicz 1983, . . . )<br />

• . . .<br />

• icicle’s Lagrangian µ-physics module:<br />

• coalescence: Super-Droplet Monte-Carlo Scheme (Shima et al. 2009)<br />

• aerosol hygroscopicity: κ-Köhler (Petters & Kreidenweis, 2007)<br />

• gravitational sedimentation: Khvorostyanov & Curry, 2002<br />

• . . .<br />

• implementation: C++ / Thrust (GPU-ready!)


Monte-Carlo coalescence scheme (Shima et al. 2009)<br />

• for all n super-droplets <strong>in</strong> a grid box <strong>of</strong> volume ∆V <strong>in</strong> timestep ∆t<br />

• each represent<strong>in</strong>g ξ real particles (aerosol/cloud/drizzle/ra<strong>in</strong>)<br />

• the probability <strong>of</strong> coalescence <strong>of</strong> i-th and j-th super-droplets is:<br />

P ij = max(ξ i , ξ j ) · E(r i , r j ) · π(r i + r j ) 2 · |v i − v j | · ∆t<br />

} {{ } ∆V · n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2<br />

coalescence kernel<br />

where r – drop radii, E(r i , r j ) – collection efficiency, v – drop velocities<br />

• coalescence takes place once <strong>in</strong> a number <strong>of</strong> timesteps (def. by P ij )<br />

• all m<strong>in</strong>(ξ i ,ξ j ) droplets coalesce<br />

there’s always a ”b<strong>in</strong>” <strong>of</strong> the right size to store the collided particles<br />

• collisions triggered by compar<strong>in</strong>g a uniform random number with P ij<br />

• extensive parameters summed ( conserved), <strong>in</strong>tensive averaged<br />

• [n/2] random non-overlapp<strong>in</strong>g (i,j) pairs exam<strong>in</strong>ed <strong>in</strong>stead <strong>of</strong> all (i,j) pairs<br />

cost: O ( n 2) O ( n ) , probability upscaled by n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2


Monte-Carlo coalescence scheme (Shima et al. 2009)<br />

• for all n super-droplets <strong>in</strong> a grid box <strong>of</strong> volume ∆V <strong>in</strong> timestep ∆t<br />

• each represent<strong>in</strong>g ξ real particles (aerosol/cloud/drizzle/ra<strong>in</strong>)<br />

• the probability <strong>of</strong> coalescence <strong>of</strong> i-th and j-th super-droplets is:<br />

P ij = max(ξ i , ξ j ) · E(r i , r j ) · π(r i + r j ) 2 · |v i − v j | · ∆t<br />

} {{ } ∆V · n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2<br />

coalescence kernel<br />

where r – drop radii, E(r i , r j ) – collection efficiency, v – drop velocities<br />

• coalescence takes place once <strong>in</strong> a number <strong>of</strong> timesteps (def. by P ij )<br />

• all m<strong>in</strong>(ξ i ,ξ j ) droplets coalesce<br />

there’s always a ”b<strong>in</strong>” <strong>of</strong> the right size to store the collided particles<br />

• collisions triggered by compar<strong>in</strong>g a uniform random number with P ij<br />

• extensive parameters summed ( conserved), <strong>in</strong>tensive averaged<br />

• [n/2] random non-overlapp<strong>in</strong>g (i,j) pairs exam<strong>in</strong>ed <strong>in</strong>stead <strong>of</strong> all (i,j) pairs<br />

cost: O ( n 2) O ( n ) , probability upscaled by n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2


Monte-Carlo coalescence scheme (Shima et al. 2009)<br />

• for all n super-droplets <strong>in</strong> a grid box <strong>of</strong> volume ∆V <strong>in</strong> timestep ∆t<br />

• each represent<strong>in</strong>g ξ real particles (aerosol/cloud/drizzle/ra<strong>in</strong>)<br />

• the probability <strong>of</strong> coalescence <strong>of</strong> i-th and j-th super-droplets is:<br />

P ij = max(ξ i , ξ j ) · E(r i , r j ) · π(r i + r j ) 2 · |v i − v j | · ∆t<br />

} {{ } ∆V · n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2<br />

coalescence kernel<br />

where r – drop radii, E(r i , r j ) – collection efficiency, v – drop velocities<br />

• coalescence takes place once <strong>in</strong> a number <strong>of</strong> timesteps (def. by P ij )<br />

• all m<strong>in</strong>(ξ i ,ξ j ) droplets coalesce<br />

there’s always a ”b<strong>in</strong>” <strong>of</strong> the right size to store the collided particles<br />

• collisions triggered by compar<strong>in</strong>g a uniform random number with P ij<br />

• extensive parameters summed ( conserved), <strong>in</strong>tensive averaged<br />

• [n/2] random non-overlapp<strong>in</strong>g (i,j) pairs exam<strong>in</strong>ed <strong>in</strong>stead <strong>of</strong> all (i,j) pairs<br />

cost: O ( n 2) O ( n ) , probability upscaled by n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2


Monte-Carlo coalescence scheme (Shima et al. 2009)<br />

• for all n super-droplets <strong>in</strong> a grid box <strong>of</strong> volume ∆V <strong>in</strong> timestep ∆t<br />

• each represent<strong>in</strong>g ξ real particles (aerosol/cloud/drizzle/ra<strong>in</strong>)<br />

• the probability <strong>of</strong> coalescence <strong>of</strong> i-th and j-th super-droplets is:<br />

P ij = max(ξ i , ξ j ) · E(r i , r j ) · π(r i + r j ) 2 · |v i − v j | · ∆t<br />

} {{ } ∆V · n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2<br />

coalescence kernel<br />

where r – drop radii, E(r i , r j ) – collection efficiency, v – drop velocities<br />

• coalescence takes place once <strong>in</strong> a number <strong>of</strong> timesteps (def. by P ij )<br />

• all m<strong>in</strong>(ξ i ,ξ j ) droplets coalesce<br />

there’s always a ”b<strong>in</strong>” <strong>of</strong> the right size to store the collided particles<br />

• collisions triggered by compar<strong>in</strong>g a uniform random number with P ij<br />

• extensive parameters summed ( conserved), <strong>in</strong>tensive averaged<br />

• [n/2] random non-overlapp<strong>in</strong>g (i,j) pairs exam<strong>in</strong>ed <strong>in</strong>stead <strong>of</strong> all (i,j) pairs<br />

cost: O ( n 2) O ( n ) , probability upscaled by n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2


Monte-Carlo coalescence scheme (Shima et al. 2009)<br />

• for all n super-droplets <strong>in</strong> a grid box <strong>of</strong> volume ∆V <strong>in</strong> timestep ∆t<br />

• each represent<strong>in</strong>g ξ real particles (aerosol/cloud/drizzle/ra<strong>in</strong>)<br />

• the probability <strong>of</strong> coalescence <strong>of</strong> i-th and j-th super-droplets is:<br />

P ij = max(ξ i , ξ j ) · E(r i , r j ) · π(r i + r j ) 2 · |v i − v j | · ∆t<br />

} {{ } ∆V · n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2<br />

coalescence kernel<br />

where r – drop radii, E(r i , r j ) – collection efficiency, v – drop velocities<br />

• coalescence takes place once <strong>in</strong> a number <strong>of</strong> timesteps (def. by P ij )<br />

• all m<strong>in</strong>(ξ i ,ξ j ) droplets coalesce<br />

there’s always a ”b<strong>in</strong>” <strong>of</strong> the right size to store the collided particles<br />

• collisions triggered by compar<strong>in</strong>g a uniform random number with P ij<br />

• extensive parameters summed ( conserved), <strong>in</strong>tensive averaged<br />

• [n/2] random non-overlapp<strong>in</strong>g (i,j) pairs exam<strong>in</strong>ed <strong>in</strong>stead <strong>of</strong> all (i,j) pairs<br />

cost: O ( n 2) O ( n ) , probability upscaled by n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2


Monte-Carlo coalescence scheme (Shima et al. 2009)<br />

• for all n super-droplets <strong>in</strong> a grid box <strong>of</strong> volume ∆V <strong>in</strong> timestep ∆t<br />

• each represent<strong>in</strong>g ξ real particles (aerosol/cloud/drizzle/ra<strong>in</strong>)<br />

• the probability <strong>of</strong> coalescence <strong>of</strong> i-th and j-th super-droplets is:<br />

P ij = max(ξ i , ξ j ) · E(r i , r j ) · π(r i + r j ) 2 · |v i − v j | · ∆t<br />

} {{ } ∆V · n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2<br />

coalescence kernel<br />

where r – drop radii, E(r i , r j ) – collection efficiency, v – drop velocities<br />

• coalescence takes place once <strong>in</strong> a number <strong>of</strong> timesteps (def. by P ij )<br />

• all m<strong>in</strong>(ξ i ,ξ j ) droplets coalesce<br />

there’s always a ”b<strong>in</strong>” <strong>of</strong> the right size to store the collided particles<br />

• collisions triggered by compar<strong>in</strong>g a uniform random number with P ij<br />

• extensive parameters summed ( conserved), <strong>in</strong>tensive averaged<br />

• [n/2] random non-overlapp<strong>in</strong>g (i,j) pairs exam<strong>in</strong>ed <strong>in</strong>stead <strong>of</strong> all (i,j) pairs<br />

cost: O ( n 2) O ( n ) , probability upscaled by n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2


Monte-Carlo coalescence scheme (Shima et al. 2009)<br />

• for all n super-droplets <strong>in</strong> a grid box <strong>of</strong> volume ∆V <strong>in</strong> timestep ∆t<br />

• each represent<strong>in</strong>g ξ real particles (aerosol/cloud/drizzle/ra<strong>in</strong>)<br />

• the probability <strong>of</strong> coalescence <strong>of</strong> i-th and j-th super-droplets is:<br />

P ij = max(ξ i , ξ j ) · E(r i , r j ) · π(r i + r j ) 2 · |v i − v j | · ∆t<br />

} {{ } ∆V · n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2<br />

coalescence kernel<br />

where r – drop radii, E(r i , r j ) – collection efficiency, v – drop velocities<br />

• coalescence takes place once <strong>in</strong> a number <strong>of</strong> timesteps (def. by P ij )<br />

• all m<strong>in</strong>(ξ i ,ξ j ) droplets coalesce<br />

there’s always a ”b<strong>in</strong>” <strong>of</strong> the right size to store the collided particles<br />

• collisions triggered by compar<strong>in</strong>g a uniform random number with P ij<br />

• extensive parameters summed ( conserved), <strong>in</strong>tensive averaged<br />

• [n/2] random non-overlapp<strong>in</strong>g (i,j) pairs exam<strong>in</strong>ed <strong>in</strong>stead <strong>of</strong> all (i,j) pairs<br />

cost: O ( n 2) O ( n ) , probability upscaled by n·(n−1)<br />

2<br />

/ [ ]<br />

n<br />

2


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 12 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 24 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 36 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 48 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 60 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 72 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 84 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 96 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 108 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 120 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 132 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 144 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 156 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 168 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 180 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 192 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 204 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 216 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 228 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 240 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 252 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 264 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 276 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 288 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 300 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 312 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 324 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


pro<strong>of</strong>-<strong>of</strong>-concept simulation with super-droplets us<strong>in</strong>g icicle<br />

1.4<br />

water vapour mix<strong>in</strong>g ratio [g/kg]<br />

8<br />

t = 336 s<br />

1.4<br />

potential temperature [K]<br />

293<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

7.5<br />

7<br />

Y [km]<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

292<br />

291<br />

290<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

6.5<br />

6<br />

0.4<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

289<br />

288<br />

64 SD / grid cell<br />

( low res!)<br />

1.4<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

140<br />

1.4<br />

effective radius [um] (particles > 1 um)<br />

E(r i , r j ) = 10<br />

( unphysical!)<br />

1.2<br />

1<br />

120<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

80<br />

60<br />

40<br />

Y [km]<br />

0.8<br />

0.6<br />

0.4<br />

10<br />

0.2<br />

20<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

X [km]<br />

1


0.4<br />

3D LES with super-droplets (Arabas & Shima 2012)<br />

height [m]<br />

1.2<br />

sdm-middle-32<br />

1.0 • 24h LES us<strong>in</strong>g the ”RICO” set-up (van Zanten et al. 2011)<br />

0.8 • Nagoya Univ. CReSS model (Tsuboki 2008)<br />

0.6<br />

• comparison with aircraft measurements (OAP-2DS, Fast-FSSP)<br />

0.4<br />

sdm-middle-128<br />

1.2<br />

height [m]<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

-1 0 1 2<br />

w [m/s]<br />

-1 0 1<br />

S = RH - 1 [%]<br />

20 60 100<br />

CDNC [cm-3]<br />

5 10 15 20<br />

r eff [µm]<br />

0 0.5 1<br />

LWC [g/m 3 ]<br />

0.6 0.8 1<br />

k [1]<br />

0 2 4 6<br />

σ r [µm]<br />

More:<br />

• ICCP poster no. P.8.16<br />

• arXiv:1205.3313


Thanks for your attention!<br />

Acknowledgements:<br />

Sh<strong>in</strong>-ichiro Shima (Hyogo Univ.)<br />

Piotr Smolarkiewicz & Wojciech Grabowski (NCAR)<br />

Implementation <strong>of</strong> the super-droplet µ-physics <strong>in</strong> icicle is supported by<br />

Polish National Science Centre grant no. DEC-2011/01/N/ST10/01483<br />

Thanks are due authors <strong>of</strong> open-source s<strong>of</strong>tware used <strong>in</strong> icicle, <strong>in</strong>cl.:<br />

Blitz++, Thrust, Boost.units, gnuplot-iostream, . . .


Super-Droplet concentration<br />

number <strong>of</strong> ”b<strong>in</strong>s” (exchanged among ”parcels”)<br />

number <strong>of</strong> ”parcels” (each carry<strong>in</strong>g a s<strong>in</strong>gle ”b<strong>in</strong>”)<br />

16 SD / cell<br />

32 SD / cell<br />

64 SD / cell<br />

256 SD / cell<br />

t = 336 s<br />

t = 336 s<br />

t = 336 s<br />

t = 336 s<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

particle (> 1 um) concentration [1/cm 3 ]<br />

1.4<br />

140<br />

1.4<br />

140<br />

1.4<br />

140<br />

1.4<br />

140<br />

1.2<br />

120<br />

1.2<br />

120<br />

1.2<br />

120<br />

1.2<br />

120<br />

1<br />

100<br />

1<br />

100<br />

1<br />

100<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

80<br />

60<br />

Y [km]<br />

0.8<br />

0.6<br />

80<br />

60<br />

Y [km]<br />

0.8<br />

0.6<br />

80<br />

60<br />

Y [km]<br />

0.8<br />

0.6<br />

80<br />

60<br />

0.4<br />

40<br />

0.4<br />

40<br />

0.4<br />

40<br />

0.4<br />

40<br />

0.2<br />

20<br />

0.2<br />

20<br />

0.2<br />

20<br />

0.2<br />

20<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

0<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

0<br />

X [km]<br />

X [km]<br />

X [km]<br />

X [km]<br />

effective radius [um] (particles > 1 um)<br />

effective radius [um] (particles > 1 um)<br />

effective radius [um] (particles > 1 um)<br />

effective radius [um] (particles > 1 um)<br />

1.4<br />

1.4<br />

1.4<br />

1.4<br />

1.2<br />

1<br />

100<br />

1.2<br />

1<br />

100<br />

1.2<br />

1<br />

100<br />

1.2<br />

1<br />

100<br />

Y [km]<br />

0.8<br />

0.6<br />

10<br />

Y [km]<br />

0.8<br />

0.6<br />

10<br />

Y [km]<br />

0.8<br />

0.6<br />

10<br />

Y [km]<br />

0.8<br />

0.6<br />

10<br />

0.4<br />

0.4<br />

0.4<br />

0.4<br />

0.2<br />

0.2<br />

0.2<br />

0.2<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

1<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

1<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

1<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4<br />

1<br />

X [km]<br />

X [km]<br />

X [km]<br />

X [km]<br />

”multiple collisions” needed for low SD conc. (cf. Shima et al. 2009)<br />

not implemented yet <strong>in</strong> icicle!


aerosol process<strong>in</strong>g: m<strong>in</strong>imal modell<strong>in</strong>g framework<br />

s<strong>in</strong>gle<br />

parcel?<br />

precipitation<br />

needed<br />

• k<strong>in</strong>ematic (prescribed-flow)<br />

perhaps still enough? (focus on µ-physics)<br />

• decoupled from cloud dynamics<br />

computationally cheap


aerosol process<strong>in</strong>g: m<strong>in</strong>imal modell<strong>in</strong>g framework<br />

s<strong>in</strong>gle<br />

parcel?<br />

precipitation<br />

needed<br />

s<strong>in</strong>gle<br />

column?<br />

up- & downdraft<br />

needed<br />

• k<strong>in</strong>ematic (prescribed-flow)<br />

perhaps still enough? (focus on µ-physics)<br />

• decoupled from cloud dynamics<br />

computationally cheap


aerosol process<strong>in</strong>g: m<strong>in</strong>imal modell<strong>in</strong>g framework<br />

s<strong>in</strong>gle<br />

parcel?<br />

precipitation<br />

needed<br />

s<strong>in</strong>gle<br />

column?<br />

up- & downdraft<br />

needed<br />

2D<br />

enough?<br />

• k<strong>in</strong>ematic (prescribed-flow)<br />

perhaps still enough? (focus on µ-physics)<br />

• decoupled from cloud dynamics<br />

computationally cheap


aerosol process<strong>in</strong>g: m<strong>in</strong>imal modell<strong>in</strong>g framework<br />

...<br />

s<strong>in</strong>gle<br />

parcel?<br />

precipitation<br />

needed<br />

s<strong>in</strong>gle<br />

column?<br />

2D other...<br />

up- & downdraft<br />

needed<br />

enough?<br />

• k<strong>in</strong>ematic (prescribed-flow)<br />

perhaps still enough? (focus on µ-physics)<br />

• decoupled from cloud dynamics<br />

computationally cheap


aerosol process<strong>in</strong>g: m<strong>in</strong>imal modell<strong>in</strong>g framework<br />

...<br />

s<strong>in</strong>gle<br />

parcel?<br />

precipitation<br />

needed<br />

s<strong>in</strong>gle<br />

column?<br />

2D other...<br />

up- & downdraft<br />

needed<br />

enough?<br />

• k<strong>in</strong>ematic (prescribed-flow)<br />

perhaps still enough? (focus on µ-physics)<br />

• decoupled from cloud dynamics<br />

computationally cheap


aerosol process<strong>in</strong>g: m<strong>in</strong>imal modell<strong>in</strong>g framework<br />

...<br />

s<strong>in</strong>gle<br />

parcel?<br />

precipitation<br />

needed<br />

s<strong>in</strong>gle<br />

column?<br />

2D other...<br />

up- & downdraft<br />

needed<br />

enough?<br />

• k<strong>in</strong>ematic (prescribed-flow)<br />

perhaps still enough? (focus on µ-physics)<br />

• decoupled from cloud dynamics<br />

computationally cheap

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!