26.12.2013 Views

Rainfall data for the design of sewer detention basins

Rainfall data for the design of sewer detention basins

Rainfall data for the design of sewer detention basins

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHALMERS TEKNISKA HOGSKOLA<br />

GEOHYDROLOGISKA FORSKNINGSGRUPPEN<br />

Geologi<br />

Geoteknik med grundlaggning<br />

Vattenbyggnad<br />

Vatten<strong>for</strong>sorjnings- och avloppsteknik<br />

ISSN 0347 · 8165<br />

RAINFALL DATA FOR<br />

DESIGN OF<br />

DETENTION<br />

SEWER<br />

BASINS<br />

THE<br />

<strong>Rainfall</strong> intensity<br />

mm/h<br />

40 --<br />

I<br />

0 120<br />

1:<br />

Ttot<br />

180<br />

Tm<br />

Time<br />

240 min<br />

Viktor Arnell<br />

Henriette Melin<br />

Meddelande nr 76<br />

Goteborg 1984


ISSN 0347 - 8165<br />

mm/h<br />

60<br />

40<br />

0<br />

240<br />

Time<br />

Adress:<br />

Geohydrologiska <strong>for</strong>skningsgruppen<br />

Chalmers tekniska hogskola<br />

412 96 GtHEBORG


PREFACE<br />

This report includes <strong>the</strong> result <strong>of</strong> research on rainfall <strong>data</strong> <strong>for</strong><br />

<strong>design</strong> and analysis <strong>of</strong> <strong>detention</strong> <strong>basins</strong>. Earlier reports on rainfall<br />

<strong>data</strong> deal with <strong>the</strong> evaluation <strong>of</strong> new Intensity-Duration-Frequency<br />

curves <strong>for</strong> Goteborg, rainfall statistics on durations and<br />

volumes <strong>for</strong> different rainfall intensity levels, and rainfall<br />

<strong>data</strong> <strong>for</strong> <strong>design</strong> <strong>of</strong> <strong>sewer</strong> pipe systems with computer models. After<br />

<strong>the</strong> present study <strong>the</strong> research continues with studies <strong>of</strong> rainfall<br />

<strong>data</strong> <strong>for</strong> <strong>the</strong> <strong>design</strong> <strong>of</strong> <strong>detention</strong> <strong>basins</strong> aimed to reduce overflow<br />

volumes.<br />

The manuscript was typed by Ann-Marie Hellgren and <strong>the</strong> figures<br />

were drawn by Alicja Janiszewska.<br />

Programming, preparation <strong>of</strong> rainfall <strong>data</strong> and computer simulations<br />

were made by Henriette Melin.<br />

The work was financially supported by <strong>the</strong> Swedish Council <strong>for</strong><br />

Building Research (project No. 810284-7), Chalmers University <strong>of</strong><br />

Technology, <strong>the</strong> local Water and Sewage Works in Goteborg and VIAK<br />

AB.<br />

Linkoping June, 1984<br />

Vi ktor Arne 11


i i<br />

LI<br />

OF CONTENTS<br />

Page<br />

PREFACE<br />

LIST OF CONTENTS<br />

SUMMARY<br />

1 INTRODUCTION<br />

i<br />

i i<br />

iii<br />

1<br />

2 REALIZATION OF THE DESIGN OF DETENTION BASINS<br />

5<br />

2 1 Definition <strong>of</strong> an Independent Flooding Event and<br />

Design Criteria<br />

5<br />

2.2 <strong>Rainfall</strong> Data Used in <strong>the</strong> Investigation<br />

5<br />

2.3 Description <strong>of</strong> <strong>the</strong> Run<strong>of</strong>f Model Used<br />

14<br />

2.4 Description <strong>of</strong> <strong>the</strong> Detention Storage Model 16<br />

2.5 Description <strong>of</strong> <strong>the</strong> t Catchments and Detention Basins 19<br />

2.6 ign <strong>of</strong> Detention Basins <strong>for</strong> Various Types<br />

<strong>of</strong> <strong>Rainfall</strong> Data 24<br />

2.7 Traditional Design <strong>of</strong> <strong>the</strong> Detention Basins 26<br />

3 COMPARISON OF DESIGN FOR VARIOUS TYPES OF<br />

RAINFALL DATA<br />

30<br />

3.1 Factors Influencing <strong>the</strong> Comparison <strong>of</strong> Design <strong>for</strong><br />

Different Types <strong>of</strong> <strong>Rainfall</strong> Data 30<br />

3.2 Result <strong>of</strong> Design Using Historical Storms 33<br />

3 3 Result <strong>of</strong> Design Using Design Storms<br />

3.4 Result <strong>of</strong> Design by <strong>the</strong> Traditional Method<br />

34<br />

39<br />

4 CONCLUSIONS<br />

APPENDIX<br />

REFERENCES<br />

42<br />

44<br />

70


i i i<br />

SUMMARY<br />

This report describes <strong>the</strong> on <strong>of</strong> rainfall <strong>data</strong> <strong>for</strong> <strong>design</strong><br />

<strong>of</strong> <strong>detention</strong> <strong>basins</strong> The use <strong>of</strong> ign storms (<strong>the</strong> uni<strong>for</strong>m intensity<br />

<strong>design</strong> storm, <strong>the</strong> Chicago <strong>design</strong> storm and <strong>the</strong> Sifalda <strong>design</strong><br />

storm) were compared with <strong>the</strong> use <strong>of</strong> historical storms where<br />

<strong>the</strong> historical storms were assumed to give <strong>the</strong> most correct result.<br />

Historical storms were selected from an 18-year rainfall record<br />

and local coefficients <strong>for</strong> <strong>the</strong> <strong>design</strong> storms were estimated from<br />

<strong>the</strong> same record.<br />

The historical storms as well as <strong>the</strong> <strong>design</strong> storms were used <strong>for</strong><br />

<strong>design</strong> <strong>of</strong> <strong>detention</strong> <strong>basins</strong> located at <strong>the</strong> outlet in each <strong>of</strong> three<br />

test catchments <strong>of</strong> <strong>the</strong> sizes 0 154 km 2 , 1.45 km 2 , and 0.185 km 2 .<br />

The <strong>detention</strong> <strong>basins</strong> were emptied through outlets <strong>of</strong> nozzle-type<br />

located at <strong>the</strong> bottom. Two permitted maximum water depths, namely<br />

2.0 and 3.5 m, were tested and <strong>the</strong> permitted maximum outflows<br />

were varied between 5 and 30 1/s ha counted <strong>for</strong> <strong>the</strong> contributing<br />

surfaces only.<br />

For <strong>the</strong> run<strong>of</strong>f simulations <strong>the</strong> CTH-Urban Run<strong>of</strong>f Model was used,<br />

which includes <strong>the</strong> processes <strong>of</strong> infiltration, surface depression<br />

storage, overland flow, gutter flow, and pipe flow. A special<br />

sub-model simulated <strong>the</strong> flow through <strong>the</strong> <strong>detention</strong> <strong>basins</strong> and<br />

<strong>design</strong>ed <strong>the</strong> size <strong>of</strong> <strong>the</strong> horizon ta 1 a rea <strong>of</strong> <strong>the</strong> <strong>basins</strong> so <strong>the</strong><br />

maximum water depth was not exceeded. The outflow <strong>of</strong> each basin<br />

was a function <strong>of</strong> <strong>the</strong> water depth<br />

The result showed that it is important to simulate <strong>the</strong> inflow<br />

hydrograph to <strong>the</strong> <strong>basins</strong> and that <strong>the</strong> <strong>design</strong> storm has a correct<br />

total rainfall volume. The resulting basin volumes were not much<br />

influenced by <strong>the</strong> maximum water depth. The uni<strong>for</strong>m intensity <strong>design</strong><br />

storm underestimated <strong>the</strong> basin volumes by on average 18% and<br />

should not be used <strong>for</strong> practical applications. The use <strong>of</strong> <strong>the</strong><br />

Chicago <strong>design</strong> storm resulted in underestimated basin volumes <strong>of</strong><br />

on average 9% and <strong>the</strong> Si lda <strong>design</strong> storm caused overestimated<br />

volumes <strong>of</strong> on average 13%.


iv<br />

A manual<br />

ish Water and<br />

Works soci ion (VAV P31) were also . The inflows <strong>the</strong><br />

ins were calcul by a linear t rea method and <strong>the</strong> time<br />

<strong>of</strong> ion by an equation king into account <strong>the</strong> area <strong>of</strong><br />

<strong>the</strong> catchment, length and slope <strong>of</strong> <strong>the</strong> main pi , and <strong>the</strong><br />

rainfall i<br />

ign rainfall intensities were taken<br />

from i curves The i gn outflows<br />

from <strong>the</strong> ins were obtai as <strong>the</strong> mean values <strong>of</strong> <strong>the</strong> outflows<br />

ins were full and empty<br />

The outflow is obtained was found important in <strong>the</strong> manual<br />

method The method gave underestimated basin volumes <strong>of</strong> 5-20%.<br />

The timations were larger in <strong>the</strong> large catchment than in<br />

<strong>the</strong> two smaller catchments. Also, <strong>the</strong> underestimations were<br />

larger <strong>the</strong> small outflows than <strong>for</strong> <strong>the</strong> larger outflows. To<br />

compensate <strong>for</strong> <strong>the</strong> underestimations when using <strong>the</strong> manual method<br />

<strong>the</strong> in volumes should be increased by 5-20% depending on <strong>the</strong><br />

total size contributing areas and <strong>the</strong> <strong>design</strong> outflow from<br />

sin


1<br />

1 INTRODUCTION<br />

Detention <strong>basins</strong> in <strong>sewer</strong> systems are used to reduce <strong>the</strong> run<strong>of</strong>f<br />

peak flows downstream <strong>of</strong> <strong>the</strong> <strong>basins</strong> or to control <strong>the</strong> amount <strong>of</strong><br />

overflow <strong>of</strong> untreated sewage water to <strong>the</strong> recipient, or to reduce<br />

<strong>the</strong> amount <strong>of</strong> pollution in <strong>the</strong> sewage water<br />

<strong>Rainfall</strong> <strong>data</strong> <strong>for</strong> <strong>design</strong> <strong>of</strong> <strong>the</strong> size <strong>of</strong> a basin must be selected<br />

to meet <strong>the</strong> aim <strong>of</strong> <strong>the</strong> basin. As a genera 1 rule <strong>basins</strong> are <strong>design</strong>ed<br />

to store a specified volume <strong>of</strong> water while <strong>sewer</strong> pipes are<br />

<strong>design</strong>ed to carry peak flows. The same rainfall <strong>data</strong> may not be<br />

appropriate to use <strong>for</strong> <strong>the</strong> <strong>design</strong> <strong>of</strong> <strong>basins</strong> as <strong>for</strong> <strong>the</strong> <strong>design</strong> <strong>of</strong><br />

pipes. O<strong>the</strong>r factors influencing <strong>the</strong> selection <strong>of</strong> rainfall <strong>data</strong><br />

are if <strong>the</strong> basin is located <strong>of</strong>f-line or on- ine. Off-line <strong>basins</strong><br />

are located separately from <strong>the</strong> <strong>sewer</strong> system and <strong>the</strong> water enters<br />

<strong>the</strong> basin via, <strong>for</strong> example, a weir. On-line <strong>basins</strong> are a part <strong>of</strong><br />

<strong>the</strong> hydraulic flow system where <strong>the</strong> water is flowing through <strong>the</strong><br />

basin and is detained by controling <strong>the</strong> outflow from <strong>the</strong> basin<br />

by, <strong>for</strong> example, a nozzle, a weir, or a pump. This report describes<br />

<strong>the</strong> selection <strong>of</strong> rainfall <strong>data</strong> <strong>for</strong> <strong>design</strong> <strong>of</strong> on-1 ine<br />

<strong>basins</strong> with an outlet <strong>of</strong> a nozzle-type located at <strong>the</strong> bottom. The<br />

permitted maximum outflow and <strong>the</strong> permitted maximum water depth<br />

in <strong>the</strong> basin are limited and flooding is not permitted more<br />

quently than stated by <strong>the</strong> <strong>design</strong> return period used.<br />

Two different kinds <strong>of</strong> rainfall <strong>data</strong> can be used <strong>for</strong> <strong>the</strong> <strong>design</strong><br />

<strong>of</strong> <strong>detention</strong> <strong>basins</strong>:<br />

*<br />

*<br />

Design storms estimated from Intensity-Duration Frequency<br />

(I-D-F) relationships or from historical rainfall <strong>data</strong>.<br />

Historical storms or time series generated by statistical<br />

methods.<br />

A <strong>design</strong> storm is a rainfall which is developed <strong>for</strong> a certain<br />

<strong>design</strong> return period, and <strong>the</strong> flow value which is calculated by<br />

means <strong>of</strong> <strong>the</strong> storm is said to obtain <strong>the</strong> same return period as<br />

<strong>the</strong> storm.


2<br />

When historical storms are u a number <strong>of</strong> storms are run<br />

through a run<strong>of</strong>f model and stati ical analysis is applied<br />

to <strong>the</strong> simul flow values to find <strong>the</strong> flow value coupled with<br />

<strong>the</strong> ign return period.<br />

The conclusion is that when ign storms are u , <strong>the</strong> <strong>design</strong> is<br />

based on rai 11 statistics and when historical storms are used,<br />

<strong>the</strong> ign is on flow istics The latter must be more<br />

since flow values are <strong>the</strong> ting ign varia<br />

bles<br />

The ign storms have <strong>the</strong> advantages <strong>of</strong> ing easy and inexpen<br />

sive to use They are, however, evaluated <strong>for</strong> normal run<strong>of</strong>f areas<br />

only, and can give di rent results <strong>for</strong> different types <strong>of</strong><br />

areas The historical storms give more correct results <strong>for</strong> all<br />

types <strong>of</strong> areas, and non-linear effects in <strong>the</strong> run<strong>of</strong>f process that<br />

influence <strong>the</strong> flow statistics can be taken into account. Historical<br />

storms can be more expensive and complicated to use, but that<br />

problem can minimized through well-developed manuals and computer<br />

routines<br />

A number <strong>of</strong> earlier investigations about <strong>detention</strong> <strong>basins</strong> are<br />

reported in <strong>the</strong> literature but only a few deal with <strong>the</strong> selection<br />

<strong>of</strong> rainfall <strong>data</strong> <strong>for</strong> <strong>design</strong> <strong>of</strong> <strong>the</strong> <strong>basins</strong>. Johansen (1979) found<br />

that <strong>the</strong> use <strong>of</strong> historical rainfalls, combined with a unit-hydrograph<br />

to <strong>the</strong> basin, gave approximately <strong>the</strong> same sizes <strong>of</strong> <strong>the</strong> <strong>basins</strong><br />

as by using <strong>the</strong> constant rainfall intensity obtained from<br />

<strong>the</strong> I relationships as direct inflow to <strong>the</strong> basin. For outflows<br />

less than 10 1/s hared <strong>the</strong> use <strong>of</strong> <strong>the</strong> I-D-F curves gave a<br />

small underestimation and <strong>for</strong> outflows larger than 10 1/s hared<br />

<strong>the</strong> use <strong>of</strong> <strong>the</strong> I-D-F curves gave overestimations. The outflow was<br />

assumed to be constant as a function <strong>of</strong> time. The use <strong>of</strong> <strong>the</strong> his<br />

torical rainfalls as di inflow to <strong>the</strong> <strong>basins</strong> gave overesti<br />

mated volumes compared to volumes obtained by using <strong>the</strong> I F<br />

curves. Thus, it was found important to use some sort <strong>of</strong> run<strong>of</strong>f<br />

model to calculate <strong>the</strong> inflow to <strong>the</strong> basin.<br />

Stahre (1981) found that <strong>the</strong> use <strong>of</strong> a model like ILLUDAS (see<br />

Terstriep and Stall, 1974) gave smaller <strong>basins</strong> than <strong>the</strong> use <strong>of</strong> a<br />

linear time-area diagram when using <strong>the</strong> same rainfall <strong>data</strong> in <strong>the</strong>


3<br />

<strong>for</strong>m <strong>of</strong> a constant rainfall intensity obtained from <strong>the</strong> I-D-F<br />

curve. The use <strong>of</strong> a <strong>design</strong> storm presented by Sifalda (1973) and<br />

shown in Fig. 2.5 gave much larger volumes <strong>of</strong> <strong>the</strong> <strong>basins</strong> than <strong>the</strong><br />

I-D-F rainfall <strong>data</strong>. This could be expected since <strong>the</strong> Sifalda<br />

des i g n storm i n c 1 u des <strong>the</strong> I F i g n storm and w i t h r a i n fa 11<br />

added prior to and after this storm. Stahre found it important to<br />

specify <strong>the</strong> outflow correctly, <strong>for</strong> example if <strong>the</strong> given outflow<br />

is <strong>the</strong> maxi mum permi peak outflow or <strong>the</strong> maximum permitted<br />

average outflow.<br />

Marsalek (1978) obtained larger outflows than <strong>the</strong> <strong>design</strong> outflows<br />

when routing <strong>the</strong> Chicago <strong>design</strong> storm through <strong>basins</strong> <strong>design</strong>ed by<br />

using historical storms. He explained that by <strong>the</strong> Chicago <strong>design</strong><br />

storm caused larger run<strong>of</strong>f volumes than <strong>the</strong> historical storms<br />

did.<br />

Pecher (1978) found that <strong>the</strong> use <strong>of</strong> historical rainfalls and a<br />

unit-hydrograph method combined with a <strong>detention</strong> basin model<br />

(function not specified) resulted in smaller basin volumes than<br />

conventional <strong>design</strong> <strong>of</strong> retention <strong>basins</strong> using <strong>the</strong> I F relationships.<br />

Different studies on <strong>design</strong> <strong>of</strong> <strong>detention</strong> <strong>basins</strong> have also been<br />

reported by Colyer and Wooldri (1979) Colyer (1980) Wooldridge<br />

( 1981), and Donahue et a 1 ( 1981), but in none <strong>of</strong> <strong>the</strong>se<br />

last references have comparisons <strong>of</strong> <strong>design</strong> <strong>of</strong> <strong>detention</strong> <strong>basins</strong><br />

<strong>for</strong> different types <strong>of</strong> rainfall <strong>data</strong> been made<br />

In <strong>the</strong> present report a definition independent flooding events<br />

and <strong>the</strong> criteria <strong>for</strong> ign <strong>of</strong> <strong>the</strong> <strong>basins</strong> is rst given. The<br />

precipitation <strong>data</strong> used in <strong>the</strong> <strong>for</strong>m <strong>of</strong> an 18-year continuous historical<br />

record and <strong>the</strong> ign storms deri from <strong>the</strong> record are<br />

described. For <strong>the</strong> run<strong>of</strong>f simul ons CTH-Model (Arnell,<br />

1980) are used. The <strong>detention</strong> basin model calcul <strong>the</strong> outflows<br />

as a function <strong>of</strong> <strong>the</strong> water depths in <strong>the</strong> ins and determine <strong>the</strong><br />

areas <strong>of</strong> <strong>the</strong> <strong>basins</strong> given <strong>the</strong> maximum water depths and <strong>the</strong> maximum<br />

outflows. Three test catchments are u and <strong>detention</strong> <strong>basins</strong><br />

are located at <strong>the</strong> outlet <strong>of</strong> basin The <strong>detention</strong> <strong>basins</strong> are<br />

<strong>design</strong>ed both by using historical storms and by using different<br />

<strong>design</strong> storms. Traditional ign by using I F curves and


4<br />

l i t a ca son<br />

a<br />

use<br />

his CTH-Model givi most<br />

correct ions are given ical ica<br />

tions


2 REALIZATION OF IGN OF I BASINS<br />

5<br />

2.1<br />

Criteria<br />

Independent run<strong>of</strong>f events must ned to make possible a statistical<br />

analysis <strong>of</strong> basin volumes calcul <strong>for</strong> <strong>the</strong> historical<br />

storms. The <strong>basins</strong> are using <strong>the</strong> same flooding frequencies<br />

as <strong>for</strong> <strong>the</strong> surrounding <strong>sewer</strong> pi Arnell (1982) found by<br />

using autocorrelation analysis necessary time between independent<br />

rainfall intensity values to 4 hours and he used that<br />

as <strong>the</strong> necessary rain-free me period <strong>for</strong> separation <strong>of</strong> independent<br />

rainfall events used <strong>for</strong> i gn <strong>of</strong> <strong>sewer</strong> pi pes The same<br />

definition is used in <strong>the</strong> present investigation combined with <strong>the</strong><br />

condition that <strong>the</strong> <strong>detention</strong> <strong>basins</strong> must be empti between two<br />

rainfall events o<strong>the</strong>rwise <strong>the</strong> events mu be considered as one<br />

event.<br />

The <strong>detention</strong> <strong>basins</strong> are desi r <strong>the</strong> constrai <strong>of</strong> a permitted<br />

maximum peak outflow varied between 5 30 l/s~hared<br />

(hared = size <strong>of</strong> <strong>the</strong> areas contributing to run<strong>of</strong>f), and a permitted<br />

maximum water depth in <strong>the</strong> basin vari between 2 and<br />

3.5 m. A specifi baseflow f-cleaning, given in proportion<br />

<strong>of</strong> <strong>the</strong> peak outflow, is allowed to pass <strong>the</strong> <strong>basins</strong> be<strong>for</strong>e<br />

<strong>the</strong> storage start. The flooding frequencies are varied between<br />

six months and 5 years.<br />

2.2 infall Data U<br />

In <strong>the</strong> investigation hi cal rainfall<br />

been u from<br />

Lund by, Goteborg, <strong>for</strong> <strong>the</strong> period 1 making an 18-year<br />

(1922 excluded because <strong>of</strong> missing continuous rainfall series.<br />

The time increments vary because only <strong>the</strong> break-points were<br />

registered when <strong>the</strong> rainfall curves were <strong>for</strong>med to <strong>the</strong> computer.<br />

For <strong>the</strong> run<strong>of</strong>f simulations by CTH-Model <strong>the</strong> <strong>data</strong> <strong>of</strong><br />

interest were trans<strong>for</strong>med to hyetographs with a time <strong>of</strong> one<br />

minute and divided into individual<br />

using <strong>the</strong> result <strong>of</strong><br />

<strong>the</strong> earlier mentioned autocorrelation anal is<br />

A rainfall event was<br />

values where:<br />

as a es rai l intensity


11<br />

a co<br />

screeni<br />

in vo 1 ume<br />

t umes<br />

lcul<br />

conas<br />

sin<br />

(2 1)<br />

in<br />

in<br />

water is<br />

times j and 1<br />

(2 2)


7<br />

The method used <strong>for</strong> screening <strong>of</strong> <strong>the</strong> cant i nuous ra i nfa 11 series<br />

resulted in a reduced number <strong>of</strong> rainfalls which include all<br />

events necessary to make a correct statistical analysis <strong>of</strong> <strong>the</strong><br />

basin volumes and it also includes a safety-margin since <strong>the</strong> va<br />

lue <strong>of</strong> <strong>the</strong> constant outflow Q~ was chosen small enough. Johansen<br />

{1979) used <strong>the</strong> method above <strong>for</strong> direct <strong>design</strong> <strong>of</strong> <strong>the</strong> <strong>basins</strong> and<br />

found that it gave larger basin values than <strong>the</strong> use <strong>of</strong> historical<br />

storms and a unit hydrograph method <strong>for</strong> calculation <strong>of</strong> <strong>the</strong> inflows.<br />

The value <strong>of</strong> Q~ was varied between 1.0 1/s·hared and 30 1/s.hared·<br />

For each outflow <strong>the</strong> rainfalls corresponding to <strong>the</strong> 100 largest<br />

basin volumes were identified. Since many rainfalls were identi<br />

cal <strong>for</strong> <strong>the</strong> different outflows a total number <strong>of</strong> 176 rainfalls<br />

were selected from <strong>the</strong> tota 1 number <strong>of</strong> about 2300 events. Data<br />

concerning <strong>the</strong> events are given in Table 2.1.<br />

Designs <strong>of</strong> <strong>the</strong> <strong>detention</strong> <strong>basins</strong> have been done <strong>for</strong> three different<br />

types <strong>of</strong> <strong>design</strong> storms:<br />

(1) Average-Intensity-Duration {1-D-F) <strong>design</strong> storm<br />

{2) Chicago <strong>design</strong> storm<br />

{3) Sifalda <strong>design</strong> storm.<br />

All <strong>the</strong>se <strong>design</strong> storms are in one way or ano<strong>the</strong>r connected with<br />

<strong>the</strong> I F relationships. Arnell {1982) has presented I-0-F curves<br />

{see Fig. 2.1) and <strong>the</strong> following ma<strong>the</strong>matical expressions fitted<br />

to <strong>the</strong> curves:<br />

im = + c (2.3)<br />

where<br />

i<br />

maximum average intensity during <strong>the</strong> duration T<br />

m<br />

a, b' c = constants listed in Fig. 2 .1.


8<br />

RAINFALL<br />

mm/h<br />

110<br />

im<br />

100<br />

i m =<br />

a<br />

T + b<br />

+ c<br />

90<br />

Return period<br />

year<br />

a<br />

Constants<br />

b<br />

c<br />

80<br />

1 I 3<br />

445<br />

7 2,5<br />

1 I 2<br />

535<br />

7 2,5<br />

725<br />

8 2,5<br />

60<br />

2<br />

965<br />

9 2,0<br />

50<br />

5<br />

10<br />

1325<br />

1700<br />

10 1,5<br />

11 0,5<br />

40<br />

30<br />

F = Return period, years<br />

10<br />

0<br />

0<br />

20 40 60 80<br />

100 120 140<br />

160 180 200 220 240<br />

DURATION, T) min<br />

Figure 2 1<br />

Intensity-Duration-Frequency curves <strong>for</strong> Lundby 3<br />

Goteborg 1921-1939. After Arnell (1982).<br />

Table 2 1<br />

Data concerning selected rainfall events <strong>for</strong> <strong>design</strong><br />

<strong>of</strong> <strong>detention</strong> <strong>basins</strong>~ Lundby 1921-1939.<br />

Average<br />

value<br />

Standard<br />

deviation<br />

Number per year 10 4<br />

Volume per event (mm) 18.9 9 6<br />

Duration per event (min) 582 426


9<br />

is just <strong>the</strong><br />

constant rainfall intensity obtai ned from <strong>the</strong> I curves (see<br />

Fig. 2.2). When a <strong>detention</strong> basin is <strong>design</strong>ed, rainfalls with<br />

different durations are tested to find <strong>the</strong> duration that gives<br />

<strong>the</strong> maximum basin volume. One disadvantage with this simplified<br />

<strong>design</strong> storm is that it represents only a part <strong>of</strong> <strong>the</strong> total rain<br />

volume <strong>of</strong> <strong>the</strong> real rainfalls, as can be seen in Fig. 2.3<br />

100<br />

<strong>Rainfall</strong><br />

intensity<br />

mm/h<br />

80<br />

I - 0- F curve <strong>for</strong> a return<br />

period <strong>of</strong> one year<br />

60<br />

40<br />

20<br />

0<br />

0<br />

5<br />

Duration<br />

10 15 m1n<br />

Figure 2.2<br />

Example <strong>of</strong> <strong>the</strong> evaluation <strong>of</strong> an Average-Intensity­<br />

Duration <strong>design</strong> storm from an Intensity-Duration­<br />

Frequency curve. A constant intensity <strong>of</strong> 41.5 mm/h<br />

during 10 minutes. Return period one year. After<br />

Arne ll ( 19 8 2) .


c<br />

100 ·-<br />

90<br />

80<br />

70<br />

60<br />

50 ~<br />

40<br />

30<br />

30<br />

20<br />


where<br />

t = time<br />

T = total duration chosen equal to 720 minutes<br />

r relationship between <strong>the</strong> time prior to peak intensity<br />

and <strong>the</strong> total duration T.<br />

11<br />

The value <strong>of</strong> r was evaluated from <strong>the</strong> local <strong>data</strong> <strong>for</strong> Lundby and<br />

is given in Table 2.2. An example <strong>of</strong> <strong>the</strong> local Chicago <strong>design</strong><br />

storm is given in Fig. 2.4.<br />

Table 2.2 Average values <strong>of</strong> <strong>the</strong> relationship_, r_, between <strong>the</strong><br />

time prior to peak intensity and <strong>the</strong> total duration<br />

<strong>of</strong> 720 minutes. Lundby_, Goteborg_, 1921-1939.<br />

F<br />

r<br />

1/5 ~ F ~ l/2<br />

1 ~ F ~ 10<br />

0.43<br />

0.35<br />

<strong>Rainfall</strong><br />

inte2nsity , i<br />

mm/h<br />

b )2<br />

+ c (be<strong>for</strong>e <strong>the</strong> peak)<br />

= __ _:;,__ __<br />

2<br />

+ c ( after <strong>the</strong><br />

(-......__+b)<br />

a, b, c = c on stan obtai ned from Fig. 1<br />

0<br />

0<br />

r · T<br />

T<br />

Time, t<br />

Figure 2.4 Design rainfall_, suggested by Keifer and Chu<br />

(1957)_, derived from <strong>the</strong> Intensity-Duration-Frequency<br />

relationship <strong>for</strong> Lundby_, Goteborg_, 1921-<br />

1939. Return period one year. After Arnell (1982).


maximum<br />

12<br />

, 1 is compounded<br />

ipi ion<br />

and<br />

g. 2 5) The<br />

<strong>of</strong> <strong>the</strong> Si<br />

<strong>the</strong><br />

ll<br />

t<br />

mm/h<br />

Figure 2 5<br />

Example <strong>of</strong> a <strong>design</strong> storm <strong>of</strong> <strong>the</strong> Sifalda-type_,<br />

estimated from <strong>data</strong> <strong>for</strong> Lundby_, Goteborg 1921-1939<br />

Return period one year. After Arnell (1982).<br />

storm compa to <strong>the</strong> I <strong>design</strong> storm is that <strong>the</strong> total volume<br />

is more<br />

ign storm <strong>for</strong> Lundby <strong>the</strong> total<br />

v o 1 u me and rat i on and volumes and durations <strong>of</strong> <strong>the</strong> parts<br />

be<strong>for</strong>e and a <strong>the</strong> main part were determined by regression analysis<br />

<strong>of</strong> heaviest historical rainfalls <strong>for</strong> Lundby 1921 1939.<br />

Local ign storms were estimated by <strong>the</strong> following equations<br />

(see also Fig. 2 6):<br />

Ttot u + V·ln T (2.6)<br />

TIII<br />

=<br />

(e + f T) Ttot<br />

1<br />

(2.7)<br />

TI = Ttot - TII TIII (2 8)<br />

ptot<br />

= g + h·ln T (2.9)<br />

PIII<br />

=<br />

(k + 1 T) Ptot<br />

1<br />

(2.10)<br />

PI Ptot PII PIII (2 11)


13<br />

in which <strong>the</strong> definition <strong>of</strong> <strong>the</strong> symbols are given in Fig. 2.6 and<br />

<strong>the</strong> values <strong>of</strong> <strong>the</strong> constants are listed in Table 2.3. The distribution<br />

in time <strong>of</strong> <strong>the</strong> volumes was done with <strong>the</strong> added restriction<br />

that <strong>the</strong> intensities at <strong>the</strong> beginning and at <strong>the</strong> end <strong>of</strong> <strong>the</strong> rainfall<br />

are equal to 0.1 mm/h, which was <strong>the</strong> intensity value used<br />

<strong>for</strong> separation <strong>of</strong> <strong>the</strong> independent rainfalls.<br />

----Intensity obtained<br />

from I- D F curves<br />

0.1 mm/h~<br />

0.1 mm/h<br />

Figure 2.6<br />

Definition <strong>of</strong> parameters <strong>of</strong> <strong>the</strong> local Sifalda <strong>design</strong><br />

storm.<br />

Fur<strong>the</strong>r details concerning all <strong>the</strong> local <strong>design</strong> storms are given<br />

by Arnell (1982).


Table 2.3<br />

Constants <strong>for</strong> estimation <strong>the</strong> local Sifalda <strong>design</strong><br />

storm. Lundby 3 Goteborg~ 1921-1939<br />

Cons<br />

u<br />

v<br />

e<br />

f<br />

g<br />

h<br />

k<br />

1<br />

r)<br />

1/3 1 2 5<br />

.09<br />

111 17<br />

31 70<br />

11 -0 19<br />

11 07 9 7 8.<br />

2 5 04 5.<br />

18.<br />

12 -0 11 .07 03<br />

2 3<br />

inflow<br />

ban Run<strong>of</strong>f<br />

sins were calcul<br />

CTH-Ur-<br />

CTH-Model is a typical ign/anal is single-event model.<br />

The s re<br />

ich is shown in Fig 2.7, in<br />

eludes <strong>the</strong><br />

overland<br />

ow pi ow<br />

sion storage,<br />

model is<br />

plied <strong>the</strong> run<strong>of</strong>f area is divi into a number <strong>of</strong> subare<br />

catchments.<br />

uni<strong>for</strong>mly<br />

ion input<br />

rain<br />

ion is calcula<br />

given as over<br />

values at cons<br />

Horton's<br />

area<br />

time inand<br />

<strong>the</strong> su<br />

s ion s supply rate is calcul by an<br />

exponential ationship ts ove a flow to s rt<br />

ress ion s<br />

Overland flow is cal<br />

cul according to a ki ic wave <strong>the</strong>ory combi with a relationship<br />

<strong>the</strong> outflow and <strong>the</strong> tion storage on<br />

<strong>the</strong> su Simulation <strong>of</strong> flow is only a summation <strong>of</strong> <strong>the</strong><br />

overland flow along <strong>the</strong> gu From <strong>the</strong> gu wa is fed<br />

through inlets into pi tern pi ulic submodel<br />

works accordi to a kinematic wave <strong>the</strong>ory call a non linear<br />

reservoir ca that allows a realistic attenuation to be simu-<br />

tern<br />

and c flow in a conve tree <strong>sewer</strong>


15<br />

Infiltration<br />

f<br />

---,<br />

I<br />

~ ....J<br />

Diameter<br />

Flow<br />

a<br />

Figure 2.?<br />

Structure <strong>of</strong> <strong>the</strong> CTH-Urban Run<strong>of</strong>f Model. After Arnell<br />

(1980).<br />

The CTH-Model was chosen <strong>for</strong> <strong>the</strong> rainfall study because it is a<br />

detailed model which has proved to make "correct" run<strong>of</strong>f simulations<br />

<strong>for</strong> measured rainfalls, and thus <strong>the</strong> model has not great<br />

influence on <strong>the</strong> conclusions concerning <strong>the</strong> choice <strong>of</strong> <strong>design</strong><br />

storms. An example <strong>of</strong> ano<strong>the</strong>r model that could have been used is


1<br />

t<br />

ion is<br />

i<br />

ion<br />

The<br />

was u one<br />

ow<br />

all d i<br />

me only on rai<br />

were<br />

ll in<br />

on a<br />

ion<br />

file<br />

ins<br />

2 4<br />

The<br />

ins<br />

water is<br />

sins are empti<br />

pheric sure<br />

flows are functions <strong>of</strong><br />

outflows<br />

Given ba<br />

<strong>detention</strong><br />

or<br />

in this investi tion are on-line<br />

ng through sins<br />

es nozzle-type with atmos<br />

si (see Fig 2.8) The outpth<br />

s in sins <strong>the</strong><br />

<strong>the</strong>ir maximum values when sins are full .<br />

are pass <strong>the</strong> real<br />

start. This is to maintain sel leaning <strong>the</strong><br />

ins ion ins are assumed to cause no surcha ing<br />

ins.<br />

The s ou ows calcul wi <strong>the</strong> ions:<br />

dM<br />

Ql (2 12)<br />

K Hm (2 13)<br />

where<br />

~~ volume r in ion basin<br />

t<br />

= time<br />

Ql and inflow to outflow from <strong>the</strong> sin<br />

H water in sin center <strong>of</strong> <strong>the</strong><br />

outlet le<br />

K and m constants ich on <strong>the</strong> geometry <strong>of</strong> <strong>the</strong><br />

outl cons ion


17<br />

<strong>the</strong> pipe<br />

Figure 2.8<br />

The outlet <strong>for</strong> a <strong>detention</strong> basin.<br />

Eq. (2.12) is solved by <strong>the</strong> following finite difference scheme.<br />

where<br />

j and j+1<br />

As<br />

(2.14)<br />

time j and j+1<br />

= area <strong>of</strong> <strong>the</strong> water surface in <strong>the</strong> basin<br />

(constant, independent <strong>of</strong> water depth)<br />

= length <strong>of</strong> time step.<br />

The outflow through <strong>the</strong> nozzle-type outl<br />

<strong>the</strong> equation<br />

hole is calculated by<br />

(2 15)<br />

where<br />

size <strong>of</strong> <strong>the</strong> outlet hole<br />

acceleration gravity<br />

coefficient <strong>for</strong> calculation· <strong>of</strong> head loss at <strong>the</strong> outlet<br />

hole.<br />

The Eqs 2.14 and 2 15 are sol<br />

ny Newton-Raphson iterations.


size<br />

ion<br />

a<br />

ou<br />

inc<br />

routine<br />

in<br />

ign i<br />

in<br />

maximum<br />

1<br />

value<br />

drau 1 i<br />

ter<br />

ou et<br />

maximum<br />

k.<br />

1<br />

re given (<br />

e<br />

value<br />

calcul<br />

k. is<br />

1<br />

to k r cl<br />

not smaller n 1<br />

2<br />

diame-<br />

2<br />

In<br />

to<br />

ter level<br />

inves ion<br />

tart water level<br />

e minimum ow r leani<br />

was esti nsertion H<br />

outlet ) in 2 15<br />

(d<br />

was se-<br />

wa-<br />

diame-<br />

3<br />

size<br />

by a<br />

zontal area<br />

rou<br />

mi<br />

area until<br />

or comes close to maximum<br />

Usually 5 ls a necessa<br />

sin<br />

is<br />

area<br />

Data <strong>for</strong> di ins a given in ion<br />

2 5<br />

To k if i ion<br />

<strong>the</strong> in<br />

rai 11<br />

necessa to<br />

sin was calcul<br />

wa<br />

ion:<br />

in<br />

time<br />

2<br />

1<br />

2<br />

(2<br />

time neces<br />

at<br />

K = Ao(<br />

1<br />

.))2<br />

1<br />

to<br />

rai<br />

outlet<br />

sin<br />

ll to<br />

e<br />

Hred


2 5<br />

As catchments <strong>for</strong> tests <strong>of</strong> <strong>the</strong> different types <strong>of</strong> rainfall <strong>data</strong><br />

three areas were chosen, which had been used by Arnell (1980,<br />

1982) in his validation <strong>of</strong> <strong>the</strong> CTH-Model, and in his study <strong>of</strong><br />

rainfall <strong>data</strong> <strong>for</strong> <strong>design</strong> <strong>of</strong> <strong>sewer</strong> pipes. The areas have different<br />

sizes, topography, and types <strong>of</strong> buildings as shown in Table 2.4<br />

and were chosen because input <strong>data</strong> was already prepared. Arnell<br />

(1980) has des bed each catchment in more detail<br />

Table 2. 4 Test catchment <strong>data</strong> and swnmary <strong>of</strong> run<strong>of</strong>f-simulation<br />

input <strong>data</strong><br />

Catchment <strong>data</strong><br />

and run<strong>of</strong>f input <strong>data</strong><br />

Bergsjon<br />

Linkoping 1<br />

Linkoping 2<br />

Size (<br />

0 154<br />

1.450<br />

0.185<br />

Impermeable part (%)<br />

38<br />

46<br />

34<br />

Land use<br />

Apartment<br />

complexes<br />

Mixed housing<br />

and commercial<br />

buildings<br />

Single family<br />

detached<br />

houses<br />

Slopes<br />

Number <strong>of</strong> pipes used<br />

in <strong>the</strong> simulations<br />

Number <strong>of</strong> inlets used<br />

in <strong>the</strong> simulations<br />

Sizes <strong>of</strong> 2<br />

contributing<br />

areas (m )<br />

part <strong>of</strong> <strong>the</strong> total<br />

a rea (%)<br />

Surface depression<br />

storage capacity (mm)<br />

Length <strong>of</strong> <strong>the</strong> main<br />

pipe (m)<br />

Average slope <strong>of</strong> <strong>the</strong><br />

main pipe<br />

Steep Flat<br />

73 125<br />

47 54<br />

40 100 493 000<br />

26 34<br />

0.42 0 70<br />

606 2824<br />

0.045 0.0063<br />

Medium<br />

54<br />

49<br />

57 100<br />

31<br />

0 63<br />

845<br />

0.012


u<br />

1 i<br />

imu<br />

in<br />

u area<br />

a linear<br />

umes<br />

ion anal<br />

i<br />

ll<br />

umes<br />

simulations<br />

ni cant ow in<br />

ini<br />

(1 1)<br />

rai<br />

su<br />

increase in<br />

Bergsj sin<br />

total a rea<br />

u s<br />

areas<br />

can<br />

tistical di<br />

return Also if<br />

rai lls<br />

run<strong>of</strong>f<br />

The influence<br />

also<br />

This is<br />

from<br />

reas was<br />

in<br />

i in<br />

area mus<br />

umes from an<br />

run<strong>of</strong>f<br />

rai ll<br />

ing<br />

no result<br />

meable areas are clea<br />

rounded by cu<br />

a<br />

<strong>sewer</strong> pi tern no di are u<br />

<strong>basins</strong><br />

no<br />

or no inl<br />

as ion<br />

ies t<br />

most e<br />

comno<br />

ca<br />

i<br />

to<br />

ll s<br />

e<br />

ity<br />

sibilities<br />

lly<br />

ipitation was<br />

no uence<br />

measureate<br />

volume<br />

divi<br />

ve<br />

are sur<strong>of</strong>


21<br />

One <strong>detention</strong> basin is located at <strong>the</strong> outlet <strong>of</strong> each catchment<br />

The maximum permitted water depth <strong>of</strong> each basin was varied between<br />

2.0 m and 3.5 m above <strong>the</strong> center <strong>of</strong> <strong>the</strong> outlet hole which<br />

combined with <strong>the</strong> maximum permitted outflows <strong>of</strong> 5 to 30 1/s. hared<br />

gave <strong>the</strong> <strong>detention</strong> basin <strong>data</strong> listed in Tables 2.5 and 2 6. The<br />

outflow given in 1/s.hared is counted <strong>for</strong> <strong>the</strong> contributing areas<br />

only. The va 1 ue <strong>of</strong> <strong>the</strong> head 1 oss ( ki) at <strong>the</strong> outl was chosen<br />

equal to 0.5<br />

The diameters <strong>of</strong> <strong>the</strong> outlet holes given in Tables 2.5 and 2.6 are<br />

in some cases sma 11 er than is recommended, due to <strong>the</strong> risk <strong>for</strong><br />

clogging (see Section 2 4), but <strong>the</strong> listed diameters are u<br />

despite making <strong>the</strong> results comparable.<br />

The <strong>detention</strong> <strong>of</strong> water starts when <strong>the</strong> inflow is larger than <strong>the</strong><br />

minimum flow <strong>for</strong> sel eaning which appears when <strong>the</strong> water<br />

reaches <strong>the</strong> head <strong>of</strong> <strong>the</strong> outlet hole Thus, <strong>the</strong> available storage<br />

depth is 2.0 m and 3.5 m respectively minus half <strong>of</strong> <strong>the</strong> diameter<br />

<strong>of</strong> <strong>the</strong> outlet hole.


Table 2 5<br />

Detention basin <strong>data</strong>. Maximum permitted water depth<br />

2 0 m.<br />

Li 1 Linkoping 2<br />

r-Ja;


23<br />

Table 2.6<br />

Detention basin <strong>data</strong>. Maximum permitted water depth<br />

3.5 m.<br />

Basin <strong>data</strong><br />

Bergsjon<br />

Linkoping 1 Linkoping 2<br />

Maximum permitted water<br />

depth (m)<br />

3.5<br />

3.5 3.5<br />

Maximum permitted outflow<br />

= 5.0 1/s·hared<br />

Maximum outflow (m 3 /s) 0.0201<br />

Diameter <strong>of</strong> <strong>the</strong> outlet<br />

hole (m) 0.062<br />

Minimum flo~ <strong>for</strong> sel<br />

cleaning (m /s) 0.0019<br />

0.2465 0.0286<br />

0.215 0.073<br />

0.0432 0.0029<br />

Maximum permitted outflow<br />

= 10 1/s· hared<br />

Maximum outflow (m<br />

3<br />

/s)<br />

Diameter <strong>of</strong> <strong>the</strong> outlet<br />

hole (m)<br />

Minimum flo~ <strong>for</strong> selfcleaning<br />

(m /s)<br />

0.0401<br />

0.087<br />

0.0045<br />

0.4930 0.0571<br />

0.305 0.104<br />

0.1028 0.0069<br />

Maximum permitted outflow<br />

= 20 1/s·hared<br />

Maximum outflow (m 3 /s) 0.0802 0.9860 0.1142<br />

Diameter <strong>of</strong> <strong>the</strong> outlet<br />

hole (m) 0.123 0.431 0.147<br />

Minimum flo~ <strong>for</strong> sel<br />

cleaning (m /s) 0.0106 0.2446 0.0165<br />

Maximum permitted outflow<br />

= 30 1/s·hared<br />

Maximum outflow (m 3 /s) 0.1203 1.4790 0.1713<br />

Diameter <strong>of</strong> <strong>the</strong> outlet<br />

hole (m) 0.150 0.528 0.180<br />

Minimum flo~ <strong>for</strong> sel<br />

cleaning (m /s) 0.0176 0.4060 0.0274


2<br />

i Hi cal<br />

In t catchment <strong>the</strong> ins were igned <strong>for</strong> <strong>the</strong> 100 la<br />

est his ca 1 storms <strong>for</strong> each outflow 1 eve 1 found through<br />

screeni<br />

1 rainfall es described in ion 2.2<br />

Since many storms were <strong>the</strong> same <strong>for</strong> <strong>the</strong> different outflow<br />

s total number <strong>of</strong> storms were reduced to 176 These 176<br />

were rst run through <strong>the</strong> CTH-Model and <strong>the</strong> inflows to<br />

sins <strong>for</strong> all storms were stored on a computer le That<br />

fi 1 e was u <strong>for</strong> <strong>the</strong> <strong>design</strong> <strong>of</strong> <strong>the</strong> <strong>basins</strong> <strong>for</strong> different<br />

outflow s Thus, <strong>the</strong> run<strong>of</strong>f <strong>for</strong> <strong>the</strong> different storms <strong>for</strong><br />

ba in needed to be calculated only once.<br />

When doing <strong>the</strong><br />

ign it was controled that <strong>the</strong> basin was empti<br />

ing rainfall.<br />

rough i gn <strong>the</strong> necessary vo 1 ume <strong>of</strong> <strong>the</strong> basin <strong>for</strong> each<br />

storm was determined to prevent <strong>the</strong> basin from flooding. A series<br />

<strong>of</strong> basin volumes <strong>for</strong> each outflow level was obtained corresponding<br />

to <strong>the</strong> 176 ra i nfa 11 s. These basin vo 1 umes were ranked in<br />

cending order and <strong>the</strong> largest (corresponding to a return<br />

period <strong>of</strong> six months) were plotted on a statistical probability<br />

paper using <strong>the</strong> plotting <strong>for</strong>mula<br />

y.<br />

1<br />

=1,2 ... ,N (2.17)<br />

yi plotting position <strong>for</strong> <strong>the</strong> basin volumes in increasing<br />

(yi = lnF; where F is return period)<br />

N = number <strong>of</strong> ted basin volumes (in this case 36)<br />

The resul are shown in Appendix I.


25<br />

ign Using ign Storms<br />

The different basin vo 1 umes<br />

following <strong>design</strong> storms:<br />

have a 1 so been determined <strong>for</strong> <strong>the</strong><br />

(1) Average-Intensity-Duration <strong>design</strong> storm<br />

(2) Chicago <strong>design</strong> storm<br />

(3) Sifalda <strong>design</strong> storm.<br />

The <strong>design</strong>s were carried out <strong>for</strong> <strong>the</strong> return periods <strong>of</strong> six<br />

months, 1, 2, and 5 years. For each return period <strong>design</strong>s were<br />

made <strong>for</strong> different durations <strong>of</strong> <strong>the</strong> I-0-F <strong>design</strong> storm and <strong>of</strong><br />

part I I <strong>of</strong> <strong>the</strong> S i fa 1 d a des i g n storm to f i n d <strong>the</strong> dura t i on that<br />

gave <strong>the</strong> maximum basin volume.<br />

For each <strong>design</strong> storm and each return period one maximum basin<br />

volume was obtained <strong>for</strong> each outflow level. The result is plotted<br />

on <strong>the</strong> graphs given in Appendix I.<br />

In Table 2.7 are listed <strong>the</strong> durations that caused <strong>the</strong> maximum<br />

basin volumes and <strong>for</strong> a return period <strong>of</strong> one year <strong>for</strong> <strong>the</strong> different<br />

<strong>design</strong> storms and outflow levels.


2 ? The storm storm<br />

II)<br />

vo<br />

<strong>the</strong> I-D-F <strong>design</strong><br />

SifaZda<br />

traditional <strong>design</strong>. Return<br />

one year.<br />

Catchment<br />

Maximum Design storm and maximum permitted<br />

permitted water (m)<br />

outflow 1-D-F Sifalda Traditional des.<br />

1/s• 2.0 3.5 2.0 2.0<br />

0 360 360 240 240 360 360<br />

10.0 110 120 110 110 120 200<br />

20.0 35 35 40 35 70 70<br />

30.0 25 25 25 25 30 35<br />

Linkoping 1<br />

Li ng 2<br />

5.0 360 360 240 240 360 360<br />

1 0 120 120 110 140 120 120<br />

20.0 60 60 50 40 50 60<br />

30.0 35 35 30 30 25 35<br />

.0 360 360 240 240 360 360<br />

0 120 120 140 140 120 200<br />

0 35 35 35 45 70 70<br />

30 25 25 25 30<br />

2<br />

c<br />

ionsh<br />

i<br />

i<br />

s developed<br />

time-area diagram<br />

n ra i 11<br />

outflow from<br />

tion<br />

ume<br />

Works Association has publis<br />

<strong>detention</strong> <strong>basins</strong> (<br />

method, which in<br />

estimation<br />

from<br />

sin. The<br />

sin is<br />

0.<br />

, T<br />

m<br />

, T<br />

m<br />

(2


where<br />

27<br />

M = volume <strong>of</strong> <strong>the</strong> basin (m3/hared)<br />

tc<br />

= time <strong>of</strong> concentration (min)<br />

i = m<br />

rainfall intensity obtained from g. 2.1 or Eq. (2.3)<br />

(1/s·hared)<br />

T duration <strong>of</strong> <strong>the</strong> rainfall (min)<br />

Qc = constant<br />

2<br />

outflow (l/s· hared)<br />

The maximum volume <strong>of</strong> <strong>the</strong> basin is obtained when<br />

dM = O<br />

dT<br />

(2.19)<br />

The outflows were in this investigation approximated by <strong>the</strong> equation<br />

(2.20)<br />

where<br />

Q<br />

max<br />

Q<br />

min<br />

= maximum outflow when <strong>the</strong> basin is full<br />

flow <strong>for</strong> which <strong>the</strong> storage starts.<br />

The values <strong>of</strong> Qmax and Qmin were taken from Tables 2.5 and 2.6<br />

and <strong>the</strong> resulting values <strong>of</strong> <strong>the</strong> outflows Q~ are listed in Table<br />

2.8.


Table 2 8<br />

Outflows <strong>for</strong> use in <strong>design</strong> with <strong>the</strong> traditional<br />

method. Q 0 (Q + Q . )/2. Values in l/s ha d"<br />

2 max m~n re<br />

t<br />

Maximum permi<br />

outflow (1/S· ha<br />

0 0<br />

Lin<br />

Li<br />

1<br />

2<br />

5 11 17<br />

2 6 04 12<br />

2 77 5 11 45 17.<br />

--- --- ---<br />

Li<br />

Lin<br />

i<br />

1<br />

2<br />

2.84 5 79 11 88<br />

3 12 6 48 13 20<br />

2 87 5 87 12 05 18.41<br />

me<br />

on, was calcul by (2 21) given<br />

t ( 1)<br />

pL<br />

Lh80<br />

(2 21)<br />

where<br />

Lh 80<br />

Sh<br />

length <strong>of</strong> <strong>the</strong> main pipe plus 80 m (m)<br />

= total sizes <strong>of</strong> contributing areas (ha)<br />

= average slope <strong>of</strong> <strong>the</strong> main pipe.<br />

Values , and Sh were taken from Table 2.4, and<br />

values kl, pl, pi, pA and pS were taken from<br />

e 2.9.<br />

sin volumes were calcul by changing rainfall duration<br />

stepwise nd one that maximum volumes. The<br />

results are listed in Tables 3 5 and 3.6 and plotted in Appendix<br />

I <strong>for</strong> two maximum water depths <strong>of</strong> 2.0 m and 3 5 m <strong>for</strong> each<br />

basin.


29<br />

Table 2.9<br />

Values <strong>of</strong> constants <strong>for</strong> estimation <strong>of</strong> time <strong>of</strong> concentration<br />

by Eq. (2.21). After Lyngfelt (1981).<br />

Constants<br />

k1<br />

pl<br />

pi<br />

pA<br />

Bergsjon<br />

Linkoping 2<br />

0.490<br />

0.50<br />

0.32<br />

0.10<br />

Catchment<br />

Linkoping 1<br />

0.079<br />

0.71<br />

0.32<br />

0.05


3 I I<br />

N<br />

3 1<br />

i<br />

ion<br />

result<br />

* errors a u<br />

u<br />

real<br />

ca<br />

i 1 i s i mu 1 i<br />

*<br />

i<br />

c<br />

bi<br />

inties<br />

ection<br />

errors<br />

uncertainites in<br />

rai 11<br />

over-<br />

in return<br />

timations<br />

umes<br />

in volumes<br />

to<br />

<strong>of</strong>f volumes<br />

s<br />

vali<br />

This also incl<br />

tion <strong>of</strong> in<br />

ows thin a<br />

sizes<br />

t sins were<br />

so same<br />

inties<br />

accu<br />

to imulate run<br />

error <strong>of</strong> about -<br />

reas In<br />

a<br />

r<br />

can<br />

ec<br />

The di<br />

ign storms are<br />

on-<br />

ationshi<br />

uncertainties <strong>the</strong> I F curves<br />

He also shows that ch in<br />

approx<br />

cul<br />

ly <strong>the</strong> same<br />

volumes mu t<br />

rel<br />

to<br />

in Fig<br />

11<br />

cul<br />

in<br />

In<br />

ha<br />

<strong>the</strong><br />

2 1 14%.<br />

intensities cau<br />

k ows<br />

same<br />

The in ion resul sin volumes <strong>for</strong> <strong>the</strong> di<br />

rent rainfall ta should also on <strong>for</strong><br />

over- and timation sin volumes cost incl<br />

investment costs and flooding costs Stahre (1981) has published<br />

a res on inves cos s in Fig 3 1, but values<br />

are va to rna e an estimation <strong>the</strong> increase


31<br />

000<br />

GJ<br />

E<br />

:J<br />

0<br />

><br />

2 000<br />

~<br />

w<br />


M = in ume<br />

F return<br />

m = lower value di ion ion<br />

z di ion ion<br />

(3 1) imately lid return<br />

d<br />

on can<br />

1/z F<br />

. 1 (3 2)<br />

corres ing to sin volumes M 1<br />

The value i y 0 1 maximum ows<br />

l/s· l/s·ha s'<br />

an ume 10%<br />

return od y<br />

di uncertainties errors are <strong>of</strong> same size as<br />

were by 1 ( in a similar mat ion<br />

<strong>of</strong> k flow values same us ions can<br />

The c in volumes <strong>for</strong><br />

storms in umes hi storms<br />

should as small as ibl<br />

* s i ons di basin<br />

volumes should as small as all<br />

inties i<br />

run<strong>of</strong>f, uncerthout<br />

inties <strong>of</strong> 10-1 can<br />

la increases<br />

in 1 uncertainties<br />

i<br />

tics <strong>of</strong><br />

in<br />

phys i ca 1 and s is cal<br />

ign storms a<br />

on<br />

ir opment bust<br />

incl<br />

s


3.2<br />

The complete results <strong>of</strong> <strong>design</strong> using historical storms are given<br />

in Appendix I. The basin volumes corresponding to <strong>the</strong> return<br />

periods <strong>of</strong> ·six months, 1, 2, and 5 years are listed in Table 3.1.<br />

The volumes in Table 3.1 were estimated by linear interpolation<br />

between <strong>the</strong> plotted points in Appendix I.<br />

The basin volumes obtained <strong>for</strong> <strong>the</strong> historical storms are assumed<br />

to be <strong>the</strong> most correct. No <strong>the</strong>oretical distributions were fitted<br />

to <strong>the</strong> <strong>data</strong> becasue <strong>the</strong> p 1 otted points <strong>the</strong>mse 1 ves are <strong>the</strong> most<br />

correct values available.<br />

Table 3 1<br />

Ba3in volumes calculated <strong>for</strong> <strong>the</strong> historical storms<br />

(m /ha d).<br />

re<br />

Catchment<br />

Bergsjon<br />

Linkoping 1<br />

Linkoping 2<br />

Maximum<br />

Maximum basin depth<br />

permitted 2.0 m 3.5 m<br />

outflow Return period Return period<br />

1/s·hared<br />

1<br />

1 2 5<br />

1<br />

1 2 5<br />

2 2<br />

5 145 195 248 318 144 188 242 310<br />

10 116 136 175 242 112 135 173 238<br />

20 68 103 129 164 69 103 123 164<br />

30 53 82 102 150 52 83 104 149<br />

5 141 188 215 323 145 191 250 323<br />

10 105 125 166 230 106 127 170 235<br />

20 56 85 110 147 59 90 115 156<br />

30 31 63 80 122 34 65 85 127<br />

5 140 187 241 308 139 186 239 310<br />

10 110 129 164 231 109 131 168 232<br />

20 61 97 120 157 62 97 119 160<br />

30 45 79 97 140 45 78 98 140


in<br />

were<br />

i<br />

water<br />

in<br />

umes<br />

his<br />

3 1 s<br />

di<br />

i two in s 2 0 m<br />

va ation in sin volumes<br />

sma 11 .<br />

cal storms a<br />

in<br />

1 is<br />

umes<br />

3 5 m i nd i<br />

maximum rmi<br />

For smallest ou ow 5 l/s·ha<br />

vo 1 umes were i<br />

<strong>of</strong> l/s· ha di t<br />

<strong>for</strong> <strong>the</strong> sma 11 Bergsj sin and<br />

were found explanation is t<br />

volumes are <strong>the</strong> most important<br />

both rain volumes and variation in<br />

ly same sin<br />

ou ow<br />

sin sizes<br />

la r L inkoping 1 sin<br />

small ows rain<br />

, while <strong>for</strong> larger outflows<br />

inflow hydrographs to<br />

<strong>detention</strong> stora are important Thus, it is important to use a<br />

run<strong>of</strong>f model to calcula inflows to <strong>detention</strong> sins <strong>for</strong><br />

la catchments outflows which conclusion was also drawn<br />

by Johansen (1 ).<br />

screeni rainfall se es (see ction 2.2) us<br />

<strong>the</strong> <strong>of</strong> ra i 11 events to us in <strong>the</strong> run<strong>of</strong>f<br />

simul ions ve a sufficient number <strong>of</strong> rai lls to make poss<br />

ible a correct statistical ign <strong>the</strong> sin volumes <strong>for</strong> return<br />

peri <strong>of</strong> six months and longer<br />

The 176 rainfalls u in<br />

rainfalls u by Arnell (1<br />

<strong>of</strong> peak-flows ign <strong>of</strong><br />

rai lls can u both<br />

tion <strong>basins</strong> <strong>for</strong> rn<br />

study include all <strong>the</strong> 110<br />

in a similar study <strong>for</strong> estimation<br />

conclusion is that <strong>the</strong> 1<br />

ign <strong>sewer</strong> pi and<br />

six months longer<br />

3.3<br />

The basin umes <strong>for</strong> <strong>the</strong> i gn storms <strong>for</strong> <strong>the</strong> di<br />

<strong>design</strong> return periods were plotted in <strong>the</strong> same diagrams in Appen<br />

dix I as where <strong>the</strong> basin volumes <strong>for</strong> historical storms were<br />

plotted Over- and underestimations <strong>of</strong> basin volumes obtained <strong>for</strong><br />

<strong>the</strong> <strong>design</strong> storms were estimated by compa ng with <strong>the</strong> basin vol<br />

umes obtained <strong>the</strong> historical storms. The resulting di<br />

ences are lis in Tables 3 2 and 3.3 ble 3 4 gives <strong>the</strong> sum-


35<br />

mary <strong>of</strong> <strong>the</strong> result as mean values and standard deviations <strong>of</strong> <strong>the</strong><br />

differences <strong>for</strong> <strong>the</strong> different <strong>design</strong> storms, run<strong>of</strong>f areas and<br />

maximum water depths<br />

Table 3.2<br />

Deviations in percent between <strong>the</strong> basin volumes <strong>for</strong>'<br />

<strong>design</strong> stor'ms and <strong>the</strong> basin volumes foY' historical<br />

storms MV is <strong>the</strong> mean value and a <strong>the</strong> standar'd<br />

deviation. Maximum basin depth 2.0 m.<br />

Catchment<br />

Maximum 1-D-F Chicago Sifalda Traditional <strong>design</strong><br />

permitted Design Design Design 1-D-F curves and<br />

outflow Storm Storm Storm time-area method<br />

Return period Return period Return period Return period<br />

1/s ha red ~ 1 2 5 ~ 1 2 5 ~ 1 2 5 ~ 1 2 5<br />

Bergsjon<br />

Li nkopi ng 1<br />

5 -16 -19 -24 -201 -11 -16 -23 -21 +32 +23 +11 -3 -10 -12 -17 -14<br />

10 -27 -17 -18 -23! -20 -10 -13 -14 +4 +21 +13 -4 -17 -10 -13 -17<br />

l<br />

20 -18 -22 -17<br />

-14 -9 -1 +6 +10 +12 +9 -7 -15 -12 -7<br />

30 -17 -21 -11 ~~~I ~: -12 -5 -7 -6 +5 +15 +1 -8 -12 -4 -8<br />

MV;o -18; 4.6 '-12; 6.4 +9; 10.3 -11; 4.0<br />

i<br />

5 -15 -16 -23 -21 l -10 -13 -22 -22 +37 +29 +15 -4 -14 -15 -22 -21<br />

10 1-25 -14 -17 -221 -16 -6 -11 -13 +12 +29 +17 0 -22 -14 -17 -21<br />

20 -23 -22 -16 -121 -2 -6 -3 +3 +9 +19 +20 +13 -21 -20 -15 -8<br />

30 1 -19 -27 -13 -111 +23 -5 +8 +5 +19 +11 +25 +9 -16 -24 -9 -7<br />

-6; 11.6<br />

+16; 10.6 -17; 5.3<br />

t<br />

I<br />

5 -14 -17 -23 -19! -10 -14 -22 -20 +35 +27 +13 -2 -9 -9 -15 -12<br />

10 -25 -15 -15 -21 i -18 -7 -9 -12 +7 +24 +18 -2 -15 -7 -9 -15<br />

MV;CJ ,-19; 4.9<br />

Linkoping 2 20 -15 -22 -14 -10 +3 -11 -6 +1 +11 +12 +16 +10 -2 -12 -8 -4<br />

30 -13 -23 -12 -11 +9 -13 -3 -4 +4 +4 +15 +4 +2 -14 -3 -4<br />

~1V;o -17; 4.7 -9; 8.4 +12; 10.2 -9; 5.2<br />

I<br />

l<br />

MV = -17.9; 0 = 4.7j MV -8.5; CJ = 9.2 MV = +12.6;0 = 10.6 MV = -12.2; 0 = 5.9


Table 3 3<br />

Deviations in percent between <strong>the</strong> basin volumes <strong>for</strong><br />

<strong>design</strong> storms and <strong>the</strong> basin volumes <strong>for</strong> historical<br />

storms MV is <strong>the</strong> mean value and a <strong>the</strong> standard<br />

deviation. Maximum basin depth 3 5 m.<br />

Catchment<br />

Maximum<br />

permitted<br />

outflow<br />

1/s hared<br />

1-D-F Chicago Sifalda Traditional <strong>design</strong><br />

Design Design Design 1-D-F curves and<br />

Storm Storm Storm time-area method<br />

Return period Return od Return period Return period<br />

J:z 1 2 5 J:z 1 2 5 J:z 1 2 5 J:z 1 2 5<br />

5<br />

10<br />

Bergsjon 20<br />

30<br />

MV;a<br />

5<br />

10<br />

Li nkopi ng 1 20<br />

30<br />

MV;a<br />

5<br />

10<br />

Li nkopi ng 2 20<br />

30<br />

MV;a<br />

-15 -16 -22 -18 -9 -12 -20 -19 +35 +29 +14 ±o -9 -9 -14 -12<br />

-23 -16 -17 -21 -16 -9 -10 -13 +9 +21 +14 -2 -13 -8 -10 -15<br />

-17 -21 -12 -10 -3 -12 -3 ±o +6 +11 +19 +10 -6 -13 -6 -5<br />

5 -20 -13 -11 ±O -11 -4 -5 ±o +6 +14 +3 -2 -11 -4 -6<br />

- 7; 4.0 6.2 +12; 10.4 -9; 3.9<br />

7 -16 -24 -21 -10 -13 -22 -21 +35 +29 +12 -3 -15 -16 -21 -19<br />

-15 -18 -22 -14 -5 -11 -12 +14 +29 +16<br />

:~I<br />

-19 -12 -16 -20<br />

-24 -18 ~15 -2 -8 -3 ±o +10 +16 +17 -19 -20 -15 -12<br />

-26 -15 -12 +18 -3 +5 +2 +15 +14 +24 +9 -12 -20 -8 -7<br />

- 4.5 10.0 +15; 10.2 -16; 4.4<br />

-14 -17 -23 -20 -8 -13 -21 -21 +36 +27 +14 -3 -6 -9 -14 -12<br />

-24 -15 -15 -21 -16 -8 -10 -12 +9 +23 +15 -2 -12 -6 -8 -13<br />

-15 -21 -13 -11 +3 -9 -3 +6 +13 +13 +18 +9 ±o -10 -5 -4<br />

-11 -22 -12 -10 +11 -9 -2 -2 +7 +8 +16 +6 +4 -9 -1 -2<br />

-17; 4 7 -7; 9.0 +13; 10.0 -7; 5.1<br />

!<br />

MV = -17.6; a = 4.6 MV = -7.5; a = 8.5 MV = +13.4;a 10.1jMV = -10.4; a = 5.9


37<br />

Table 3 4<br />

Deviations in percent between <strong>the</strong> basin volumes <strong>for</strong><br />

<strong>design</strong> storms and <strong>the</strong> basin volumes <strong>for</strong> historical<br />

storms. The mean values (MV) and standard deviations<br />

(a) are <strong>for</strong> an average <strong>of</strong> all return periods<br />

and all maximum outflows.<br />

<strong>Rainfall</strong> <strong>data</strong><br />

1-D-F<br />

<strong>design</strong> storm<br />

Chicago<br />

<strong>design</strong> storm<br />

Maximum Bergs jon Linkoping 1 Linkoping 2 All <strong>basins</strong><br />

water<br />

depth (m) MV a MV a MV a MV CY<br />

2.0 -18 4.6 -19 4.9 -17 4.7 -18 4.7<br />

3.5 -17 4.0 -20 4.5 -17 4.7 -18 4.6<br />

2 0 -12 6.4 - 6 11.6 - 9 8.4 - 9 9.2<br />

3.5 - 9 6.2 6 10.0 - 7 9.0 - 8 8.5<br />

Sifalda<br />

<strong>design</strong> storm<br />

2.0 + 9 10.3 +16 10.6 +12 10.2 +13 10.6<br />

3.5 +12 10.4 +15 10.2 +13 10.0 +13 10.1<br />

--------------------!=--------- -------------1-------------- -----------· -=--------<br />

Traditional <strong>design</strong><br />

1-D-F curves and 2 0 -11 4.0 -17 5.3 9 5.2 -12 5.9<br />

time-area method 3.5 9 3.9 -16 4.4 - 7 5.1 -10 5.9<br />

The basin volumes corresponding to <strong>the</strong> I-D-F <strong>design</strong> storm are on<br />

average 18% smaller than <strong>the</strong> volumes obtained <strong>for</strong> <strong>the</strong> historical<br />

storms. The underestimations are slightly smaller <strong>for</strong> <strong>the</strong> larger<br />

outflows than <strong>for</strong> <strong>the</strong> smaller outflows. The too small basin vol<br />

umes <strong>for</strong> <strong>the</strong> I F <strong>design</strong> storm are mainly due to <strong>the</strong> total rainfa<br />

11 vo 1 umes <strong>for</strong> <strong>the</strong> I F i gn storms which are sma 11 er than<br />

<strong>the</strong> total volumes <strong>of</strong> <strong>the</strong> historical storms used <strong>for</strong> estimation <strong>of</strong><br />

<strong>the</strong> I -D- F curves. When I F curves are estimated <strong>the</strong> maximum<br />

intensity parts only <strong>of</strong> <strong>the</strong> real storms are regarded. The rainfall<br />

coming prior to and after <strong>the</strong> maximum parts are ignored and<br />

thus giving <strong>the</strong> I-D-F ign storm a too small total volume, see<br />

g 2.3 and Arnell (1982)<br />

The standard deviations <strong>of</strong> <strong>the</strong> di <strong>for</strong> <strong>the</strong> I F ign<br />

storms are small which means that <strong>the</strong>re is a small variation in<br />

<strong>the</strong> result only and that <strong>the</strong> conclusion is clear: The I<br />

<strong>design</strong> storm gives an underestimation <strong>of</strong> <strong>the</strong> basin volumes.


use Chi i storm resul in ti<br />

in volumes on a ow 5 1/s.<br />

timations were 15-20%<br />

1/s.ha<br />

vo 1 umes were both over-<br />

explanation<br />

timations is mainly I F ign<br />

storm, namely total volume <strong>of</strong> storm is<br />

smaller than <strong>the</strong> total volumes<br />

cal storms u<br />

evaluation <strong>the</strong> ign storm it is slightly<br />

than I F ign storm se 1 ion <strong>of</strong><br />

storm.<br />

The use <strong>of</strong> <strong>the</strong> Chicago <strong>design</strong> storm resul in more basin<br />

vo 1 umes <strong>for</strong> 1 a rger outflows which is 1 i ca 1 because <strong>the</strong> high<br />

peak intensity <strong>of</strong> <strong>the</strong> storm has a r on <strong>the</strong> basin<br />

volumes <strong>for</strong> large outflows than <strong>for</strong> small outflows.<br />

When using <strong>the</strong> Si lda ign storm overestimated ion basin<br />

volumes <strong>of</strong> on average 13% were<br />

The overestimations were<br />

larger <strong>for</strong> <strong>the</strong> Linkoping 1 basin than smaller <strong>basins</strong>. It<br />

was a 1 so 1 a rger <strong>for</strong> <strong>the</strong> sma 11 outflow 5 1 Is. ha than <strong>for</strong><br />

outflow <strong>of</strong> 30 l/s ha<br />

The overestimated basin volumes <strong>for</strong> <strong>the</strong> Si ign storm were<br />

obtained mainly because <strong>the</strong> volumes <strong>of</strong> part I <strong>of</strong> <strong>the</strong> storms are<br />

too 1 The explanation is found in estimation <strong>of</strong> <strong>the</strong> regression<br />

equations (2. .11) storm see Arnell<br />

(1982). It was assumed important 1 volumes <strong>of</strong> <strong>the</strong><br />

ign storm are close to volumes <strong>the</strong> historical storms<br />

which is expressed by (2.9) volumes <strong>of</strong> part I and III<br />

a regression equation <strong>for</strong> III was chosen because a higher<br />

value than <strong>for</strong> part I <strong>of</strong> <strong>the</strong> linear correlation coefficient<br />

between <strong>the</strong> volumes <strong>of</strong> part III and du ions <strong>of</strong> part II was<br />

obtai ned S i nee <strong>the</strong> tot a 1 vo 1 ume vo 1 ume <strong>of</strong> pa I I I are<br />

given, and <strong>the</strong> volume <strong>of</strong> part II taken from <strong>the</strong> I F curves is<br />

smaller than <strong>the</strong> average value historical storms, volume<br />

<strong>of</strong> part I will be too large This will result in an overestimation<br />

<strong>of</strong> <strong>the</strong> <strong>detention</strong> s<br />

An improvement <strong>of</strong> <strong>the</strong> Si ign storm could achieved if<br />

<strong>the</strong> regression could based on part I ins <strong>of</strong> part III or if<br />

both part I and part III were u


The overestimations <strong>for</strong> Sifal storm are less <strong>the</strong> return<br />

period 5 years than <strong>for</strong> <strong>the</strong> o<strong>the</strong>r return periods ted, probably<br />

because <strong>the</strong> volume <strong>of</strong> part II <strong>of</strong> <strong>the</strong> storm is larger compared to<br />

<strong>the</strong> volumes <strong>of</strong> part I and III <strong>for</strong> <strong>the</strong> return period 5 years than<br />

<strong>for</strong> <strong>the</strong> shorter return periods<br />

3.4<br />

The basin volumes calcul tradi onal method and<br />

scribed in Section 2.7 are li in Tables 3.5 and 3.6. The volumes<br />

are also plotted in Appendix I toge<strong>the</strong>r with <strong>the</strong> resulting<br />

basin volumes from <strong>design</strong> with historical storms and <strong>design</strong><br />

storms. Over- and underestimations <strong>of</strong> <strong>the</strong> basin volumes obtained<br />

by <strong>the</strong> traditional method compared with <strong>the</strong> volumes obtained by<br />

<strong>the</strong> historical storm are listed in Tables 3 2 and 3.3, and a summary<br />

<strong>of</strong> <strong>the</strong> results are given in Table 3.4.<br />

As can be seen in Tables 3 5 and 3.6 negligible differences in<br />

basin volumes were obtained <strong>for</strong> <strong>the</strong> two water depths 2.0 m and<br />

3.5 m.<br />

Table 3.5<br />

Volwnes <strong>of</strong> <strong>the</strong> <strong>detention</strong> <strong>basins</strong> obtained with <strong>the</strong><br />

traditional method expressed by Eq. (2.18) M~ximwn<br />

water depth 2.0 m. The voZwnes are given in m /ha<br />

re<br />

a·<br />

Return<br />

period<br />

years<br />

Catchment<br />

Maximum permitted outflow (1/s·hared)<br />

5 0 10.0 20.0 30.0<br />

Bergsjon 130 96 63 49<br />

Linkoping 1 121 82 44 26<br />

Linkoping 2 128 60 46<br />

1<br />

Bergsjon 171 1 88 72<br />

Linkoping 1 160 108 48<br />

Linkoping 2 170 120 68<br />

Bergsjon 206 152 114 98<br />

Linkoping 1 191 138 73<br />

Linkoping 2 204 150 111 94<br />

on 2 200 1 138<br />

Linkoping 1 2 1 114<br />

Linkoping 2 270 150


40<br />

Table 3.6<br />

Volwnes <strong>of</strong> <strong>the</strong> <strong>detention</strong> <strong>basins</strong> obtained with <strong>the</strong><br />

traditional method expressed by Eq. (2.18) M~imum<br />

water depth 3.5 m. The volumes are given in m /ha<br />

re<br />

a·<br />

Return<br />

period<br />

years<br />

Catchment Maximum permi outflow (1/s ha d) re<br />

5.0 10 0 20.0 30 0<br />

Bergsjon 131 51<br />

Linkoping 1 1 86 48 30<br />

Linkoping 2 130 96 47<br />

Bergsjon 171 124 90 74<br />

Linkoping 1 161 112 72<br />

Linkoping 2 169 123 87 71<br />

Bergsjon 208 155 116 100<br />

Linkoping 1 197 142 98 78<br />

Linkoping 2 206 154 113 97<br />

Bergsjon 274 203 156 140<br />

Linkoping 1 262 188 138 118<br />

Linkoping 2 272 201 1 137<br />

The basin volumes were underestimated by, on average, 10-12%. The<br />

underestimations are larger <strong>for</strong> <strong>the</strong> larger Linkoping 1 catchment<br />

than <strong>for</strong> <strong>the</strong> smaller catchments probably because <strong>the</strong> routing <strong>of</strong><br />

<strong>the</strong> hydrographs are more important in a large catchment than in a<br />

small one. The underestimations are also larger <strong>for</strong> <strong>the</strong> small<br />

outflows <strong>of</strong> 5 1/s·hared and 10 l/s·hared than <strong>for</strong> <strong>the</strong> o<strong>the</strong>r outflows<br />

Sjoberg and Martensson (1982) obtained underestimations <strong>of</strong> approximately<br />

15-40% when comparing <strong>design</strong> <strong>of</strong> percolation <strong>basins</strong> by<br />

h i s tori c a 1 storms w i t h des i g n by <strong>the</strong> t r ad i t i on a 1 method . I t i s<br />

clear that <strong>the</strong> traditional method gives underestimations that are<br />

larger <strong>for</strong> small outflows than <strong>for</strong> larger outflows. A summary <strong>of</strong><br />

<strong>the</strong> results obtained in <strong>the</strong> present study and <strong>the</strong> results obtained<br />

by Martensson and Sjoberg are shown in g 3.2


41<br />

LEGEND<br />

30<br />

XX<br />

Results reported<br />

by Sjoberg and<br />

Martensson (1982)<br />

X<br />

Bergs jon<br />

0 · Linkoping<br />

X f). Linkoping 2<br />

20<br />

0<br />

15<br />

X<br />

ox<br />

X<br />

0<br />

-0<br />

1 0.<br />

0<br />

5<br />

0<br />

0<br />

5 10 30<br />

sign outflows ( l<br />

Figure 3.2<br />

Size <strong>of</strong> underestimations <strong>of</strong> <strong>detention</strong> basin volumes<br />

obtained by <strong>design</strong> with <strong>the</strong> traditional method.<br />

Results <strong>of</strong> <strong>the</strong> present study and results reported<br />

by Sjoberg and Martens son ( 1982). Return period<br />

2 years.<br />

To compensate <strong>for</strong> an expected underestimation <strong>the</strong> basin volumes<br />

obtained by <strong>the</strong> traditional method must be increased by 5-20%<br />

depending on <strong>the</strong> permitted maximum outflow.<br />

The durations <strong>of</strong> <strong>the</strong> rainfall <strong>for</strong> which <strong>the</strong> maximum volumes were<br />

obtained are listed in Table 2.6. The durations vary between 25<br />

minutes <strong>for</strong> <strong>the</strong> outflow 30 1/s· hared and 360 minutes <strong>for</strong> <strong>the</strong> outflow<br />

5 1/s· hared


4 CONCLUSI<br />

storms<br />

t ign <strong>of</strong> on<br />

ins i<br />

usi<br />

his<br />

cal<br />

vJhen using a ign storm it was i<br />

ign<br />

storm a 1 ra i 11<br />

is es<br />

ially pronounced ins<br />

are<br />

la and 1 a r ows time va tion<br />

<strong>of</strong> rainfall and <strong>the</strong> run<strong>of</strong>f calculation is also <strong>of</strong> significance<br />

resulting<br />

<strong>the</strong> maximum<br />

<strong>for</strong> large<br />

in volumes<br />

depth but<br />

m) and small depth<br />

seem to<br />

investi<br />

m)<br />

much i nfl<br />

ons are necessa<br />

The I F <strong>design</strong> storm and Chicago ign storm mated<br />

<strong>the</strong> <strong>detention</strong> in volumes to small total volumes<br />

pee i ally, <strong>the</strong> underestimations<br />

I F si storm were<br />

significant can not i<br />

The use <strong>of</strong> <strong>the</strong> Sifalda storm resul<br />

basin volumes The Si storm can i<br />

ins <strong>of</strong> part III <strong>for</strong> esti ions<br />

using both part I and part I I I<br />

The use <strong>of</strong> t itional<br />

estimations <strong>of</strong> <strong>the</strong> in volumes. The<br />

compensated <strong>for</strong> by increase <strong>of</strong> rai 11<br />

crease <strong>of</strong> <strong>the</strong> in volumes<br />

in overestima<br />

by using rt I<br />

volumes, or<br />

si ificant r-<br />

timations can<br />

-i<br />

I ities, or in<br />

For practical applications<br />

signing <strong>detention</strong> <strong>basins</strong>:<br />

followi<br />

is recommended when<br />

*<br />

*<br />

A ru model should u<br />

to <strong>the</strong> <strong>basins</strong>.<br />

Historical storms should be u<br />

able<br />

imul ion <strong>of</strong> inflow<br />

if is such ava i 1


43<br />

*<br />

*<br />

*<br />

The Chicago <strong>design</strong> storm or <strong>the</strong> improved S i fa 1 da <strong>design</strong><br />

storm can be used if historical storms are not available.<br />

The Intensity-Duration-Frequency <strong>design</strong> storm should not be<br />

used.<br />

When using <strong>the</strong> traditional method <strong>for</strong> <strong>design</strong> <strong>the</strong> resulting<br />

basin volumes must inc by 5-20% depending on <strong>the</strong><br />

permitted outflow.<br />

The investigation in this report is based on point precipitation<br />

There<strong>for</strong>e, <strong>the</strong> result is limited to small catchments. For larger<br />

<strong>basins</strong> <strong>the</strong> use <strong>of</strong> point precipitation <strong>data</strong> will result in overestimation<br />

<strong>of</strong> <strong>the</strong> basin volumes. Fur<strong>the</strong>r research is necessary<br />

concerning <strong>the</strong> spatial variation <strong>of</strong> rainfall.<br />

The conclusions are valid <strong>for</strong> catchments with run<strong>of</strong>f from impermeable<br />

areas only. For catchments with run<strong>of</strong>f from permeable<br />

areas it is important that <strong>the</strong> total rainfall volumes and <strong>the</strong><br />

rainfall temporal patterns are correct, o<strong>the</strong>rwise, <strong>the</strong> over- and<br />

underestimations will be larger than <strong>for</strong> catchments with run<strong>of</strong>f<br />

from impermeable areas only.


APPENDIX<br />

STATI CAL DISTRIBUTIONS FOR CALCULATED IN VOLUMES


45<br />

After calculation <strong>of</strong> <strong>the</strong> basin volumes with <strong>the</strong> CTH-Model <strong>for</strong> <strong>the</strong><br />

historical storms, <strong>the</strong> 36 largest basin volumes <strong>for</strong> each catchment<br />

and each outflow were ranked in descending order and plotted<br />

on exponential distribution papers with a logarithmic scale. The<br />

following <strong>for</strong>mula was used <strong>for</strong> <strong>the</strong> estimation <strong>of</strong> <strong>the</strong> plotting<br />

positions<br />

i<br />

y. = l:<br />

1 .<br />

J<br />

i 1,2, .. ,N . . . ( I 1)<br />

where<br />

yi = plotting positions <strong>for</strong> <strong>the</strong> calculated basin volumes in<br />

increasing order.<br />

N<br />

number <strong>of</strong> treated basin volumes which are chosen as<br />

equal to <strong>the</strong> number <strong>of</strong> treated time periods, in this<br />

case 36 !-year periods.<br />

yi is related to <strong>the</strong> return period through <strong>the</strong> relationship<br />

Y; = ln F .... (I.2)<br />

where<br />

F<br />

return period in number <strong>of</strong> treated time periods, in<br />

this case t-year periods (in <strong>the</strong> figures, F is given in<br />

years).<br />

In order to make <strong>the</strong> plottings more clear, <strong>the</strong> 7 largest basin<br />

volumes were plotted as individual points and <strong>the</strong> remaining basin<br />

volumes were plotted as average values <strong>of</strong> 3 volumes and 3 y-values.<br />

The basin volumes <strong>for</strong> <strong>the</strong> different <strong>design</strong> storms were plotted in<br />

<strong>the</strong> diagrams <strong>for</strong> <strong>the</strong> return periods t~ 1, 2, and 5 years.


GSJON<br />

x1mum basin 2.0 m<br />

flow<br />

5 l s ·no red<br />

volumes<br />

r Each point (x) corresponds Each point ( x) corresponds<br />

value I to one historical storm<br />

-<br />

<strong>of</strong> historical storms<br />

X<br />

X<br />

,,<br />

X<br />

X<br />

.X<br />

I I I<br />

I<br />

LEGEND<br />

......<br />

s1n<br />

mes<br />

X -<br />

m<br />

® =<br />

/!:,.<br />

=<br />

~ =<br />

-E-- =


BERGSJO<br />

xtmum basin depth 2.0 m<br />

f[ow 10 ( S · na.rod<br />

mes<br />

( x) cor responds<br />

to <strong>the</strong> average value<br />

<strong>of</strong> historical storms<br />

Each<br />

(x) corresponds<br />

orical storm<br />

X<br />

1<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

L<br />

Basin<br />

END<br />

X =<br />

® =<br />

8 =<br />

~ =<br />

-E-- =<br />

R rt• D<br />

mes<br />

m<br />

m<br />

to<br />

,.j:::..<br />

-..]<br />

R<br />

1<br />

2<br />

3<br />

5


48<br />

X<br />

X<br />

tf)<br />

())<br />

E<br />

:::J<br />

w<br />

II II II II II<br />

E<br />

0<br />

'U<br />

())<br />

L.<br />

tJ1<br />

u<br />

c<br />

8_E<br />

tJ1 0<br />

<br />

Q)<br />

L<br />

-..<br />

("")<br />

E<br />

0<br />

0<br />

0<br />

N<br />

0 0<br />

0 l()


ERGSJO<br />

axtmum stn<br />

2.0 m<br />

flow 30 l/s ·no red<br />

s<br />

2 0<br />

Each point (x) corresponds<br />

to <strong>the</strong> average value<br />

<strong>of</strong> historical storms<br />

Each point ( x) corresponds<br />

to one historical storm<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

L END<br />

X =<br />

® =<br />

& -<br />

0 =<br />

~=<br />

umes<br />

m<br />

m<br />

,J:;::.<br />

1,0<br />

2<br />

2<br />

3 5


mes<br />

L K G<br />

1mum s;n 2.0 m<br />

flow 5 l s ·no red<br />

cor responds point x) corresponds<br />

onca storm<br />

X<br />

X<br />

I X<br />

I<br />

I<br />

X<br />

X<br />

A\''<br />

X<br />

LEGEND<br />

srn volumes to Ul<br />

0<br />

- -<br />

n n• n<br />

'<br />

® =<br />

~ -<br />

~ -<br />

-E-- =<br />

2 5 2


LIN<br />

1mum<br />

mum<br />

G<br />

s1n 2.0 m<br />

flow 10 l s · red<br />

vo<br />

mes<br />

red<br />

Each<br />

to<br />

<strong>of</strong><br />

cor responds<br />

value<br />

storms<br />

Each<br />

(x) corresponds<br />

orical storm<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

L<br />

x<br />

X<br />

srn<br />

END<br />

® =<br />

& =<br />

0<br />

-E-- =<br />

umes<br />

= Histprical storm<br />

m<br />

to<br />

Ul<br />

......),<br />

2<br />

2<br />

3 4<br />

5<br />

0


5<br />

LINK G 1<br />

1mum basin 2.0 m<br />

outf ow 20 lis·<br />

point (x) corresponds<br />

point ( x) corresponds<br />

to <strong>the</strong> average value to one historical storm<br />

<strong>of</strong> historical storms<br />

I<br />

I<br />

X<br />

X<br />

X<br />

X<br />

X<br />

"""'----<br />

EGEND<br />

srn umes<br />

I I X -<br />

m<br />

. '<br />

® =<br />

b =<br />

0 =<br />

r"'!l'"\l""i""!I'"\C"' ,....,,.....11'"'\riiii'"'\A""''I If"\ N<br />

U1<br />

~=<br />

5 1


s<br />

LINKOP G<br />

1mum s1n 2.0 m<br />

outflow 30 l/s ·no red<br />

Each point corresponds Each point ( x) c·orresponds<br />

to <strong>the</strong> average value i to one historical storm<br />

<strong>of</strong> historical storms<br />

X<br />

X<br />

X<br />

100<br />

50 X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

LEGEND<br />

X<br />

=<br />

® =<br />

& =<br />

G =<br />

-E-- =<br />

umes cor<br />

storm<br />

m<br />

0<br />

U1<br />

w<br />

25<br />

2 2 3 4 5<br />

10


5<br />

lf)<br />

ClJ<br />

E<br />

w<br />

w<br />

II II II II II<br />

El<br />

0<br />

N<br />

E<br />

'D<br />

ClJ<br />

'--<br />

lf)<br />

-....<br />

l()<br />

X<br />

X<br />

N<br />

~<br />

(.9 c<br />

0<br />

0<br />

..0<br />

0<br />

---<br />

--<br />

---<br />

E<br />

__J :J<br />

E<br />

X<br />

0<br />

X<br />

X<br />

X


LINKOP G 2<br />

x1mum<br />

basin depth 2. 0 m<br />

outflow 10 l s ·no red<br />

Basin vo mes<br />

m3 nared<br />

300<br />

Each point (x) corresponds<br />

to <strong>the</strong> average value<br />

historical storms<br />

point (x) corresponds<br />

to one historical storm<br />

X<br />

X<br />

X<br />

X<br />

X<br />

200<br />

1<br />

X X X<br />

X<br />

X<br />

X<br />

X<br />

LEGE<br />

Basin v<br />

X<br />

® =<br />

b. =<br />

1::1<br />

mes correspond·<br />

m<br />

y-<br />

m<br />

0<br />

Ul<br />

Ul<br />


56<br />

X<br />

X<br />

lf)<br />

(1J<br />

E<br />

::J<br />

X<br />

0<br />

z<br />

w c<br />

(/)<br />

_J<br />

II<br />

X<br />

II<br />

181<br />

II<br />


LIN<br />

G 2<br />

X<br />

m<br />

s1n<br />

2.0 m<br />

s1n<br />

volumes<br />

mum<br />

low 30 l/s ·<br />

red<br />

m<br />

2<br />

red<br />

Each<br />

to<br />

cor responds<br />

value<br />

storms<br />

Each<br />

( x) corresponds<br />

orical storm<br />

X<br />

X<br />

X<br />

X<br />

X<br />

100<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

LEGEND<br />

Basin<br />

X<br />

® =<br />

umes cor<br />

= Historical storm<br />

. '<br />

B = __ .... ---- -·- ---·:;}·. -- - ...<br />

0 = Chicago m<br />

U1<br />

-......]<br />

-E-- =<br />

l<br />

Re rn ri<br />

1/2<br />

1<br />

2<br />

3<br />

4<br />

5<br />

0


X<br />

X<br />

X<br />

2 0<br />

X<br />

EGEND<br />

......<br />

srn<br />

X = H<br />

® -<br />

umes cor 0<br />

Ul<br />

00<br />

&. -<br />

~ -<br />

~=


mes<br />

RG<br />

x1mum<br />

mum<br />

Each point (x) corresponds<br />

to <strong>the</strong> average value<br />

<strong>of</strong> historical storms<br />

3.5 m<br />

10 l/s · red<br />

corresponds<br />

orical storm<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

2<br />

0<br />

X X X<br />

X<br />

X<br />

X<br />

X<br />

LEGEND<br />

s1n<br />

X =<br />

®<br />

&<br />

=<br />

G =<br />

-E-- =<br />

mes cor<br />

m<br />

y­<br />

storm<br />

m<br />

to<br />

U1<br />

1..0<br />

2<br />

2<br />

3<br />

4<br />

5<br />

0


'D<br />

OJ<br />

L.<br />

lf)<br />

(Y)<br />

U1


volumes<br />

m 1mum s1n 3.5 m<br />

2<br />

flow 30 l/s ·no red<br />

X<br />

Each point (x) corresponds I Each point ( x) corresponds<br />

X<br />

to <strong>the</strong> average value I to one historical storm<br />

<strong>of</strong> three historical storms<br />

X<br />

X<br />

I<br />

1 X<br />

LEGE<br />

5<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

Basin umes 1na to 0'\<br />

--J.<br />

X = HI


62<br />

X<br />

X<br />

til<br />

OJ<br />

E<br />

E<br />

L()<br />

u<br />

OJ<br />

L..<br />

(j)<br />

"D<br />

c<br />

0<br />

Q. E<br />

(j) L.<br />

CIJ __. 0<br />

L. (j)<br />

L.<br />

0<br />

u<br />

0<br />

II If II II II<br />

_j g, <br />

(j)<br />

E<br />

L.<br />

0<br />

(j)<br />

----<br />

..c<br />

u<br />

co<br />

w<br />

lf)<br />

OJ<br />

E<br />

:J<br />

0<br />

><br />

X<br />

X


es<br />

LINK<br />

x1mum<br />

1<br />

sn 3.5 m<br />

flow 10l/s·nored<br />

point (xJ corresponds<br />

to <strong>the</strong> average value<br />

<strong>of</strong> three historical storms<br />

Each point (x) corresponds<br />

to one historical storm<br />

X<br />

X<br />

200<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

2<br />

2<br />

3 4 5 0


s LINK G 1<br />

1mum DO Sin 3.5 m<br />

cor responds<br />

average value<br />

<strong>of</strong> historical s!<br />

I<br />

I' I ........ !<br />

2<br />

X X<br />

red<br />

X<br />

L E 0<br />

0'1<br />

s umes<br />

,.!::::.<br />

.. =<br />

® =<br />

~<br />

=<br />

0 =<br />


LINK<br />

G<br />

1mum<br />

s1n<br />

3.5 m<br />

vo<br />

mes<br />

mum<br />

point (xJ corresponds<br />

<strong>the</strong> average value<br />

storms<br />

flow 30 l s ·no red<br />

Each point ( x) corresponds<br />

to one historical storm<br />

X<br />

X<br />

X<br />

X<br />

1<br />

X<br />

X<br />

X J'" I<br />

I<br />

LEGE<br />

X<br />

X<br />

X<br />

I<br />

srn umes to Cl"\<br />

Ul<br />

X = storm<br />

® =<br />

X<br />

b - ....,<br />

0 - m<br />

-<br />

-E-- =<br />

5


66<br />

u<br />

tf)<br />


LINK G 2<br />

ax1mum s1n 3. 5 m<br />

outflow 10 l s ·no red<br />

point (xJ corresponds<br />

<strong>the</strong> average value<br />

historical storms<br />

Each<br />

( x) corresponds<br />

orical storm<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

2<br />

X<br />

L<br />

END<br />

0'1<br />

-......!<br />

X X X<br />

X<br />

X<br />

X<br />

Basin volumes<br />

X = storm<br />

® =<br />

& - --- -- --- ".:::;J"-<br />

0 =<br />

m<br />

-E-- =<br />

3<br />

5<br />

2


LINK<br />

x1mum<br />

mum<br />

G 2<br />

3.5 m<br />

flow 20 s · red<br />

point xJ corresponds<br />

to <strong>the</strong> average vatue<br />

<strong>of</strong><br />

storms<br />

Each<br />

(x) corresponds<br />

orical storm<br />

X<br />

X<br />

X<br />

1 0<br />

X<br />

I<br />

I<br />

I<br />

I<br />

X<br />

X<br />

X<br />

,d,<br />

I<br />

X<br />

EGE<br />

s1n<br />

I ® =<br />

-<br />

0<br />

volumes<br />

01<br />

r nrr.oc nnnrl. nn 00<br />

m<br />

X<br />

~ I<br />

I<br />

B =<br />

0 =<br />


2<br />

vo<br />

Ll K<br />

1mum<br />

(x) corresponds<br />

to <strong>the</strong> averaae value<br />

I<br />

I<br />

s1n<br />

2<br />

flow 30 l s ·<br />

3.5 m<br />

red<br />

(x) corresponds<br />

to onP hic,.t orir;::~ I storm<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

X<br />

LEGE<br />

- umes cor<br />

X<br />

® =<br />

= Historical storm<br />

..<br />

0<br />

0'\<br />

1..0<br />

X<br />

X<br />

X<br />

X<br />

ffi<br />

0 =<br />

-E--- =<br />

= Si<br />

,...,<br />

1 2<br />

3 5<br />

2


Arnell V 1980: ription<br />

Run<strong>of</strong>f Model Chalmers Universi<br />

<strong>of</strong> Hydraulics Report es A.5.<br />

ti on <strong>of</strong><br />

ogy<br />

CTH-Urban<br />

Department<br />

Arnell V., 1982: <strong>Rainfall</strong><br />

Chalmers Universi<br />

Hydraulics Report es A.8<br />

Pi<br />

rtment<br />

Bergstrom, T , 1976: Detention Basins in<br />

pal Design, Application and Sizing<br />

Water Works Association, VAV 1.<br />

tems Princi<br />

ish and Waste<br />

kholm. (In Swedish)<br />

Colyer, P J , 1980: ion in rm Ora i<br />

Systems. Progress in Water<br />

Brighton.<br />

ogy, Vo 1 ' pp 21<br />

Colyer, P.J and Wooldri G<br />

Systems Off-Line Tanks in<br />

Hydraulics Research ion,<br />

Oxon.<br />

in Ora i<br />

inage<br />

No IT 188 Walling<strong>for</strong>d<br />

Donahue, J.R., McCuen, R H. and id T R , 1981: Comparison<br />

<strong>of</strong> Detention Basin Planning and Design Models. Journal <strong>of</strong><br />

<strong>the</strong> Water Resources Planning and Management Div., ASCE, Vol<br />

107, No. WR2, proc.paper<br />

Johansen, L , 1979: Design <strong>Rainfall</strong>s <strong>for</strong> tems Department<br />

<strong>of</strong> Sanitary Engineering, Technical University <strong>of</strong> Denmark,<br />

Report 79-2, Kopenhamn (In Danish)<br />

Ke i fer , C . J . and C h u , H H , 1 · S y nth e t i c rm Pattern <strong>for</strong><br />

Drainage Design. Journal <strong>of</strong> <strong>the</strong> Hydraulics div ASCE, Vol.<br />

83, No. HY4. Discussion by McPherson in Vol 84, No. HY1,<br />

Feb. 1958.<br />

Lyngfe 1 t, S. , 1981: Design <strong>of</strong> Storm<br />

~1ethod. Cha 1 me rs Un i ve rs i ty<br />

logy Research Group. Report<br />

tems. The Ration a 1<br />

no 1 ogy Urban Geohydro-<br />

. (In sh)


71<br />

Marsalek J., 1978: rch on <strong>the</strong> Design Storm Concept. ASCE<br />

Urban Water Resources Research Program, Technical Memorandum<br />

No New York<br />

Pecher, R., 1978: Design <strong>of</strong> Storm-Water Retention Basins. Seminar<br />

on Retention Basins, Marsta, November 7-8, 1978 Nordic Research<br />

Project, Operation <strong>of</strong> Treatment Plants Report 1.<br />

Stockholm.<br />

Sifalda, V, 1973: Entwicklung eines Berechnungsregens fUr die<br />

Bemessung von Kanalnetzen. gwf wasser/abwasser 114(1973)H9.<br />

Sjoberg, A. and Martensson, N., 1982: The Rain-Envelope Method.<br />

An Analysis <strong>of</strong> <strong>the</strong> Applicability <strong>for</strong> Design <strong>of</strong> a 2-years<br />

Percolation Basin. Chalmers University <strong>of</strong> Technology, Urban<br />

Geohydro 1 ogy Research Group Report No. 64. Goteborg. (In<br />

Swedish)<br />

Stahre, P., 1981: Flow Detention in Sewage Systems. Swedish<br />

Council <strong>for</strong> Building Research, Report Tl3:1981. Stockholm.<br />

(In Swedish)<br />

Terstriep, M. and Stall, J.B., 1974: The Illinois Urban Drainage<br />

Area Simulator. Illinois State Water Survey, Bulletin 58<br />

Urbana, Ill.<br />

Wooldridge, G., 1981: Per<strong>for</strong>mance <strong>of</strong> Storage Tanks in Storm<br />

Drainage Systems. In B.C. Yen (Ed ): Proceedings <strong>of</strong> <strong>the</strong><br />

Second Internati on a 1 Conference on Urban Storm Dr a i ange,<br />

Urbana Illinois, June 14-19, 1981. pp. 350-359. Urbana, Ill.


CHALMERS TEKNISKA HOGSKOLA<br />

lnstitutionerna <strong>for</strong><br />

Ceologi<br />

Ceoteknik med grundlaggning<br />

Vattenbyggnad<br />

Vatten<strong>for</strong>sorjnings- och avloppsteknik<br />

nr 1<br />

nr 2<br />

nr 3<br />

Leif Carlsson: Crundvattenavsankni<br />

med hjalp av provpumpnings<strong>data</strong>. 1<br />

Leif Carlsson: Crundvattenavsankni<br />

diffusivitet med hjalp av<br />

nning och grundvattenbildning. Lagesrappor­<br />

(Utgangen)<br />

Del 1. Evaluering av akviferers geohydrologiska <strong>data</strong><br />

• 67 sidor.<br />

Del 2. Evaluering av 1<br />

ngs<strong>data</strong>. 1 • 17 sidor.<br />

a lagers hydrauliska<br />

nr 4 Viktor Arnell: Nederbordsmatare En sammanstallning av nagra ol ika matartyper. 1973. 39<br />

s i dor. ( Utgangen)<br />

nr 5 Vi ktor Arne 11 : I ntensitets-va rakt i ghetskurvor <strong>for</strong> hafti ga regn i Cote borg under 45-a rsperioden<br />

1926-1971. 1974. 68 sidor.<br />

nr 6<br />

nr 7<br />

Urbaniseringsprocessens inverkan<br />

ter (1973-03-01 - 1974-02-01). 1<br />

Olov Holmstrand, Per 0 Wedel:<br />

s i dor. ( Utgangen)<br />

lngenjorsgeol<br />

nning och grundvattenbildning. Lagesrapporska<br />

ka rtor 1 i tteraturstudi er. 1974. 55<br />

nr 8 Anders Sjoberg: Interim Report Ma<strong>the</strong>matical Models <strong>for</strong> Gradually Varied Unsteady Free<br />

Flow. Development and Discussion <strong>of</strong> Basic Equations. Preliminary Studies <strong>of</strong> Methods <strong>for</strong><br />

Flood Routing in Storm Drains 1974. 74 sidor. ( )<br />

nr 9<br />

nr 10<br />

nr 11<br />

nr 12<br />

nr 13<br />

nr 14<br />

nr 15<br />

Olov Holmstrand (red.) Seminarium om i<br />

Vi ktor Arnell, Bar je Sjolander Matni<br />

Stationsbeskrivning. 1974. 53 sidor. (<br />

ska kartor. 1974. 38 sidor. (Utgangen)<br />

nederbordsintensiteter<br />

)<br />

onen.<br />

Per-Arne Malmquist, Gilbert Svensson: Dagvattnets beskaffenhet och egenskaper. Sammanstallning<br />

av ut<strong>for</strong>da dagvattenundersokningar Stockholm och 1969-1972. Engelsk<br />

sammanfattning 1974. 46 sidor (Utgangen)<br />

Viktor Arnell, Sven Lyngfelt: lnteri<br />

flode inom bebyggda omraden Ceohydrol<br />

Coteborg. 1975. 50 sidor.<br />

. Berakningsmodell <strong>for</strong> simulering av dagvattenska<br />

<strong>for</strong>skningsgruppen i samarbete med VA-verket i.<br />

Viktor Arnell, Sven Lyngfelt: Nederbords-avrinningsmatningar i Bergsjon, Coteborg 1973-1974.<br />

1975. 92 sidor.<br />

Per-Arne Malmquist, Gilbert Svensson Delrapport. Dagvattnets sammansattning i Coteborg.<br />

Engelsk sammanfattning. 1975. 73 sidor.<br />

Dagvatten. Uppsatser presenterade vid konferens om urban hydrologi i Sarpsborg 1975 1976.<br />

33 sidor. Foljande uppsatser ingar:<br />

Arnell V. Berakningsmetod <strong>for</strong> analys av dagvattenflodet inom ett urbant omrade<br />

Lyngfelt S. Nederbords-avrinningsstudier i Bergsjon, Coteborg.<br />

Sjoberg A. CTH-ledningsnatmodell DACVL-A.<br />

Svensson C. Dagvattnets sammansattning, inverkan av urbanisering (Utgangen)<br />

nr 16<br />

nr 17<br />

nr 18<br />

nr 19<br />

nr 20<br />

nr 21<br />

Crundvatten. Uppsatser presenterade vi d konferens om urban hydro 1 ogi i Sarpsborg 1975.<br />

1976. 43 sidor. Foljande uppsatser i<br />

Andreasson L, Cederwall K. Rubbningar av grundvattenbalansen i urbana omraden.<br />

Carlsson L. Djupinfiltration i slutna akviferer.<br />

Torstensson B-A. Foljder av grundvattensankning inom leromraden.<br />

Wedel P. Exempel pa dranering av jordlager grund av tunnelbyggande. (Utgangen)<br />

Olov Holmstrand, Per Wedel: Markvattenundersokningar i ett urbant omrade<br />

1976. 127 sidor.<br />

Coran Ejdeling: Berakningsmodeller <strong>for</strong> prognos av grundvatten<strong>for</strong>hallanden. 1978. 130<br />

sidor.<br />

Viktor Arnell, Jan Falk, Per-Arne Malmquist Urban Storm Water Research in Sweden. 1977.<br />

30 sidor.<br />

Viktor Arnell: Studier av amerikansk dagvattenteknik. Resa<br />

sidor.<br />

december 1976. 1977 64<br />

Leif Carlsson: Reserapport fran studieresa i USA samt del,.cn .. a••uc; 2nd International<br />

Symposium on Land Subsidence in Anaheim, USA. 29 nov-17 dec 1<br />

61 sidor.


73<br />

nr 22<br />

nr 23<br />

nr 24<br />

nr 25<br />

nr 26<br />

nr 27<br />

nr 28<br />

nr 29<br />

nr 30<br />

nr 31<br />

nr 32<br />

nr 33<br />

nr 34<br />

nr 35<br />

nr 36<br />

nr 37<br />

nr 38<br />

nr 39<br />

nr 40<br />

nr 41<br />

nr 42<br />

nr 43<br />

nr 44<br />

nr L~S<br />

nr 46<br />

nr 47<br />

nr 48<br />

nr 49<br />

Per 0 Wedel Grundvattenbildning, samspelet jordlager och berggrund. Exemplifierat fran<br />

ett <strong>for</strong>soksomrade i Angered. 1978. 130 sidor.<br />

Viktor Arnell: Nederbords<strong>data</strong> vid dimensionering av dagvattensystem med hjalp av detaljerade<br />

berakningsmodeller. En inledande studie. 1977 29 sidor.<br />

Leif Carlsson, Kl as Cederwa 11 : Urbani seri ngsprocessens i nverkan pa ytvattenavri nni ng och<br />

grundvattenbildning. Geohydrologisk <strong>for</strong>skning vid CTH, Sektion V, under perioden 1972-75.<br />

1977. 17 sidor.<br />

Lars 0 Ericsson {red.): Lokalt omhandertagande av<br />

verksamhetsaret 1976-02-01 1977-01-31. 1977. 120 sidor.<br />

dagvatten.<br />

Del rapport fran <strong>for</strong>sta<br />

Ann-Carin Andersson, Jan Berntsson: Kontrollerad grundvattenbalans genom djupinfiltration.<br />

En inventering av djupinfiltrationsprojekt. 1978. 273 sidor.<br />

Anders Eriksson, Per Lindvall: Lokalt omhandertagande av dagvatten. Resultatredovisning av<br />

enkat rorande drift och konstruktion av perkolationsanlaggningar. 1978. 126 sidor.<br />

Olov Holmstrand (red.) Lokalt omhandertagande av dagvatten Delrapport nr 2 fran perioden<br />

1977-02-01 - 1977-11-30. 1978. 69 sidor.<br />

Leif Carlsson: Djupinfiltrationsstudier<br />

Lars 0 Ericsson<br />

och Utvardering<br />

lnfiltrationsprocessen<br />

1978. 45 sidor.<br />

Angered. 1978. 70 sidor.<br />

en dagvattenmodell. Teori, Undersokning, Matning<br />

Lars 0 Ericsson, Permeabilitetsbestamning i falt vid perkolationsmagasin. Dimensionering.<br />

1978. 15 sidor.<br />

Lars 0 Ericsson, Stig Hard: lnfiltrationsundersokningar i stadsdelen Ryd, Linkoping. 1978.<br />

145 sidor.<br />

Jan Hallgren, Per-Arne Malmquist: Urban Hydrology Research in Sweden 1978. Swedish Coordinating<br />

Committee <strong>for</strong> Urban Hydrology Research. 1978. 14 sidor.<br />

Bo Lind, Gote Nordin: Geohydrologi och vegetation i Dalen S, Karlskoga. 1978. 63 sidor.<br />

Ei vor Bucht, Bo Lind: Metodfragor vi d naturanpassad stadsp 1 aneri ng - erf arenheter fran<br />

studie i Karlskoga. 1978. 65 sidor.<br />

Anders Sjoberg, Jan Lundgren, Thomas Asp, Henriette Melin: Manual <strong>for</strong> ILLUDAS (version<br />

52) Ett datorprogram <strong>for</strong> dimensionering och analys av dagvattensystem. 1979. 67 sidor.<br />

Per-Arne Malmquist m fl: Papers on Urban Hydrologi 1977-78. 99 sidor.<br />

Vi ktor Arne 11, Per-Arne Ma 1 mqui st<br />

Dagvattenteknik. 1978. 30 sidor.<br />

Bo-Goran Lindquist, Gi 1 bert Svensson: Uppsatser om<br />

Bo Lind: Dagvatteni nfil trati on - <strong>for</strong>utsattni ngar i nom ett bergsomrade, Ostra Ga rdsten<br />

Goteborg. 1979. 32 sidor.<br />

Per-Arne Ma 1 mqui st (red ) : Geohydro 1 ogi ska <strong>for</strong>skni ngsgruppen 1972-78. Sammanstall ni ng av<br />

uppnadda resultat. 1979. 96 sidor. Kostnadsfri.<br />

Gilbert Svensson, Kjell 0ren: Planeringsmodeller <strong>for</strong> avloppssystem. NIVA-mode1len til1ampad<br />

pa Torslanda avrinningsomrade 1979. 71 sidor.<br />

Diskussioner och figurer fran CTH-semina­<br />

Per-Arne Malmquist (red.): lnfiltrera dagvatten<br />

rium 1979-04-20. 1979. 86 sidor.<br />

Bo Lind: Dagvatteninfiltration - perkolationsanlaggning i Halmstad. 1979. 58 sidor<br />

Viktor Arnell, Thomas Asp: Berakning av braddvattenmangder. Nederbordens varaktighet och<br />

mangd vid Lundby i Goteborg 1921-1939. 1979. 80 sidor.<br />

Stig Hard, Thomas Holm, Sven Jonassen Dagvatteninfiltration pa gronytor - Litteraturstudie,<br />

kunskapssammanstallning och hypotes. 1979. 278 sidor<br />

Per-Arne Malmquist, Per Lindvall: Draneringsrors igensattning- en jam<strong>for</strong>ande laboratoriestudie.<br />

1979. 44 sidor<br />

Per-Arne Malmquist, Gunnar Lanner, Erland Hogberg, Per Lindvall: SODRA NASET - ett exempel<br />

pa <strong>for</strong>enklad ut<strong>for</strong>mning av gator och dagvattensystem i ett upprustningsomrade. 1980.<br />

Vi ktor Arne 11<br />

stadsdelen<br />

Hakan Strandner, Gi 1 bert Svensson: Dagvattnets mangd och beskaffenhet<br />

i Linkoping, 1976-77. 1980.<br />

Lars 0 Ericsson, Stig Hard: Termisk<br />

Termovisions<strong>for</strong>sok i klimatkammare. 1<br />

strering en metod att kartera markvattenhalt<br />

65 sidor.


nr 50<br />

nr 51<br />

nr 52<br />

nr 53<br />

nr 54<br />

Viktor Arnell Dimensionering och analys av dagvattensystem. Val av berakningsmetod. 1980.<br />

56 sidor 22 figurer.<br />

Lars 0 Ericsson: Markvatten<strong>for</strong>hallanden i urbana omraden. Slutrapport Goteborg 1980. 115<br />

sidor.<br />

Olov Holmstrand (red.): lngenjorsgeologisk kartering. Seminarium 1980-04-17. 110 sidor.<br />

Olov Holmstrand: Lokalt<br />

nfiltration vid<br />

Olov Holmstrand, Bo Lind Per Lindvall<br />

rade. Lokalt omhandertagande av<br />

av dagvatten Sammanfattni ng av <strong>for</strong>skni ng om<br />

sidor.<br />

Lars-Ove Sorman<br />

i Bratthammar,<br />

ett lerom-<br />

nr 55<br />

Gunnar Lanner:<br />

Danmark Holland<br />

aneri ng i bostadsomraden i utl andet. Nya pri nci per<br />

and. 1981 10 sidor.<br />

nr 56<br />

nr 57<br />

nr 58<br />

nr 59<br />

Sven Lyngfelt: Dimensionering av dagvattensystem. Rationella metoden. 1981<br />

Erland Hogberg: Samband mellan gatustandard och trafiksakerhet<br />

<strong>for</strong>studie. 1981.<br />

82 sidor.<br />

bostadsomraden.<br />

Jan A Berntsson: Portryck<strong>for</strong>andringar och markrorelser orsakade av tradvegetation. 1980.<br />

121 sidor<br />

Per-Arne Malmquist, Stig Hard Grundvattenpaverkan av dagvatteninfiltration. 1981.<br />

En<br />

nr 60<br />

Annika Lindblad: lnfiltrationsmatni<br />

1972-80. Sammanstallning och statisti<br />

ut<strong>for</strong>da vid Geol<br />

bearbetning. 1981.<br />

ska institutionen, CTH/GU,<br />

sidor.<br />

nr 61<br />

nr 62<br />

Lars 0 Ericsson, Stig Hard: Termisk registrering<br />

Slutrapport. 1981. 18 sidor.<br />

Jan Pettersson Elisabeth<br />

alternativa upprustnings<strong>for</strong>s<br />

en metod att kartera markvattenhalt.<br />

rorande tva<br />

nr 63<br />

Olav Holmstrand: Praktisk tillampning av ingenjorsgeologisk kartering. 1981<br />

114 sidor.<br />

nr 64<br />

nr 65<br />

nr 66<br />

nr 67<br />

nr 68<br />

nr 69<br />

nr 70<br />

nr 71<br />

nr 72<br />

nr 73<br />

nr 74<br />

nr 75<br />

Anders Sjoberg, Nils Martensson: REGNENVELOPEMETODEN. En analys av metodens tillamplighet<br />

<strong>for</strong> dimensionering av ett 2-ars ati n. 1982. 29 sidor.<br />

Gosta Lindvall ENERGIFORLUSTER LEDNINGSBRUNNAR Litteraturstudie. 1982. 35 sidor.<br />

Per-Arne Malmquist: Lathund <strong>for</strong> berakning av Dagvattnets <strong>for</strong>oreningar. 1982. 32 sidor.<br />

Sven Nystrom: Kommuns skadestandsansvar mot VA-abonnent <strong>for</strong> oversvamningsskador. 1982 71<br />

sidor.<br />

Sven Lyngfelt, Gilbert Svensson: Dagvattenavrinning fran stora urbana omraden. Simuleringsmetodik<br />

exemplifierat pa Goteborgsregionen. 1983. 118 sidor.<br />

Hans Backman, Gi 1 bert Svensson: Fl odesmatni<br />

Matnoggrannhet under kontro 11 erade <strong>for</strong>ha 11<br />

sidor.<br />

med portabla utrustningar.<br />

s betongledning. 1983. 51<br />

Olav Holmstrand (red): Naturanpassad stadsplanering i Dalen S, Karlskoga. Erfarenheter av<br />

planeringspracess ach teknik under och efter byggandet. 1983 114 sidor.<br />

Olov Holmstrand (red): Reservvattentakter. Redovisning av diskussiansdag 1983-05-18. 1983.<br />

115 sidar.<br />

Gilbert Svensson, Hakan Strandner (overs. och bearb.)<br />

<strong>for</strong> simulering av floden i av1oppsnat. 1983. 101 sidor.<br />

Gi 1 bert Svensson (red): Byggande drift och<br />

dri ftstorni ngarna omfattande? -Projekterar vi<br />

1984 98 sidar.<br />

NIVANETT manual. Ett <strong>data</strong>rprogram<br />

se av kommunala va-ledningar. -Ar<br />

satt? - Var 1 igger kastnaderna?<br />

Hans Backman: Avloppsledningar i svenska tatorter i ett histariskt perspektiv. -Ett<br />

sammandrag av tekniska <strong>for</strong>utsattningar, ideer och diskussioner under 1900-talets ledningsbyggande.<br />

1984. 123 sidor.<br />

Ann-Carin Andersson, Olav Halmstrand Erik Almling, Rolf Rosen, Kjell Soderstrom: Infiltration<br />

ach alternativa atgarder vid grundvattensankning. Jam<strong>for</strong>ande beskrivningar och val<br />

av metoder. 1984 115 sidor.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!