24.12.2013 Views

Extending the Van Laar Model to ... - Bentham Science

Extending the Van Laar Model to ... - Bentham Science

Extending the Van Laar Model to ... - Bentham Science

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Extending</strong> <strong>the</strong> <strong>Van</strong> <strong>Laar</strong> <strong>Model</strong> <strong>to</strong> Multicomponent Systems The Open Thermodynamics Journal, 2010, Volume 4 131<br />

12<br />

= 21<br />

= C <br />

<br />

<br />

RT<br />

<br />

<br />

C =<br />

and<br />

a i<br />

'<br />

1<br />

u w<br />

= da i<br />

dT<br />

a 1<br />

b 1<br />

a 2<br />

b 2<br />

2<br />

<br />

'<br />

a T 1<br />

2<br />

b + a ' <br />

2<br />

<br />

2<br />

a a '<br />

1 2 a 1<br />

+ a ' <br />

<br />

<br />

2<br />

<br />

<br />

(15)<br />

<br />

1<br />

b 2 b 1<br />

b 2 a 1<br />

a 2 <br />

<br />

1+ u <br />

ln<br />

(16)<br />

1+ w <br />

(17)<br />

Parameter ε<br />

12<br />

/(mol/cm 3 )<br />

0.1500<br />

0.1200<br />

0.0900<br />

0.0600<br />

0.0300<br />

0.0005<br />

0.0003<br />

0.0001<br />

-0.0001<br />

-0.0003<br />

280 300 320 340 360 380<br />

Temperature/K<br />

Fig. (1). Interaction parameters ( ij ) calculated for selected binary<br />

mixtures by means of <strong>the</strong> PRSV equation of state: chloroform (1) +<br />

benzene (2) ; chloroform (1) + THF (2) ; n-hexane<br />

(1) + benzene (2) ; chloroform (1) + methyl acetate (2) ;<br />

benzene (1) + methyl acetate (2) ; n-butane (1) + n-heptane<br />

(2), ; methanol (1) + water (2) .<br />

It is clear that <strong>the</strong> value of 12<br />

as represented by equation<br />

(15) cannot be categorically declared as ei<strong>the</strong>r positive or<br />

negative or zero without completing <strong>the</strong> calculations term by<br />

term. Thus, <strong>the</strong> excess Gibbs free energy represented by<br />

equation (14) can be positive, negative, or zero depending on<br />

<strong>the</strong> relative magnitude of <strong>the</strong> terms enclosed in <strong>the</strong> paren<strong>the</strong>ses.<br />

The physical significance of equation (14) is quite clear:<br />

whe<strong>the</strong>r a binary system is a positive deviation system or a<br />

negative deviation system is entirely defined by <strong>the</strong> sign of<br />

<strong>the</strong> interaction parameter while <strong>the</strong> magnitude of <strong>the</strong> deviation<br />

is a result of this parameter in combination with <strong>the</strong><br />

volumetric effects of <strong>the</strong> components. To illustrate <strong>the</strong> characteristics<br />

of <strong>the</strong> values of 12<br />

, we have used <strong>the</strong> PRSV<br />

equation of state [14, 15] <strong>to</strong> calculate <strong>the</strong> values of 12<br />

for<br />

several binary systems. The results are presented in Fig. (1).<br />

It can be seen that for some systems <strong>the</strong> calculated 12<br />

values<br />

are positive and for some o<strong>the</strong>r systems <strong>the</strong> 12<br />

values<br />

are negative. However, all 12 values appear <strong>to</strong> be linearly<br />

dependent on temperature and <strong>the</strong> calculated 12<br />

values do<br />

not necessarily represent <strong>the</strong> best parameter values in <strong>the</strong><br />

reformulated van <strong>Laar</strong> equation. Therefore, <strong>the</strong> 12<br />

term will<br />

be taken as an adjustable interaction parameter <strong>to</strong> be determined<br />

from <strong>the</strong> experimentally measured VLE values for <strong>the</strong><br />

binary system of interest. This interaction parameter and <strong>the</strong><br />

size parameters b 1 and b 2 constitute <strong>the</strong> three parameters required<br />

<strong>to</strong> represent a binary system in <strong>the</strong> application of <strong>the</strong><br />

reformulated van <strong>Laar</strong> equations.<br />

The excess Gibbs free energy equation for binary systems<br />

can be readily extended <strong>to</strong> multicomponent systems.<br />

The resulting excess Gibbs free energy equation and <strong>the</strong> corresponding<br />

equations for <strong>the</strong> logarithm of <strong>the</strong> activity coefficient<br />

of <strong>the</strong> k-th component in an N-component system are<br />

G E<br />

RT =<br />

and<br />

ln k<br />

=<br />

N1<br />

N<br />

<br />

i =1 j =i+1<br />

N<br />

b k<br />

N<br />

<br />

i =1<br />

x i<br />

x j<br />

b i<br />

b j<br />

ij<br />

<br />

i =1<br />

<br />

<br />

x i<br />

b<br />

<br />

i <br />

x i<br />

b i<br />

N<br />

<br />

i =1<br />

i k<br />

x i<br />

b i<br />

ik<br />

G <br />

E <br />

RT<br />

<br />

<br />

(18)<br />

(19)<br />

In particular, <strong>the</strong> equations for a ternary system are given by<br />

G E<br />

RT = x 1 x 2 b 1 b 2 12<br />

+ x 2<br />

x 3<br />

b 2<br />

b 3<br />

23<br />

+ x 1<br />

x 3<br />

b 1<br />

b 3<br />

13<br />

x 1<br />

b 1<br />

+ x 2<br />

b 2<br />

+ x 3<br />

b 3<br />

(20)<br />

b<br />

ln 1<br />

=<br />

1<br />

<br />

x 2<br />

b 2<br />

12<br />

+ x 3<br />

b 3<br />

13<br />

G E <br />

<br />

(21)<br />

x 1<br />

b 1<br />

+ x 2<br />

b 2<br />

+ x 3<br />

b 3 <br />

RT <br />

b<br />

ln 2<br />

=<br />

2<br />

<br />

x 1<br />

b 1<br />

12<br />

+ x 3<br />

b 3<br />

23<br />

G E <br />

<br />

(22)<br />

x 1<br />

b 1<br />

+ x 2<br />

b 2<br />

+ x 3<br />

b 3 <br />

RT <br />

and<br />

b<br />

ln 3<br />

=<br />

3<br />

<br />

x 1<br />

b 1<br />

13<br />

+ x 2<br />

b 2<br />

23<br />

G E <br />

<br />

(23)<br />

x 1<br />

b 1<br />

+ x 2<br />

b 2<br />

+ x 3<br />

b 3 <br />

RT <br />

4. APPLICATION OF THE REFORMULATED VAN<br />

LAAR EQUATIONS<br />

We have found that <strong>the</strong> size parameters for hydrocarbons,<br />

which generally belong <strong>to</strong> <strong>the</strong> normal fluids, can be estimated<br />

from <strong>the</strong> critical constants by means of any of <strong>the</strong> cubic<br />

equations of state that conform <strong>to</strong> <strong>the</strong> generic cubic equation<br />

of state represented by equation (13). In this paper, all<br />

size parameters including those for <strong>the</strong> polar components<br />

were calculated by means of <strong>the</strong> Peng-Robinson equation of<br />

state [16] according <strong>to</strong> <strong>the</strong> equation<br />

b = 0.077796RT c<br />

P c<br />

(24)<br />

The critical constants along with <strong>the</strong> calculated size parameters<br />

for ten hydrocarbons and four non-hydrocarbons are<br />

presented in Table 1.<br />

As <strong>the</strong> size parameters have units of cm 3 mol -1 , <strong>the</strong> interaction<br />

parameter 12<br />

has units of mol cm -3 . However, for<br />

simplicity, all parameters may be taken <strong>to</strong> be dimensionless<br />

without affecting <strong>the</strong> calculated VLE results. It should be

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!