24.12.2013 Views

Patterns of Late Glacial vegetation in The Netherlands - VU-DARE ...

Patterns of Late Glacial vegetation in The Netherlands - VU-DARE ...

Patterns of Late Glacial vegetation in The Netherlands - VU-DARE ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Eiszeitalter u. Gegenwart 47<br />

78 — 88<br />

8 Abbildungen<br />

Hannover 1997<br />

<strong>Patterns</strong> <strong>of</strong> <strong>Late</strong> <strong>Glacial</strong> <strong>vegetation</strong> <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong><br />

WIM Z. HOEK*)<br />

Weichselian <strong>Late</strong> <strong>Glacial</strong>, <strong>vegetation</strong>al development, climate, <strong>The</strong> <strong>Netherlands</strong><br />

Abstract: <strong>The</strong> Weichselian <strong>Late</strong> <strong>Glacial</strong> (ca. 13,000 -10,000<br />

years BP) marks the transition from the cold Weichsel <strong>Late</strong><br />

Pleniglacial to the warmer Holocene. Dur<strong>in</strong>g this period<br />

the climate rapidly changed as did the <strong>vegetation</strong> and the<br />

abiotic landscape. <strong>The</strong> <strong>vegetation</strong>al development <strong>of</strong> the<br />

Weichselian <strong>Late</strong> <strong>Glacial</strong> <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong> is determ<strong>in</strong>ed<br />

firstly by the large-scale changes <strong>in</strong> climate and <strong>in</strong> the second<br />

place by local variations <strong>in</strong> lithology, geomorphology<br />

and hydrology. Pollen diagrams from different areas, embrac<strong>in</strong>g<br />

the same time-stratigraphical <strong>in</strong>terval, <strong>of</strong>ten show<br />

clear variations <strong>in</strong> <strong>vegetation</strong> history, which can not be expla<strong>in</strong>ed<br />

on climatological grounds alone.<br />

In <strong>The</strong> <strong>Netherlands</strong> over 400 palynological sections, cover<strong>in</strong>g<br />

a part or the whole <strong>of</strong> the Weichselian <strong>Late</strong> <strong>Glacial</strong>,<br />

have been <strong>in</strong>vestigated by several <strong>in</strong>stitutes. For the compilation<br />

<strong>of</strong> the data from over 250 pollen diagrams, use was<br />

made <strong>of</strong> the European Pollen Database structure. Dated<br />

shifts <strong>in</strong> the arboreal pollen content constitute the basis <strong>of</strong><br />

a regional zonation scheme. With the help <strong>of</strong> this, iso-pollen<br />

maps <strong>of</strong> ma<strong>in</strong> taxa were constructed for different timew<strong>in</strong>dows<br />

with<strong>in</strong> the Weichselian <strong>Late</strong> <strong>Glacial</strong>. <strong>The</strong> dense<br />

network <strong>of</strong> palynological observation sites <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong><br />

permitted the draft<strong>in</strong>g <strong>of</strong> high-resolution iso-pollen<br />

maps <strong>of</strong> the period considered. A clear relationship can be<br />

recognized between the iso-pollen patterns and the landscape<br />

type. Thus, it should be possible to dist<strong>in</strong>guish more<br />

clearly between climate and other abiotic agencies <strong>of</strong> the<br />

environment which affected <strong>vegetation</strong>al development,<br />

[Spätglaziale Vegetationsverteilung<br />

<strong>in</strong> den Niederlanden]<br />

Kurzfassung: Das Weichsel-Spätglazial (ca. 13.000-10.000<br />

Jahre vor heute) markiert den Übergang vom kalten späten<br />

Weichsel-Pleniglazial zum wärmeren Holozän. Während<br />

dieser Periode änderten sich Klima, Vegetation und die<br />

abiotische Landschaft sehr rasch. Die Vegetationsentwicklung<br />

im Weichsel-Spätglazial der Niederlande wird <strong>in</strong> erster<br />

L<strong>in</strong>ie durch langfristige Klimaänderungen und an zweiter<br />

Stelle durch Veränderungen der Lithologie, Geomorphologie<br />

und Hydrologie gesteuert. Pollendiagramme aus verschiedenen<br />

Regionen, die das gleiche stratigraphische Intervall<br />

umfassen, zeigen <strong>of</strong>t deutliche Variationen <strong>in</strong> der<br />

Vegetationsgeschichte, die nicht alle<strong>in</strong> mit klimatischen<br />

Veränderungen erklärt werden können.<br />

Über 400 Pr<strong>of</strong>ile, die Teile oder das gesamte Weichsel-<br />

Spätglazial umfassen, wurden <strong>in</strong> den Niederlanden von<br />

*) Anschrift des Verfassers: Dr. W. Z. Hoek, <strong>The</strong> <strong>Netherlands</strong><br />

Centre for Geoecological Research (ICG), Faculty <strong>of</strong><br />

Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan<br />

1085, 1081 HV Amsterdam, <strong>The</strong> <strong>Netherlands</strong>.<br />

verschiedenen Instituten untersucht. Zur Kompilation von<br />

mehr als 250 Pollendiagrammen wurde die Etiropean Pollen<br />

Databasestruktur genutzt. Datierte Veränderungen im<br />

arborealen Pollenbestand bilden die Grundlage des regionalen<br />

Zonien<strong>in</strong>gsschemas. Mit Hilfe dieser Daten wurden<br />

Iso-Pollen-Karten der wichtigsten Taxa für verschiedene<br />

Zeitfenster des Weichsel-Spätglazials konstruiert. Die hohe<br />

Beobachtungsdichte palynologischer Daten <strong>in</strong> den Niederlanden<br />

erlaubte die Konstntktion hoch auflösender Iso­<br />

Pollen-Karten für den betrachteten Zeitraum. Es gibt e<strong>in</strong>e<br />

klare Beziehung zwischen den beobachteten Iso-Pollen-<br />

Mustern und dem Landschaftstyp. Es sollte nun möglich<br />

se<strong>in</strong>, klarer zwischen klimatischen und abiotischen Faktoren<br />

zu unterscheiden, die die Vegetationsentwicklung<br />

steuern.<br />

Introdution<br />

<strong>The</strong> Weichselian <strong>Late</strong> <strong>Glacial</strong> marks the transition<br />

between the cold Weichselian <strong>Late</strong> Pleniglacial and<br />

the warmer Holocene. <strong>The</strong> climate change dur<strong>in</strong>g<br />

this transition caused the <strong>vegetation</strong> and the abiotic<br />

component <strong>of</strong> the landscape to change rapidly. A<br />

great number <strong>of</strong> palynological data consider<strong>in</strong>g the<br />

<strong>Late</strong> <strong>Glacial</strong> have been collected <strong>in</strong> NW-Europe and<br />

especially <strong>The</strong> <strong>Netherlands</strong> dur<strong>in</strong>g the last decades.<br />

<strong>The</strong>refore, the general <strong>vegetation</strong> development for<br />

this period is well known.<br />

At the end <strong>of</strong> the Weichselian <strong>Late</strong> Pleniglacial there<br />

was <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong> a sparse <strong>vegetation</strong> cover<br />

compris<strong>in</strong>g Gram<strong>in</strong>eae, Cyperaceae and Betula<br />

nana, many places were altogether bare. From a-<br />

round 13,000 years BP herbaceous plant communities<br />

and dwarf bushes developed due to temperature<br />

rise. Dur<strong>in</strong>g the Alleri0d <strong>in</strong>terstadial rather open Betula<br />

and later on P<strong>in</strong>us woods occurred. <strong>The</strong> colder<br />

<strong>Late</strong> Dryas stadial <strong>in</strong>terrupted around 10,950 BP the<br />

development to a more dense <strong>vegetation</strong> cover. <strong>The</strong><br />

P<strong>in</strong>us and Betula woods dim<strong>in</strong>ished <strong>in</strong> size and herbaceous<br />

plant communities compris<strong>in</strong>g Empetrum<br />

nigrum, developed. At the start <strong>of</strong> the Holocene<br />

(10,150 years BP) Betula and later on P<strong>in</strong>us woods<br />

expanded aga<strong>in</strong> and became more dense as a result<br />

<strong>of</strong> temperature rise. <strong>The</strong>rmophilous trees as Corylus,<br />

Quercus, Tilia, Ulmus and Alnus appeared later <strong>in</strong><br />

the Holocene and are supposed to have been absent<br />

dur<strong>in</strong>g the <strong>Late</strong> <strong>Glacial</strong> <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong>. This general<br />

<strong>vegetation</strong> development can be recognized <strong>in</strong><br />

most <strong>of</strong> the pollendiagrams from <strong>The</strong> <strong>Netherlands</strong>.


<strong>Patterns</strong> <strong>of</strong> <strong>Late</strong> <strong>Glacial</strong> <strong>vegetation</strong> <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong> 79<br />

figure 1. I lie cont<strong>in</strong>ental position <strong>of</strong> <strong>The</strong> <strong>Netherlands</strong> dur<strong>in</strong>g die Weichselian <strong>Late</strong> <strong>Glacial</strong> (modified after JELGERSMA, 1979<br />

and LANG, 1994).<br />

Abb. 1: Die kont<strong>in</strong>entale Lage der Niederlande während des Weichsel Spätglazials (modifiziert nach JELGERSMA 1979 und LANG 1994)<br />

However, pollen diagrams from different areas <strong>in</strong><br />

<strong>The</strong><br />

<strong>Netherlands</strong> show clear variations <strong>in</strong> pollen<br />

composition dur<strong>in</strong>g the <strong>Late</strong> <strong>Glacial</strong>.<br />

Palaeogeographical approach<br />

For <strong>The</strong> <strong>Netherlands</strong> it is to be expected that there<br />

were only small spatial differences <strong>in</strong> climate dur<strong>in</strong>g<br />

the Weichselian <strong>Late</strong> <strong>Glacial</strong> due to the small area<br />

and relatively large distance to the former coastl<strong>in</strong>e.<br />

As sealevel was between 90 and 65 meters below the<br />

present date level (JELGERSMA, 1979), the coastl<strong>in</strong>e<br />

was more than 200 kilometers away and any climate<br />

gradient <strong>in</strong>duced by the sea can be neglected for <strong>The</strong><br />

<strong>Netherlands</strong> dur<strong>in</strong>g the time under <strong>in</strong>vestigation. Figure<br />

1 shows the relative cont<strong>in</strong>ental position <strong>of</strong> <strong>The</strong><br />

<strong>Netherlands</strong> dur<strong>in</strong>g the Weichselian <strong>Late</strong> <strong>Glacial</strong><br />

(modified after JELGERSMA, 1979 and LANG, 1994).<br />

In the classical approach, s<strong>in</strong>gle locations are the<br />

ma<strong>in</strong> basis for palaeoclimate reconstructions. It is<br />

obvious that climate parameters derived from s<strong>in</strong>gle<br />

pollen diagrams will represent certa<strong>in</strong> local <strong>in</strong>fluences.<br />

<strong>The</strong> ma<strong>in</strong> reason for this is the fact that not only<br />

the large scale changes <strong>in</strong> climate determ<strong>in</strong>ed the <strong>vegetation</strong><br />

development <strong>in</strong> for <strong>in</strong>stance the Weichselian<br />

<strong>Late</strong> <strong>Glacial</strong>. Also more local variations <strong>in</strong> lithology,<br />

geomorphology and geo-hydrological conditions<br />

have <strong>in</strong>fluenced the <strong>vegetation</strong> development<br />

and patterns. Palaeoclimate reconstructions based<br />

on s<strong>in</strong>gle pollen diagrams will therefore give a<br />

wrong picture <strong>of</strong> the regional climate.<br />

With a palaeogeographical approach the <strong>vegetation</strong><br />

patterns and changes <strong>in</strong> the patterns can be compared<br />

with geological/geomorphological maps. As<br />

soon as the relations between the palaeo<strong>vegetation</strong><br />

and the abiotic components <strong>of</strong> the landscape are<br />

known, the relations between <strong>vegetation</strong> and climate<br />

will be more clear. This approach requires a<br />

dense network <strong>of</strong> palynological sections <strong>in</strong> an area<br />

with a well known geology and geomorphology.<br />

<strong>The</strong><br />

<strong>Late</strong> <strong>Glacial</strong> abiotic landscape <strong>of</strong><br />

<strong>The</strong><br />

<strong>Netherlands</strong><br />

<strong>The</strong> <strong>Late</strong> <strong>Glacial</strong> landscape is a landscape with chang<strong>in</strong>g<br />

geomorphology and <strong>vegetation</strong>. Dur<strong>in</strong>g the<br />

Weichselian <strong>Late</strong> <strong>Glacial</strong> geomorphological processes<br />

were active, but the abiotic changes where not as<br />

large as dur<strong>in</strong>g the preced<strong>in</strong>g Pleniglacial. Morphological<br />

features related to permafrost that had existed<br />

at the end <strong>of</strong> the Pleniglacial disappeared due to the<br />

changes <strong>in</strong> climate towards the Holocene. Permafrost<br />

disappeared, although deep seasonal frost<br />

may have occurred dur<strong>in</strong>g the <strong>Late</strong> <strong>Glacial</strong> (VANDEN-<br />

BERGHE, 1992). <strong>The</strong> <strong>vegetation</strong> development <strong>in</strong>itiated<br />

soil formation and stabilized the substratum. <strong>The</strong>


80 WIM Z. HOEK<br />

Figure 2. Reconstruction <strong>of</strong> the landscape types <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong> dur<strong>in</strong>g the Weichselian <strong>Late</strong> <strong>Glacial</strong> (modified after<br />

Zagwijn, 1986).<br />

Abb. 2: Rekonstruktion der Landschaftstypen <strong>in</strong> den Niederlanden während des Weichsel Spätglazials (modifiziert nach ZAGWIJN 1986)<br />

ma<strong>in</strong> landscape types that existed dur<strong>in</strong>g the <strong>Late</strong><br />

<strong>Glacial</strong> <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong> are formed by glacial, fluvial<br />

and aeolian processes. For <strong>The</strong> <strong>Netherlands</strong> <strong>in</strong><br />

general five larger landscape regions existed dur<strong>in</strong>g<br />

the <strong>Late</strong> <strong>Glacial</strong>.<br />

1 <strong>The</strong> till region <strong>in</strong> the northern <strong>Netherlands</strong> was formed<br />

as a result <strong>of</strong> the Saalian glaciation. <strong>Glacial</strong> tills<br />

form the substratum <strong>in</strong> a gently undulat<strong>in</strong>g landscape.<br />

In this region hundreds <strong>of</strong> Pleniglacial p<strong>in</strong>go<br />

remnants occur (DE GANS, 1981). From these p<strong>in</strong>go<br />

remnants, formed after melt<strong>in</strong>g <strong>of</strong> the p<strong>in</strong>gos at the<br />

end <strong>of</strong> the Pleniglacial, many pollendiagrams have<br />

been obta<strong>in</strong>ed.<br />

2 <strong>The</strong> ice-pushed region <strong>in</strong> the central <strong>Netherlands</strong>


<strong>Patterns</strong> <strong>of</strong> <strong>Late</strong> <strong>Glacial</strong> <strong>vegetation</strong> <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong><br />

HI<br />

<strong>in</strong>cludes the end mora<strong>in</strong>es <strong>of</strong> the Saalian ice-sheets. older river deposits. Between the ice-pushed ridges<br />

<strong>The</strong> hills rise up to a hundred meters above deposition <strong>of</strong> coversands took place dur<strong>in</strong>g the<br />

the surround<strong>in</strong>g river deposits and are built <strong>of</strong> Weichselian Pleniglacial and <strong>Late</strong> <strong>Glacial</strong> (MAARLE-


82 WIM Z. HOEK<br />

Dur<strong>in</strong>g the <strong>Late</strong> Dryas stadial a layer <strong>of</strong> coversand<br />

was deposited over soils and peats, <strong>in</strong>dicat<strong>in</strong>g the<br />

landscape was more open than <strong>in</strong> the preced<strong>in</strong>g<br />

Aller0d <strong>in</strong>terstadial. <strong>The</strong> organic deposits <strong>in</strong> this area<br />

consist <strong>of</strong> peats and shallow lacustr<strong>in</strong>e deposits formed<br />

<strong>in</strong> the depressions between coversand ridges.<br />

5 'Ehe coversand region <strong>in</strong> the southern <strong>Netherlands</strong><br />

is characterized by a gently undulat<strong>in</strong>g topography.<br />

<strong>The</strong> coversands are ma<strong>in</strong>ly deposited dur<strong>in</strong>g the<br />

Weichselian Pleniglacial (SCHWAN, 1988). In the western<br />

part, Early Pleistocene clayey deposits occur at<br />

shallow depth. Like <strong>in</strong> the eastern coversand region,<br />

organic deposits <strong>in</strong> this area consist <strong>of</strong> peats and<br />

shallow lacustr<strong>in</strong>e deposits formed <strong>in</strong> the depressions<br />

between coversand ridges. Some smaller p<strong>in</strong>go<br />

remnants occur (KASSE & BOHNCKE, 1992).<br />

In figure 2a reconstruction <strong>of</strong> the landscape <strong>in</strong> <strong>The</strong><br />

<strong>Netherlands</strong> dur<strong>in</strong>g the Weichselian <strong>Late</strong> <strong>Glacial</strong> is<br />

given (modified after ZAGWIJN, 1986).<br />

Available palynological data<br />

Figure 4: Regional <strong>Late</strong> <strong>Glacial</strong> pollen diagram <strong>of</strong> the ma<strong>in</strong><br />

taxa for <strong>The</strong> <strong>Netherlands</strong>.<br />

Abb. 4: Regionale spätglaziale Pollendiagramme der wichtigsten<br />

Taxa für die Niederlande.<br />

VHi.D & VAN DER SCHANS,<br />

1961). As the ice-pushed<br />

ridges consist ma<strong>in</strong>ly <strong>of</strong> well-dra<strong>in</strong>ed gravels and<br />

sands, only a few wet bas<strong>in</strong>s occur where organic<br />

deposits could be preserved.<br />

3 <strong>The</strong> river region <strong>in</strong> the central <strong>Netherlands</strong> is ma<strong>in</strong>ly<br />

formed by the rivers Rh<strong>in</strong>e and Meuse. As the rivers<br />

changed their patterns and morphology between<br />

braid<strong>in</strong>g and meander<strong>in</strong>g due to climate<br />

change, the abandoned river channels form the<br />

bas<strong>in</strong>s where organic deposits could be preserved.<br />

Under dry conditions dur<strong>in</strong>g the second phase <strong>of</strong> the<br />

<strong>Late</strong> Dryas stadial, sand was blown out <strong>of</strong> the braided<br />

river beds, form<strong>in</strong>g riverdunes <strong>in</strong> the surround<strong>in</strong>g<br />

<strong>vegetation</strong> cover (BOHNCKE et al. 1993). <strong>The</strong> river<br />

landscape dur<strong>in</strong>g the <strong>Late</strong> <strong>Glacial</strong> has been described<br />

by KASSE et al. (1995) and<br />

(1995).<br />

BERENDSEN et al.<br />

4 <strong>The</strong> coversand region <strong>in</strong> the eastern <strong>Netherlands</strong> is<br />

characterized by thick layers <strong>of</strong> coversand formed<br />

dur<strong>in</strong>g the Weichselian Pleniglacial (SCHWAN, 1988).<br />

In this region Saalian ice-pushed ridges occur also.<br />

In <strong>The</strong> <strong>Netherlands</strong> over 400 palynological sections<br />

have been <strong>in</strong>vestigated by several <strong>in</strong>stitutes dur<strong>in</strong>g<br />

the last decades, cover<strong>in</strong>g part or whole <strong>of</strong> the<br />

Weichselian <strong>Late</strong> <strong>Glacial</strong>. Most <strong>of</strong> the <strong>in</strong>vestigated<br />

sections are unpublished and the orig<strong>in</strong>al data are<br />

stored as count<strong>in</strong>g sheets <strong>in</strong> archives <strong>of</strong> the Geological<br />

Survey, Soil Survey and different universities. As<br />

a first step <strong>in</strong> this study, the pollen count<strong>in</strong>gs were<br />

gathered and <strong>in</strong>serted <strong>in</strong>to a computer. By now 250<br />

<strong>of</strong> these sections are available <strong>in</strong> digital format. <strong>The</strong><br />

data are stored <strong>in</strong> a relational database, us<strong>in</strong>g the European<br />

Pollen Database structure. <strong>The</strong> spatial density<br />

<strong>of</strong> available pollen data decreases <strong>in</strong> westery direction,<br />

directly related to the depth <strong>of</strong> the <strong>Late</strong> <strong>Glacial</strong><br />

deposits below the present day surface. In the<br />

most western part <strong>of</strong> <strong>The</strong> <strong>Netherlands</strong> the <strong>Late</strong> <strong>Glacial</strong><br />

deposits are covered with up to 15 meters <strong>of</strong><br />

Holocene fluvial sediments, mar<strong>in</strong>e sediments and<br />

peat. <strong>The</strong>refore, <strong>Late</strong> <strong>Glacial</strong> deposits are difficult to<br />

collect. Nevertheless, the spatial resolution is high,<br />

as can be seen <strong>in</strong> figure 3. <strong>The</strong> locations <strong>of</strong> the pollen<br />

diagrams which are stored <strong>in</strong> the database are<br />

presented as black dots, while the other locations<br />

are presented as open circles. With this dense pattern<br />

<strong>of</strong> palynological <strong>in</strong>vestigated locations a reconstruction<br />

<strong>of</strong> the <strong>vegetation</strong> patterns <strong>in</strong> different time<br />

w<strong>in</strong>dows dur<strong>in</strong>g the Weichselian <strong>Late</strong> <strong>Glacial</strong> can be<br />

made.<br />

Preparation <strong>of</strong> the palynological data<br />

For the construction <strong>of</strong> the pollen diagrams from the<br />

pollen count<strong>in</strong>gs a uniformous pollen sum was used<br />

to calculate percentages, so the diagrams can be<br />

compared. In the pollen sum only non-thermo-


<strong>Patterns</strong> <strong>of</strong> <strong>Late</strong> <strong>Glacial</strong> <strong>vegetation</strong> <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong> 83<br />

A) Mekelermeer E Uddelermeer C) Daarle D) Middelbeers<br />

2b<br />

1c<br />

lb<br />

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100<br />

Figure 5: Pollen diagrams with selected taxa from 4 small bas<strong>in</strong>s <strong>in</strong> different regions.<br />

a Mekelermeer (BOHNCKE et al., 1988); b Uddelenneer (BOHNCKE et al., 1988); c Daarle (BIJLSMA & DE LANGE, 1983);<br />

d Middelbeers (KOELBLOED, 1969).<br />

Abb. 5: Pollendiagramme ausgewählter Taxa aus vier kle<strong>in</strong>en Becken <strong>in</strong> verschiedenen Regionen.<br />

a Mekelermeer (BOHNCKE et al., 1988); b Uddelermeer (BOHNCKF et al, 1988); c Daarle (BIILSMA & DE LANGE, 1983);<br />

d Middelbeers (KOELBLOEO. 1969).<br />

philous trees, shaibs and dry herbs are <strong>in</strong>cluded, regional<br />

taxa sensus JANSSEN (1973). <strong>The</strong> local pollen<br />

taxa, aquatics and riparian herbs <strong>in</strong>clud<strong>in</strong>g Cyperaceae,<br />

as well as thermophilous tree pollen and<br />

spores were excluded from the pollen sum. <strong>The</strong> major<br />

shifts <strong>in</strong> the ma<strong>in</strong> pollen taxa, radiocarbon dated<br />

<strong>in</strong> several pollen diagrams distributed over <strong>The</strong><br />

<strong>Netherlands</strong>, are used to construct a regional zonation<br />

(HOEK, <strong>in</strong> prep.). In figure 4 the zonation is present-ed<br />

as a generalized <strong>Late</strong> <strong>Glacial</strong> pollen diagram<br />

for <strong>The</strong> <strong>Netherlands</strong> on an uncalibrated radiocarbon<br />

timescale. Based on the zonation, a zone code has<br />

been assigned to the analyzed levels from the pollen<br />

diagrams <strong>in</strong> the database. If any uncerta<strong>in</strong>ties appeared,<br />

for <strong>in</strong>stance <strong>in</strong> the case <strong>of</strong> a pollen sum less<br />

than 100, <strong>in</strong>dications for rework<strong>in</strong>g or contam<strong>in</strong>ation,<br />

no zone code was assigned to that level. In figure<br />

5a-d four pollendiagrams with selected taxa are<br />

presented. <strong>The</strong> pollendiagrams are derived from<br />

small (former) lakes, p<strong>in</strong>go remnants from the northern<br />

<strong>Netherlands</strong> till region (a), the central <strong>Netherlands</strong><br />

ice - pushed region (b) and the eastern (c) and<br />

southern (d) coversand region. In these diagrams<br />

the differences between the percentages <strong>of</strong> Juniperus,<br />

P<strong>in</strong>us and Ericales can be seen. <strong>The</strong> higher percentages<br />

<strong>of</strong> P<strong>in</strong>us and Ericales at the, m<strong>in</strong>erogenic,<br />

lower part <strong>of</strong> some <strong>of</strong> the diagrams are caused by<br />

rework<strong>in</strong>g from older deposits.<br />

Juniperus <strong>in</strong> zone Ic reaches the highest values up to<br />

30% <strong>in</strong> the diagram from the eastern coversand region<br />

(c) and 15% <strong>in</strong> that from the central <strong>Netherlands</strong> (b).<br />

Dur<strong>in</strong>g the follow<strong>in</strong>g zone 2a, the highest values for<br />

Juniperus, up to 30% are recorded <strong>in</strong> the diagrams<br />

from the central <strong>Netherlands</strong> and 10% <strong>in</strong> the southern<br />

coversand region (d).<br />

Dur<strong>in</strong>g zone 2b P<strong>in</strong>us has the highest value round<br />

50% <strong>in</strong> the diagrams from the till region, the central<br />

<strong>Netherlands</strong> and the eastern coversand region. <strong>The</strong><br />

values for P<strong>in</strong>us <strong>in</strong> the diagram from the southern<br />

coversand region rema<strong>in</strong> below 20%.<br />

<strong>The</strong> percentages <strong>of</strong> Ericales, <strong>in</strong>clud<strong>in</strong>g Empetrum nigrum,<br />

dur<strong>in</strong>g zone 3 are the highest <strong>in</strong> the diagram<br />

from the northern <strong>Netherlands</strong> till region with values<br />

up to 25%. <strong>The</strong> diagrams from the central <strong>Netherlands</strong><br />

and the eastern coversand region show values<br />

up to 10% and 7% respectively. For each pollen diagram<br />

<strong>in</strong> the database the mean and maximum values<br />

<strong>of</strong> the ma<strong>in</strong> taxa have been computed for the dist<strong>in</strong>guished<br />

zones.<br />

Construction <strong>of</strong> the iso-pollen maps<br />

For three zones with<strong>in</strong> the <strong>Late</strong> <strong>Glacial</strong> iso-pollen<br />

maps were constructed show<strong>in</strong>g the highest percentages<br />

<strong>of</strong> the dist<strong>in</strong>ctive taxa <strong>in</strong> that zone. Zone Ic and<br />

the base <strong>of</strong> zone 2a are characterized by high values<br />

<strong>of</strong> Juniperus communis (Juniper), a species spread


84 WIM Z. HOEK<br />

50 100 150 200 250 km<br />

_| __] ! I<br />

Figure 6: Iso-pollen map for the maximum values <strong>of</strong> Juniperus between 12,100-11,500 BP (zone Ic/2al).<br />

Abb. 6: Iso-Pollen-Kaite für Maximalwerte von Juniperus zwischen 12.100 und 11.500 BP (Zone Ic/2al).<br />

by birds and favoured by the presence <strong>of</strong> a bare<br />

ed around 11,250 BP from the south-east, presumsandy<br />

substratum. Zone 2b is characterized by high ably distributed along the river Rh<strong>in</strong>e course. Zone 3<br />

values <strong>of</strong> P<strong>in</strong>us sylvestris (Scots p<strong>in</strong>e) which migrat- is characterized by high values <strong>of</strong> Ericales, especial-


Pattems <strong>of</strong> <strong>Late</strong> <strong>Glacial</strong> <strong>vegetation</strong> <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong> 85<br />

50 100 150 200 250 km<br />

: ! i I I<br />

Figure 7: Iso-pollen map for the maximum values <strong>of</strong> P<strong>in</strong>us between 11,250-10.950 BP (zone 2b).<br />

Abb. 7: Iso-Pollen-Karte für Maximalwerte von P<strong>in</strong>us zwischen 11.250 und 10.950 BP (zone 2b).<br />

ly <strong>in</strong> the second part <strong>of</strong> this zone. Empetrum nigrum onstrated that the percentages <strong>of</strong> the characteristic<br />

(Crowberrry), the ma<strong>in</strong> constituent <strong>of</strong> the Ericales pollen taxa <strong>of</strong> each zone vary with the landscape type,<br />

dur<strong>in</strong>g this zone is spread by birds. It can be dem- HUNTLEY & BIRKS (1983) presented iso-pollen maps


86 WIM Z. HOEK<br />

ESS O-<br />

50 100 150 200 250 km<br />

_j i i i i<br />

Figure 8: Iso-pollen map for the maximum values <strong>of</strong> Ericales between 10,950-10,150 BP (zone 3).<br />

Abb. 8: Iso-Pollen-Karte für Maximalwerte von Ericales zwischen 10.950 und 10.150 BP (zone 3).<br />

which show large scale patterns <strong>in</strong> pollen these maps can not be used for regional analyses,<br />

percentage over Europe. <strong>The</strong> spatial resolution<br />

<strong>of</strong> these maps <strong>of</strong> Europe is unavoidably low and<br />

For the construction <strong>of</strong> the iso-pollen maps <strong>in</strong> this<br />

study, the locations with their maximum value for


<strong>Patterns</strong> <strong>of</strong> <strong>Late</strong> <strong>Glacial</strong> <strong>vegetation</strong> <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong> 8-<br />

the specific taxa with<strong>in</strong> their dist<strong>in</strong>ct zone were retrieved<br />

from the database. Iso-pollen maps were<br />

constructed us<strong>in</strong>g a squared <strong>in</strong>verse distance <strong>in</strong>terpolation<br />

with a search radius <strong>of</strong> 20 kilometers. <strong>The</strong><br />

search radius is <strong>in</strong> accordance with the possible<br />

source area <strong>of</strong> the regional pollen record. In areas<br />

where no data were available with<strong>in</strong> the search radius<br />

the outcome has automatically been blanked.<br />

Thus no extrapolations towards areas without data<br />

have been made. <strong>The</strong> data po<strong>in</strong>ts used <strong>in</strong> the <strong>in</strong>terpolation<br />

are displayed as black dots.<br />

For zone Ic and the base <strong>of</strong> zone 2a, the time-w<strong>in</strong>dow<br />

from 12,100 - 11,500 BP, the highest percentages<br />

<strong>of</strong> Juniperus are plotted <strong>in</strong> figure 6. <strong>The</strong><br />

presence <strong>of</strong> Juniperus pollen dur<strong>in</strong>g these zones<br />

is recorded <strong>in</strong> 82 pollen diagrams <strong>in</strong> the database.<br />

For zone 2b, the time-w<strong>in</strong>dow from 11,250 - 10,950 BP,<br />

the ltighest percentages <strong>of</strong> P<strong>in</strong>us are plotted <strong>in</strong> figure 7.<br />

<strong>The</strong> presence <strong>of</strong> P<strong>in</strong>us pollen dur<strong>in</strong>g pollen zone 2b is<br />

recorded <strong>in</strong> 113 pollen diagrams <strong>in</strong> the database.<br />

For zone 3, the time-w<strong>in</strong>dow from 10,950 - 10,150<br />

BP, the highest percentages <strong>of</strong> Ericaes (ma<strong>in</strong>ly Empet<br />

rum nigrum) are plotted <strong>in</strong> figure 8. <strong>The</strong> presence<br />

<strong>of</strong> Ericales pollen dur<strong>in</strong>g pollen zone 3 is<br />

recorded <strong>in</strong> 114 pollen diagrams <strong>in</strong> the database.<br />

Relationship between the iso-pollen patterns<br />

and the abiotic landscape<br />

<strong>The</strong> highest percentages Juniperus dur<strong>in</strong>g zone Ic<br />

and 2a with values up to 30 percent are related to the<br />

ice-pushed ridges <strong>in</strong> the central and eastern <strong>Netherlands</strong><br />

and the southern <strong>Netherlands</strong> coversand region.<br />

<strong>The</strong>se areas consist <strong>of</strong> the more sandy welldra<strong>in</strong>ed<br />

sediments. <strong>The</strong> growth oi Juniperus communis<br />

is favoured by a bare sandy substratum and is<br />

therefore likely to have been grow<strong>in</strong>g <strong>in</strong> the coversand<br />

areas. Lower percentages are recorded <strong>in</strong> the river valleys<br />

and the northern Nedterlands till region, areas with<br />

higher groundwater levels and a less sandy substratum.<br />

<strong>The</strong> highest values <strong>of</strong> P<strong>in</strong>us dur<strong>in</strong>g zone 2b are recorded<br />

<strong>in</strong> the central <strong>Netherlands</strong> river region. <strong>The</strong><br />

lowest values are recorded <strong>in</strong> the eastern part <strong>of</strong> the<br />

southern <strong>Netherlands</strong> coversand region. <strong>The</strong>re<br />

seems to be no south-north gradient <strong>in</strong> the percentage<br />

<strong>of</strong> P<strong>in</strong>us as suggested by several authors. As P<strong>in</strong>us<br />

sylvestris is at present grow<strong>in</strong>g on drier locations,<br />

it is supposed that P<strong>in</strong>us was not <strong>in</strong>habit<strong>in</strong>g<br />

the river valleys but grew on the higher parts <strong>of</strong> the<br />

terraces along the river valleys. <strong>The</strong> high percentages<br />

<strong>of</strong> P<strong>in</strong>us<strong>in</strong> the central <strong>Netherlands</strong> river region<br />

may also be a result <strong>of</strong> a more open herbaceous<br />

<strong>vegetation</strong> type, suggest<strong>in</strong>g P<strong>in</strong>us is overrepresented<br />

clue to k<strong>in</strong>g distance transport.<br />

<strong>The</strong> iso-pollen map for the maximum values <strong>of</strong> Ericales<br />

dur<strong>in</strong>g zone 3 (figure 8), shows the high values,<br />

over 20%, l<strong>in</strong>ked to the poorly dra<strong>in</strong>age and<br />

leached soils <strong>in</strong> tills situated <strong>in</strong> the northern <strong>Netherlands</strong>.<br />

In the ice-pushed region <strong>of</strong> the central <strong>Netherlands</strong><br />

and western part <strong>of</strong> the southern <strong>Netherlands</strong><br />

coversand area percentages above 10% occur, presumably<br />

related to the occurrence <strong>of</strong> a clayey substratum<br />

at shallow depth. Pollen diagrams from the<br />

coversand area and the nutrient rich river area show<br />

values below 5% for Empetrum dur<strong>in</strong>g zone 3. <strong>The</strong><br />

high occurrence <strong>of</strong> Empetrum nigrum is <strong>of</strong>ten used<br />

as an <strong>in</strong>dicator for oceanity, based on higher precipitation<br />

rates. At present, a higher occurrence <strong>of</strong> Empetrum<br />

<strong>in</strong>dicates a low nutrient availability or acid<br />

soils, a situation occurr<strong>in</strong>g already <strong>in</strong> the till region<br />

dur<strong>in</strong>g the time under <strong>in</strong>vestigation. Empetrum is<br />

able to grow <strong>in</strong> areas with an active aeolian sedimentation,<br />

a situation that occurred dur<strong>in</strong>g the second<br />

phase <strong>of</strong> the Younger Dryas (BOHNCKE et al., 1993).<br />

Conclusions<br />

Not only climatic changes (temperature and precipitation)<br />

<strong>in</strong>fluenced the <strong>vegetation</strong> development. Also<br />

more local variations <strong>in</strong> lithology, geomorphology<br />

and geo-hydrological conditions <strong>in</strong>fluenced the <strong>vegetation</strong><br />

and especially the <strong>vegetation</strong> patterns. As<br />

the <strong>vegetation</strong> <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong>, and other areas,<br />

will not have been uniformous dur<strong>in</strong>g the <strong>Late</strong> <strong>Glacial</strong><br />

one has to be careful with deriv<strong>in</strong>g the climate<br />

signal from s<strong>in</strong>gle pollen diagrams.<br />

As <strong>The</strong> <strong>Netherlands</strong> occupied a relative cont<strong>in</strong>ental<br />

position dur<strong>in</strong>g the Weichselian <strong>Late</strong> <strong>Glacial</strong>, it is not<br />

feasible that differences <strong>in</strong> the pattern <strong>of</strong> Ericales dur<strong>in</strong>g<br />

the <strong>Late</strong> Dryas stadial are caused by a climatic<br />

gradient over <strong>The</strong> <strong>Netherlands</strong>. <strong>The</strong>re will, however<br />

have occurred a climatic event caus<strong>in</strong>g the great expansion<br />

<strong>of</strong> Empetrum nigrum <strong>in</strong> the areas favourable<br />

for this species.<br />

Acknowledgements<br />

This study forms part <strong>of</strong> the project: Palaeogeography<br />

<strong>of</strong> <strong>Late</strong> <strong>Glacial</strong> <strong>vegetation</strong>s: analysis <strong>in</strong> time and<br />

space.<br />

Aim <strong>of</strong> this project is to reconstruct the <strong>Late</strong> <strong>Glacial</strong><br />

<strong>vegetation</strong> <strong>in</strong> the northwest-european lowland <strong>in</strong> relation<br />

to climate and the abiotic components <strong>of</strong> the<br />

landscape.<br />

<strong>The</strong> project is sponsored by <strong>The</strong> <strong>Netherlands</strong> Organization<br />

for Scientific Research (N.W.O.- G.O.A.)<br />

and is <strong>in</strong>corporated <strong>in</strong> the research program <strong>of</strong> <strong>The</strong><br />

<strong>Netherlands</strong> Centre for Geo-ecological Research<br />

(ICG). Supervisor <strong>of</strong> the project is Pr<strong>of</strong>. Dr. W. H.<br />

Zagwijn, who is acknowledged for his valuable<br />

comments on the text.<br />

<strong>The</strong> palynological data used <strong>in</strong> this study were k<strong>in</strong>dly<br />

provided by the follow<strong>in</strong>g <strong>in</strong>stitutes; <strong>The</strong> <strong>Netherlands</strong><br />

Geological Survey (RGD), DLO Star<strong>in</strong>g Centre,<br />

Wagen<strong>in</strong>gen, Laboratory for Palaeo-ecology and<br />

Landscape-evolution (University <strong>of</strong> Gent, Belgium),


88 WIM Z. HOEK<br />

Hugo de Vries Laboratory (University <strong>of</strong> Amsterdam),<br />

Laboratory for Palynology and Paleobotany<br />

(University <strong>of</strong> Utrecht), Institute for Prehistory (University<br />

<strong>of</strong> Leiden) and the Faculty <strong>of</strong> Earth Science<br />

(Vrije Universiteit Amsterdam).<br />

References<br />

BERENDSEN H.J.A., HOEK, WZ. & SCHORN, E.A. (1995): <strong>Late</strong> Weichselian<br />

and Holocene river channel changes <strong>of</strong> the rivers Rh<strong>in</strong>e<br />

and Meuse <strong>in</strong> the <strong>Netherlands</strong> (Land van Maas en Waal). Paliäoklimaforschung<br />

Palaeoclimate Research, 14, 151-171.<br />

BIJLSMA, S. & DE LANGE, G.W. (1983). Geology, palynology and age<br />

<strong>of</strong> a p<strong>in</strong>go remnant near Daarle, prov<strong>in</strong>ce <strong>of</strong> Overijssel, <strong>The</strong><br />

<strong>Netherlands</strong>. Geologie en Mijnbouw, 62, 563-568.<br />

BOHNCKE, S.J.P., WLJMSTRA, L., VAN DER WOUDE, J. & SOHL, H. (1988).<br />

<strong>The</strong> <strong>Late</strong>-<strong>Glacial</strong> <strong>in</strong>fill <strong>of</strong> three lake successions <strong>in</strong> <strong>The</strong> <strong>Netherlands</strong>:<br />

Regional <strong>vegetation</strong>al history <strong>in</strong> relation to NW European<br />

<strong>vegetation</strong>al developments. Boreas, 17, 385-402.<br />

BOHNCKE, S.J.P., VANDENBERGHE, J.F. & HUIJZER, A.S. (1993): Periglacial<br />

Paleoenvironments dur<strong>in</strong>g the <strong>Late</strong> <strong>Glacial</strong> <strong>in</strong> the Maas<br />

Valley, <strong>The</strong> <strong>Netherlands</strong>. Geologie en Mijnbouw, 72, 193-210.<br />

DE GANS, W. (1991): Location, age and orig<strong>in</strong> <strong>of</strong> p<strong>in</strong>go remnants <strong>in</strong><br />

the Drentsche Aa valley area (<strong>The</strong> <strong>Netherlands</strong>). Geologie en<br />

Mijnbouw, 61, 147-158.<br />

HUNTLEY, B. & BIRKS, H.J.B. (1983): An atlas <strong>of</strong> past and present pollen<br />

maps for Europe: 0-13,000 years ago. Cambridge University<br />

Press, 667 pp.<br />

JANSSEN, CR. (1973): Local and regional pollen deposition. In: Birks,<br />

H.J.B, and West, R.G. (eds), Quaternary Plant Ecology, pp. 31-<br />

42, Blackwell Scientific Publications, Oxford.<br />

JELGERSMA, S. (1979): Sea-level changes <strong>in</strong> the North Sea bas<strong>in</strong>. In:<br />

Oele, E., Schüttenhelm, R.T.E. and Wiggers, A.J. (eds), <strong>The</strong><br />

Quaternary History <strong>of</strong> the North Sea, pp. 233-248, Acta Universitas<br />

Uppsala, 2, Uppsala. 249-<br />

KASSE, C & BOHNCKE, S.J.P. (1992): Weichselian Upper Pleniglacial<br />

Aeolian and Ice-cored Morphology <strong>in</strong> the Southern <strong>Netherlands</strong><br />

(Noord-Brabant, Grootc Peel). Permafrost and Periglacial<br />

Processes, 3, 327-342<br />

KASSE C, VANDENBERGHE, J.F. & BOHNCKE, S.J.P. (1995): Climate change<br />

and fluvial dynamics <strong>of</strong> the Maas dur<strong>in</strong>g the late Weichselian<br />

and early Holocene. Palaoklimaforschung Palaeoclimate<br />

Research, 14, 123-150.<br />

KOELBLOED, K.K. (19Ö9): Pollen diagram Middelbeers meerven. Intern<br />

rapport van de Sticht<strong>in</strong>g voor Bodemkarter<strong>in</strong>g, afdel<strong>in</strong>g<br />

palaeobotanie, 2 pp.<br />

LANG, G.H. (1994): Quartäre Vegetationsgeschichte Europas. Gustav<br />

Fischer Verlag, Jena. 462 pp.<br />

MAARLEVELD, G.C. & VAN DER SCHANS, R.P.H.P. (1961): De dekzandmorfologie<br />

van de Gelderse Vallei. Tijdschrift van het Kon<strong>in</strong>klijk<br />

Nederlands Aardrijkskundig Genootschap, 78, 22-34.<br />

SCHWAN, J. (1988). <strong>The</strong> structure and genesis <strong>of</strong> Weichselian to Early<br />

Holocene aeolian sand sheets <strong>in</strong> Western Europe. Sedimentary<br />

Geology, 55, 197-232.<br />

VANDENBERGHE, J.F. (1992): Periglacial Phenomena and Pleistocene<br />

Environmental Conditions <strong>in</strong> the <strong>Netherlands</strong> - An Overview.<br />

Permafrost and Periglacial Processes, 3, 363-374.<br />

ZAGWIJN, W.H. (1986): Nederland <strong>in</strong> het Holoceen. Rijks Geologische<br />

Dienst, Haarlem, <strong>The</strong> <strong>Netherlands</strong>, 46 pp.<br />

Manuskript e<strong>in</strong>gegangen am 17. 05. 1996

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!