28.12.2013 Views

Relax and Randomize: From Value to Algorithms

Relax and Randomize: From Value to Algorithms

Relax and Randomize: From Value to Algorithms

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A<br />

PROOFS<br />

Proof of Proposition 1. By definition,<br />

T<br />

∑<br />

t=1<br />

T<br />

E ft∼q t<br />

l(f t , x t ) − inf ∑ l(f, x t ) ≤ ∑ E ft∼q t<br />

l(f t , x t ) + Rel T (F∣x 1 , . . . , x T ) .<br />

f∈F t=1<br />

Peeling off the T -th expected loss, we have<br />

T<br />

∑<br />

t=1<br />

T<br />

t=1<br />

T −1<br />

E ft∼q t<br />

l(f t , x t ) + Rel T (F∣x 1 , . . . , x T ) ≤<br />

∑<br />

t=1<br />

T −1<br />

≤ ∑<br />

t=1<br />

E ft∼q t<br />

l(f t , x t ) + {E ft∼q t<br />

l(f t , x t ) + Rel T (F∣x 1 , . . . , x T )}<br />

E ft∼q t<br />

l(f t , x t ) + Rel T (F∣x 1 , . . . , x T −1 )<br />

where we used the fact that q T is an admissible algorithm for this relaxation, <strong>and</strong> thus the last<br />

inequality holds for any choice x T of the opponent. Repeating the process, we obtain<br />

T<br />

∑<br />

t=1<br />

T<br />

E ft∼q t<br />

l(f t , x t ) − inf ∑ l(f, x t ) ≤ Rel T (F) .<br />

f∈F t=1<br />

We remark that the left-h<strong>and</strong> side of this inequality is r<strong>and</strong>om, while the right-h<strong>and</strong> side is not. Since<br />

the inequality holds for any realization of the process, it also holds in expectation. The inequality<br />

V T (F) ≤ Rel T (F)<br />

holds by unwinding the value recursively <strong>and</strong> using admissibility of the relaxation. The highprobability<br />

bound is an immediate consequences of (6) <strong>and</strong> the Hoeffding-Azuma inequality for<br />

bounded martingales. The last statement is immediate.<br />

Proof of Proposition 2. Denote L t (f) = ∑ t s=1 l(f, x s ). The first step of the proof is an application<br />

of the minimax theorem (we assume the necessary conditions hold):<br />

inf<br />

q t∈∆(F) x t∈X<br />

= sup<br />

sup { E [l(f t , x t )] + sup<br />

f t∼q t x<br />

p t∈∆(X ) f t∈F<br />

E ɛt+1∶T sup<br />

f∈F<br />

inf { E [l(f t , x t )] + E sup<br />

x t∼p t x t∼p t x<br />

[2<br />

T<br />

∑<br />

s=t+1<br />

E ɛt+1∶T sup<br />

f∈F<br />

ɛ s l(f, x s−t (ɛ t+1∶s−1 )) − L t (f)]}<br />

[2<br />

T<br />

∑<br />

s=t+1<br />

For any p t ∈ ∆(X ), the infimum over f t of the above expression is equal <strong>to</strong><br />

E sup E ɛt+1∶T sup [2<br />

x t∼p t x<br />

f∈F<br />

≤ E sup E ɛt+1∶T sup [2<br />

x t∼p t x<br />

f∈F<br />

T<br />

∑<br />

s=t+1<br />

T<br />

∑<br />

s=t+1<br />

≤ E sup E ɛt+1∶T sup [2<br />

x t,x ′ t ∼pt x<br />

f∈F<br />

ɛ s l(f, x s−t (ɛ t+1∶s−1 )) − L t−1 (f) + inf<br />

ɛ s l(f, x s−t (ɛ t+1∶s−1 )) − L t (f)]}<br />

f t∈F<br />

E [l(f t , x t )] − l(f, x t )]<br />

x t∼p t<br />

ɛ s l(f, x s−t (ɛ t+1∶s−1 )) − L t−1 (f) + E [l(f, x t )] − l(f, x t )]<br />

x t∼p t<br />

T<br />

∑<br />

s=t+1<br />

ɛ s l(f, x s−t (ɛ t+1∶s−1 )) − L t−1 (f) + l(f, x ′ t) − l(f, x t )]<br />

We now argue that the independent x t <strong>and</strong> x ′ t have the same distribution p t , <strong>and</strong> thus we can introduce<br />

a r<strong>and</strong>om sign ɛ t . The above expression then equals <strong>to</strong><br />

E E<br />

x t,x ′ t ∼pt<br />

ɛ t<br />

sup<br />

x<br />

E ɛt+1∶T sup<br />

f∈F<br />

[2<br />

≤ sup E sup E ɛt+1∶T sup [2<br />

x t,x ′ t ∈X ɛ t x<br />

f∈F<br />

T<br />

∑<br />

s=t+1<br />

T<br />

∑<br />

s=t+1<br />

ɛ s l(f, x s−t (ɛ t+1∶s−1 )) − L t−1 (f) + ɛ t (l(f, x ′ t) − l(f, x t ))]<br />

ɛ s l(f, x s−t (ɛ t+1∶s−1 )) − L t−1 (f) + ɛ t (l(f, x ′ t) − l(f, x t ))]<br />

where we upper bounded the expectation by the supremum. Splitting the resulting expression in<strong>to</strong><br />

two parts, we arrive at the upper bound of<br />

2 sup E<br />

x t∈X<br />

sup<br />

ɛ t x<br />

E ɛt+1∶T sup<br />

f∈F<br />

[<br />

T<br />

∑<br />

s=t+1<br />

ɛ s l(f, x s−t (ɛ t+1∶s−1 )) − 1 2 L t−1(f) + ɛ t l(f, x t )] = R T (F∣x 1 , . . . , x t−1 ) .<br />

10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!